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We present a scheme for experimentally observing the quantum Zeno effect using the quantum-
nondemolition measurement recently proposed by Brune er al. [Phys. Rev. Lett. 65, 976 (1990)]. The
Zeno effect refers to the freezing of the (unitary) free dynamics of a system by rapid measurements. We
generalize the Zeno effect to be any change in the survival probability of an initial state induced by very
rapid measurements, when such measurements are the dominant source of fluctuations in the system.
We derive a master equation for the evolution of a cavity mode when the photon number is monitored
by this method. This equation describes a phase-diffusion process. We propose that this measurement
scheme be used to monitor the exchange of a single photon between the cavity and a single Rydberg
atom. We show that for very rapid monitoring the free oscillation of the atomic inversion is disrupted
and the atom can be trapped close to the initial excited state. This is the quantum Zeno effect.

PACS number(s): 42.50.Wm, 34.60.+z, 03.65.Bz

I. INTRODUCTION

It has been known for some time that the unitary evo-
lution of a quantum system with a discrete spectrum may
be considerably disrupted when the system is subjected to
measurement. In particular, a two-level system undergo-
ing coherent oscillation between each of the two states,
subjected to a sequence of instantaneous perfectly accu-
rate (projective) measurements, can be frozen in an ini-
tially occupied state [1-3]. While this result is no doubt
correct it assumes a highly idealized type of measure-
ment. Real measurements are not instantaneous nor per-
fectly accurate. In Ref. [3] one of us showed that the
effect of a sequence of inaccurate instantaneous measure-
ments could be described by a Markov master equation
for the system state. In an appropriate limit defining an
efficient measurement the initial-state occupation proba-
bility decays exponentially linear in time with a very slow
rate. In this paper we discuss a realistic scheme which is
well modeled by this approach.

To date there has only been one attempt to demon-
strate the Zeno effect experimentally [4]. Recently a very
interesting photon-number quantum-nondemolition mea-
surement was proposed by Brune e al. [5], based on the
interaction between a Rydberg-atom transition detuned
from a microwave cavity. This scheme opens up a more
direct test of the Zeno effect in a two-level system with
dynamics dominated by coherent oscillation (i.e., there is
no need to consider spontaneous emission). The general
scheme is as follows. A single two-level Rydberg-atom is
placed in a high-Q microwave cavity resonant with the
atomic transition. If the atom is prepared initially in the
excited state the evolution of the atom-cavity system will
consist in a coherent oscillation between two states corre-
sponding to the atom initially excited and no photons in
the field, and the atom in the ground state and one pho-
ton in the field. The initial state is monitored by a
quantum-nondemolition (QND) measurement of the pho-
ton number in the cavity. The QND scheme is the
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Rydberg-atom phase-sensitive detection scheme proposed
by Brune et al. As we shall show when the measurement
is operating to extract the maximum amount of informa-
tion at the greatest rate the coherent oscillation in the
two-state system is suppressed and the evolution is dom-
inated by a very slow decay of the initial state.

II. PHOTON-NUMBER QND MEASUREMENTS
USING RYDBERG ATOMS

We now describe in some detail a photon-number
QND scheme essentially equivalent to the scheme of
Brune et al. As depicted in Fig. 1, a beam of Rydberg
atoms passes into a microwave cavity of resonant fre-
quency .. The level structure of the atoms is also indi-
cated in Fig. 1. The |2)<«>|3) transition is coupled to the
cavity field but is widely detuned. This ensures that there
is no absorption of photons from the cavity due to this
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FIG. 1. Schematic representation of the QND scheme to

measure the photon number in the cavity. L, is a field used to
prepare the state of the atoms so that they have a nonzero di-
pole on entering the cavity, while L, ensures that the final ion-
ization count will give information on the photon number in the
cavity.
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transition. Prior to entering the cavity the Rydberg
atoms pass through an intense field L, resonant with the
|1)<>|2) transition. This field is to prepare the atoms in
a superposition of states |1) and [2). After leaving the
cavity the atoms pass through a similar intense field
L,m/2 out of phase with the first field, and then into an
ionization counter which determines whether the atom is
in state |2). In the scheme of Brune et al. the fields
L,,L, form a Ramsey fringe experiment; however, we
will not view it in quite this way.

The interaction with the fields L,L, may be described
in terms of a rotation of the Bloch vector representing
the inversion and polarization of the |1)<«>|2) transition.
The inversion and polarization operators are

L=1(2)2]—=0 1), 2.1
J,=—it(12)1]=[1)¢2]), 2.2)
Jo=1(12)C11+[1)¢2]) . 2.3)

The interaction with the fields L,,L, are then described
the unitary operators

R1(¢1):e_i¢1‘]x ,

—idyd,

2.4)

R,(¢,)=e (2.5)

The phase of precession ¢; is proportional to the product
of the dipole moment for this transition, the interaction
time, and the total field strength. We will assume that all
atoms entering the field L, are in the ground state |1).
Thus after passing through the first field the state of an
atom is

| 4 )= cos(¢,/2)|1) —isin(¢,/2)|2) . (2.6)

This first field may be regarded as a state preparation step
for the probe atoms.

Inside the cavity sufficiently far from resonance, the in-
teraction is described by the Hamiltonian [6]

H,=ﬁ)(of3afa , (2.7
where
oP=1(13)(3|=12)(2]) (2.8)

and a'a is the photon number operator for the intracavi-
ty field. Clearly a taisa QND variable for the cavity field,
and H, represents a back-action evasion coupling.

To see how the QND measurement works consider the
Heisenberg equations of motion for the dipole moment
operators on the |1)<«|2) transition, Egs. (2.2) and (2.3),

x _Xg ot
o 5 Jya'a, (2.9)
aJ, __X t
Py J.a'a (2.10)
The solutions for an interaction time 7 are
J.(7)= cos(8a'a)J,(0)+ sin(6a'a)s,(0) (2.11)
J,(1)= cos(6a'a)J,(0)—sin(6a’a)y, (0),  (2.12)

where 6=x7/2. Thus a measurement of J, or J, will
yield information on a'a, provided the state of the atom
is such that there is a nonzero dipole on the transition
11)<+[2) (e, (J,),{J,)#0). The purpose of the initial
field is to ensure that this is the case. Unfortunately the
ionization counter at the output of the experiment
effectively measures J, and not the dipole moment opera-
tors. The purpose of the second field is to rotate the in-
formation in the dipole into a component in the inver-
sion.

If we view the experiment as a whole (Fig. 1), it
effectively transforms the input Bloch vector components
of the |1)«>|2) transition into output components. The
final measurement is made on the z component of the out-
put. The total transformation of the z component is

JO=[ cose, cose,+ sing, sing, sin(6a 'a))J;
— sing, cos(0a 'a)J!

+ [ sing, cosp, — sing, cosd, sin(6a’a) ] . (2.13)

Note that if the atom is not first prepared in a superposi-
tion state by the first laser field, ¢; =0, and (J,f )=0so no
information on a'a is obtained, i.e., no measurement has
taken place. If we now take ¢, =¢,=m/2,

JO=sin(6ata)Ji— cos(6a‘a)} . 2.14)

Effectively with this choice of phase the transformation is
a precession about the y axis of the Bloch sphere, a result
easily confirmed by a geometric representation of each
rotation.

The mean signal at the detector is

(Jy=—X sin(a’a)) . (2.15)

If 6 is small and only low photon numbers are excited in
the cavity,
<J,°)z—g<a*a>. (2.16)

This is clearly a measurement of the photon number in
the cavity.

III. INTRACAVITY DYNAMICS

We now determine the evolution equation for the cavi-
ty field state and show that the measurement leads to a
rapid diagonalization of the state of the field in the num-
ber basis; that is, the state is reduced as a result of the
measurement. The state of each atom entering the cavity
is the state after the field L,

¥, )=ci|1)+c,[2), 3.1)

where ¢; = cos(¢,/2), c,= —isin(¢,/2). The change in
the state of the field due to the interaction of a single
atom for a time 7 is

p'=2.p
=tr [U(r)pe |y ) (¥ | UT(m)] (3.2)
=I61|2p+|cz|2e"6“t"pe_"9"f" . (3.3)
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In this equation U(7) is the time-evolution operator fol-
lowing from the interaction Hamiltonian in Eq. (2.7).

The transformation defined by Eq. (3.3) is nonunitary.
The resulting state is a statistical mixture of a field which
has undergone a phase jump of 6 and a state which is left
unchanged. The probability that a given probe atom will
induce a phase change is |c,|>. Note that the phase jump,
if it occurs, is always of the same size and direction. The
nonunitarity arises because we do not know whether a
given probe atom has induced a phase jump or not.

We first consider the rather idealized case where 6 does
not vary from atom to atom and all the atoms arrive in
the cavity at equally spaced time intervals. In this case
Eq. (3.3) can be iterated N times to give
|2rlcl|2(N-r)eir9a1ap(0)e*[rOaTa (3.4)

r lea

M
pr=3
r=0

(we ignore for the moment the free evolution between
measurements). To understand the effect of the measure-
ments on the field consider the matrix elements of p'* in
the number basis

p=plpVlg)

— (O;ei(B/Z)(p —q)N( |cl IZe —i(6/2)p—gq)

P,
+ e, 26020 =N (3.5)
Inthecase|c1|=|c2I=1/\/§,weﬁnd
N
A 0
(N)— (0) ,i(8/2)(p —q)N o . _
Ppg=Ppaq€ PV | cos 2(p q) (3.6

We now consider a continuous regular limit in which 6 is
small but N is large. (That is, each measurement is not
very effective but we make very many to compensate.)
To second order in 6 we find

i(6/2)p —qg)N

N6&?
(N) _ (0) Y
Pp,g =Pp,q€ exp 2 p—q*|. 37D

Clearly there is a decay of coherence in the number basis,
a result to be expected for a scheme designed to measure
the number. If we assume that the time between kicks is
T then N =t /T and

—yt6?
3 (

1 - 2
PN p(O) 10720~ 07t exp p—a?|, 39

where y =T ! is the frequency of the measurements,
effectively the bandwidth of the measurement. In this
form the decay of coherence is typical of the decay of
coherence in continuous measurement models [7]. Clear-
ly a good measurement corresponds to v 6? large.

Away from the continuous limit coherence decay is
more complicated. In fact for finite 6 there are certain
coherences which do not decay. For example, if 6=1m/2
coherence between states |[p) and |g) will not decay
whenever p —q =4n for n an integer. Even so if N is
large p},f\;) decreases very quickly away from these special
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values.

The source of this coherence decay is the need to
prepare the initial state of the atom to be a superposition
of the ground and excited states, as noted in Sec. II. This
is easily seen in Eq. (3.5) by setting either ¢, or ¢, to zero.
The field then sees a random sequence of excited and
unexcited atoms which leads to a stochastic variation of
the refractive index inside the cavity. The need to
prepare the atom in a state suitable for a measurement to
take place leads directly to state reduction in the energy
basis. This is a totally unavoidable nonunitary effect of
the measurement.

However, other sources of nonunitarity may also play a
role. For example, the atoms may arrive in the cavity at
random times rather than at regular time intervals as as-
sumed above. In the case of Poisson-distributed arrival
times an evolution equation may be derived for the cavity
field [3],

dp — _
dt ’meas ‘V((DTP p)

iﬂaia —i@aTa

=7le,[%(e™* “pe —p) . (3.9)

In addition the interaction time 7 may vary from atom to
atom due to the velocity profile. In this case we must
average over a distribution for 6. Assuming a Gaussian
distribution of mean 6 and a variance of A, such that
6 >>1V A, then to first order in the variance

=t = F
iﬂl =y|c2|2(ezﬂa ape—zf)a a_p)
dt meas
—FA[aTa,[a*a,e"‘;“f"pe'ié“%]] , (3.10)
where
Avle,|?
A=_V‘2 2l 3.11)

If the average phase shift is small and there are few pho-
tons in the cavity we may write

dt

dp ] =i8[a*a,p]—I"A[aTa,[aTa,p]] , (3.12)
meas

where

8=vylc,|*0 (3.13)

is the linear deterministic phase shift. The effect of the
first term in Eq. (3.12) is to induce a fixed detuning of the
cavity field from the empty cavity frequency. This deter-
ministic phase shift is the average phase shift induced by
a beam of probe atoms which enter the cavity at random,
Poisson-distributed, times. The second term leads to a
diffusion in the phase of the cavity field. More important-
ly this last term also causes the density operator for the
field to become diagonal in the photon number basis, a re-
sult to be expected for a measurement of the photon
number. A good measurement thus corresponds to large
T, as in the regularly measured case.
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IV. CONDITIONAL STATE OF THE CAVITY

Given that an atom is detected in state |2), what is the
state of the cavity field conditioned on this result? In this
section we give the answer to this question, which is
needed to simulate the evolution of a particular measure-
ment sequence.

The probability to detect an atom in the state |2) after
passing through the final field L, is

P,=trp(®'?p) , 4.1)
where

d2p=tr ,[12)(2|R,(¢,)U(r)p&p ,U'(1)R](4,)] 4.2)

=(2|R,(¢,)U(r)p&p ;U (1)R}(¢,)2) 4.3)

and where p, is the state of the atom after passing
through L, [given in Eq. (3.1)]. The state transforma-
tions in the final rotation of the Bloch vector are

R,(¢)I1)=d,|1)—d,|2) , (4.4)
R,(¢,)2)=d,|1)+d,[2) , (4.5)

where d,= cos(¢,/2) and d,=sin(¢,/2). Using Egs.
(3.1), (4.3), (4.4), and (4.5) we find
:

i6at —ifa'a
(D(T2)p=lc1iZIdl|2p+|c2‘2|d2|2e19a ape 6

—clcz‘d?_d}‘pe_"G“T“—c}‘czdfdze"a‘ﬁ“p . (4.6)
Thus
Py=le *ld,1*+]c,|?ld, ?
—(c1c§d2df(e_"o"T“)+c.c.) , @.7)

where c.c. denotes the complex conjugate. Note that if
either ¢, or ¢, is zero, no information on the cavity pho-
non number is obtained. In the case of ¢,=¢,=m/2 the
coefficients are ¢, =1/V2, ¢,=—i/V2, d,=d,
=1/v'2, and

(D(TZ) =i_(p+ei9atapeAiGaTa_l-pe—iea*a_*_ieiea*ap) , (4.8)

and thus

P,=1—1(sinfa"a) 4.9)

as (J?)=P, —1. This result agrees with the result in Eq.
(2.15). If the field is in a coherent state |a) we find

(sinfata ) = exp[ —|a|X(1— cos6)]sin(|a|%sinb) , (4.10)

which for §<<1 becomes approximately sin(|a|?0), the
semiclassical result.
The conditional sate of the field is then given by

p(2)=(P2 )—lcpi'Z)p

p—ipe —i9a*a+iei0afap+ei807ape —iOa*a

2(1—(sinba‘a))

The reduced photon-number distribution in particular is

P(n)(1—sinbn)
1—(sin6a'a)

(4.11)

PY(n)= (4.12)
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This will have holes at values of n such that
n@=(mw/2)(4m +1) for m an integer. In a long sequence
of measurements the net effect of superposing different in-
terference patterns corresponding to the stochastic se-
quence of results is that the reduced probability distribu-
tion converges to a single peak at a random value of n, as
demonstrated in Brune et al. [S]. In fact for certain
values of 0, conditional measurements can result in a
photon-number distribution that is multiply peaked.
This would require a beam for which the standard devia-
tion of @ is much less than the mean. Atomic beams can
be prepared with a velocity distribution width of 4% [8].
For completeness, the operation for the conditional state
of the field given that the atom was not detected in state
[2) is

i0a T —ioat . —ipat T A
le)p=%(p+e10a ape i6a "+1pe i6a a_lezea ap) .

(4.13)
Thus

Py=1+41(sinfa’a) . 4.14)

If 6= /2 and there is one photon in the field we find
that P,=0 and P, =1. That is, the atom will never be
ionized from state |2), only from state |1) in the final
ionization state readout. It then seems that the best way
to detect a single photon would be to arrange to have
0=m/2. This is of relevance to the quantum-Zeno-effect
determination discussed in Sec. V.

Although in a particular sequence of measurements a
random time distribution of ionization counts will be ob-
served, the average ionization rates are easily calculated.
The average ionization rates from state |1),|2) are given
by

i1,(1)=vP,,

=32’—(1i<sin9a*a )), 4.15)

where ¥ is the atom injection rate.

V. A TEST OF THE ZENO EFFECT

We now assume that the microwave cavity initially
contains a single two-level Rydberg atom, referred to as
the object atom, with a transition frequency resonant
with the cavity frequency. The excited state of this atom
will be denoted |e ) while the ground state is |g ). We as-
sume also that the atom is prepared initially in the excit-
ed state and that the cavity contains no photons. Under
free evolution the quantum of energy is periodically ex-
changed between the object atom and the cavity field. By
monitoring the photon number in the cavity we can mon-
itor the evolution of the atom away from its initial excit-
ed state. We will discuss separately the two cases of regu-
lar probe injection and Poisson probe injection. We show
in both cases that the measurement necessarily disrupts
the free oscillation of the atom-field system.
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A. Regular probe injection

In Sec. III we showed that the measurement necessari-
ly introduces a minimum degree of nonunitary change in
the field state, described by Eq. (3.3). This change is in-
terpreted as a statistical mixture of a field which has un-
dergone a phase change and a field which has not. In the
case |c;|*=]c,|>=0.5 there is an equal probability for
each of these events. Each probe atom has a 50% chance
of causing a fixed phase change in the state of the field.
In this section we show that this minimal level of nonuni-
tarity induced by the measurement causes a change in the
free evolution of the cavity—object-atom system which
becomes more disruptive the greater the rate of measure-
ment.

Under free evolution the object atom will periodically
emit and absorb one photon, an entirely coherent process
in the absence of spontaneous emission (we assume that
the rate of spontaneous emission for this configuration is
much smaller than the coherent oscillation frequency).
The Hamiltonian for this interaction is

_ fik

H, —(aT0_+a0+) ,

5 (5.1

where o, are the dipole raising and lowering operators
for the |e)<|g) transition. The initial state is
le)®|0)f, ie., the atom is in the excited state and the
field is in the vacuum state. The state at any time lies
within the subspace spanned by

la)=le)®|0)x ,
b)=Ig)® 1) .

(5.2)
(5.3)

In this basis the matrix elements of the density operator
obey

ds _
L —BXxs, (5.4)
where
S=(X,Y,2), -3
B=(x,0,0) , (5.6)
and
X=1((alplb)+(blpla)) 6.7
Y == ((blpla)—<alplb)), 58
Z=3((blplb)—(alpla)) . 69

This equation represents the precession of S around the
direction defined by B, i.e., the x axis.

We will assume that the interaction of the probe atom
with the cavity field occurs on a much faster time scale
than the coherent interaction between the cavity field and
the object atom. This requires that the probe atoms pass
through the cavity at a very high rate. This point is fur-
ther discussed in the concluding paragraph. With this as-
sumption the effect of the probe atom on the system may
be modeled as a “kick,” which periodically interrupts the
free dynamics. The dynamics is then represented by a
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map for the vector S, which comprises a free precession
for a fixed time followed by a nonunitary jump as the
probe atom passes through the cavity. To determine this
map we first note that the interaction Hamiltonian may
be written as

H, =#xo, (5.10)

where the angular-momentum operators are defined with
respect to the effective two-level system by

o,=1(b)(al+la)(bl), (5.11)
Uy:_Ti(|b>(a|—Ia)<b|), (5.12)
o, =1(b){(bl—la)(al) . (5.13)

Thus the free dynamics is simply represented as a preces-
sion around the x axis by an angle # =«7, where 7 is the
time between each probe atom. To determine the effect
of a probe atom we note that the photon-number opera-
tor in the effective two-level system is formally identical
too,,

alavl, =0, , (5.14)
where I, is the identity operator for the object atom.
(This result may be verified by checking the commutation
relations.) A phase shift of 6 in the field is thus represent-
ed by a precession of 6 about the z axis.

The resulting map for the state of the system is

—ido ido

pn+1:%(e Pne Tte e Pne

—ifBo_, —ido ido i6o
z X Xe Z) S

(5.15)

where 0 is the phase change induced by a probe atom and
¢ =k, where 7 is the period of time between each probe
atom passing through the cavity.

The state p,, ;. is a statistical mixture of states, one of
which undergoes a precession of ¢ around the x axis and
one which undergoes a precession of ¢ around the x axis
followed by a precession of 6 around the z axis. Any
given probe atom will induce one or the other of these
processes with equal probability. The corresponding map
for the vector S is

S,+1=3(R;tR,)S, , (5.16)
where

1 0 0

R,= |0 cos¢ —sing |, (5.17)
0 sing cos¢

cosf —sinf 0

R,= | cosdsinfd cospcosd —sing (5.18)

sing sinf sing cos@  cos¢d

In the case of 0 small the total map matrix may be writ-
ten approximately as
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0 9 and negative value rather than between a positive value
cos s 0 and zero as in this paper, but nothing can be done about
the fluctuations induced by the measurement.
R = | cos¢ sinﬁ cos¢ cosﬁ —sing It is always possible to view the effect of measurement
2 2 in terms of an ensemble dynamics, as above, or as a sto-
. .0 . (% chastic trajectory conditioned on the history of what
sing sy sing cosy cosé each particular probe atom actually does. In the model

e % 0 0
X 0 e~/ 0
0 0o 1

) (5.19)

which is correct to second order in 6 only. In this form
we see that the probe atoms on average induce an extra
precession of 8/2 about the z axis in addition to the uni-
tary precession around the x axis, and they also induce a
nonunitary decay of the “coherences” S, and S, at the
rate 6%/8. This decay is of course the same as that given
in Eq. (3.7). The measurement has both a systematic
effect, as determined by 6/2, and a random or diffusive
effect determined by 6°.

The probability to find the cavity—object-atom system
in the initial state after n probe kicks is given by

pa,nz%_’sz,n (5'20)
In Figs. 2 and 3 we plot this probability versus ¢t =n7 for
a number of cases. In Figs. 2(a)-2(c) we consider the
case of fixed 6 (i.e., fixed measurement strength), but vary
the time between each probe atom. This shows the effect
of increasing the rate of measurement. It is apparent that
the oscillations in the probability p, are suppressed as the
rate of measurement increases, and the system remains
longer near the initial state. The measurement thus dis-
rupts the free evolution as the measurement rate in-
creases. This is what is meant by the Zeno effect. In the
explicit model of this paper we are able to trace the origin
of this effect to the physical effect of the measuring ap-
paratus (the probe atoms) on the measured system (the
object-atom—field system). We can distinguish two physi-
cal explanations for the effect in the model. The first is
the average extra rotation induced by the probe atoms,
which has the effect of tilting the precession direction
ways from the x axis as described by the first factor in Eq.
(5.19). This causes a frequency shift in the evolution of
P, that is apparent in comparing Figs. 2(a)-2(c). This is
more evident in Fig. 3 where we have considered a
“weak-coupling” limit in which € is small but the prod-
uct of 6 and the measurement rate is greater than one. In
this case the effective detuning dominates the evolution of
the survival probability, although a very slow decay is
just discernible. This limit will be discussed in more de-
tail in Sec. V D.

The second explanation is the destruction of coher-
ence, or the decay of polarization, reflected in the second
factor in Eq. (5.19). This decay is due to the fact that a
given probe atom may or may not cause a change in the
phase of the field in the cavity, with each event equiprob-
able. It may of course be possible, in some experiments,
to eliminate the systematic effect of the measurement,
perhaps by arranging for 6 to fluctuate between a positive

of this paper the actual phase change induced by a probe
atom determines the measured state of the probe atom
after it has exited the cavity and is thus known (in princi-
ple at least) to the experimenter. This gives another way
to view the dynamics of the vector S as the measurement
proceeds by directly simulating the random process
represented by the passage of the probe atoms. In this
case we toss a coin to determine whether to apply R, or
R, at each step of the map. The results of such a simula-
tion are shown in Fig. 4. It is now quite apparent that
the measurement causes random-phase disturbances to

(a)

pa(t)

1 (b)

pa(t)

15 20 25

0.8 (c)

pa(t)

FIG. 2. A plot of the survival probability p,(¢) vs time for a
regular injection probe. The effect of increasing the measure-
ment rate is shown in (a) through to (c). The time ¢ is defined in
terms of the number of injections by ¢t =n ¢, where n is the num-
ber of injected probe atoms to that point and ¢ is the time of in-
teraction of the probe atom in units of the one-photon Rabi
period (x~1). (a) 6=0 (no measurement), (b) 8=7/2, $=1.0,
(c) 0=1/2, $=0.5.
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1 d . —i6 i0
=—1K[0x,p]+1(e ' azpel Gz—p) . (5.22)
dt 2
0.8
This corresponds to a sequence of Poisson distributed ro-
p (t) 6 tations around the z axis at half the injection rate ¥; not a
a 0.4 surprising result as, on average, only half the atoms are
effective in producing a phase change in the field.
0.2 The resulting dynamics for the vector S with time mea-
sured in units of k, is given by
5 10
X —A4A B 0 X
t d
ar Y|=|—-B —4 —1]||Y]|, (5.23)
FIG. 3. The survival probability p,(¢) is plotted vs time for yA 0 1 0 VA
the regular probe injection case. 6=0.05, ¢$=0.05. The
effective measurement is 20. where
A=pu, (5.24)
the evolution, much in the way collisions disrupt the po- B=(BA—AH'?, (5.25)
larization dynamics for atomic transitions. Of course we . .
also know that there is a systematic shift in the preces-  2nd we have defined the dimensionless parameters
sion axis but this is hard to see in a single trajectory. Y
p=sin"—, (5.26)
B. Poisson distributed probe injection B= Va (5.27)
K

We now assume that the probe atoms arrive in the cav-
ity at Poisson-distributed time intervals. This is probably
a more realistic assumption than the case of regular ar-
rival times discussed above. However, the general pic-
ture of the dynamics is not changed much. One consider-
able advantage of the Poisson model is that it enables one
to write down an explicit evolution equation for the state
(or vector S), rather than a map. The interaction time of
the probe atom in the cavity remains fixed.

The general form of the evolution equation for a sys-
tem subjected to Poisson distributed kicks is [9]

W) _ il o] +y[Hp—pln)], (.21

dt #i
where # is the operation describing the effect of the kick
on the density operator and y is the average injection
rate. In the case of this paper # is defined by Eq. (3.3).
With |¢,|*=]c,|>=0.5 the evolution equation becomes

2 4 6 8 10

FIG. 4. A stochastic simulation of the survival probability
p.(t) when account is taken of each probe atom. At each step
there is a probability of 0.5 that a probe atom will cause a phase
shift in the field, or do nothing. 6=0.3, ¢=0.2. The effective
measurement rate is 5.

It is clear from Eq. (5.23) that the measurement has de-
tuned the object atom from resonance with the cavity.
The precession direction is now B=(«,0, —B). This de-
tuning is due to the systematic phase shift averaged over
a large number of probe atoms. Indeed for 6 small the
detuning is A=y6/2, which is consistent with Eq. (5.19).
Furthermore, there is a decay of the x and y components
which, for small 8, goes as y6?/4, again consistent with
Eq. (5.19).

C. Weak-measurement limit, 8 <<1

In this case the rate of probe injection is much less
than the time scale of coherent evolution of the system
away from the initial state. The eigenvalues of the dy-
namics are

A'IZ—H’B ’
A= —‘uz—Bii :

(5.28)
(5.29)

The survival probability exhibits a slowly damped oscilla-
tion, see Fig. 5(a). In the case of this limit occurring with
0 small, the eigenvalues, in dimensioned units, are
A =—76%/4, Ay = —v0*/8+ik, which are consistent
with the regular injection result in the same limit. This
behavior is evident in the small-B region of Fig. 5(b).

D. Strong-measurement—weak-coupling limit,
B— o, u—0,up=A

In this limit we consider the situation in which the
probe atom shifts the frequency by a very small amount
at each injection, but there are many probe injections.
Furthermore, the average detuning induced is fixed at
A < 1. The eigenvalues are given by
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(5.30)
(5.31)

1,=0.0,
Ay 3=%iVBpu .

In this case the survival probability exhibits small oscilla-
tions near unity and decays on a very slow time scale.
Thus the system remains close to the initial state for long
times. This behavior is shown in Fig. 5(b) in the large-8
region.

The special case of 6=m (u=1.0) is worthy of com-
ment. Inspection of Eq. (4.15) shows that this case does
not correspond to a measurement of a'a in the cavity,
and thus cannot be used to monitor the evolution away
from the initial state. However, the effect on the evolu-
tion on the system is still quite considerable. In fact the
eigenvalues of the dynamics are

(5.32)

(5.33)

The dynamics are characterized by a transition from un-
derdamped to overdamped motion in the case of B> 2.
While no measurement can be said to have taken place
the effect of the probe atoms on the effective two-level dy-
namics is equivalent to pure phase decay. Indeed the se-
quence of probe atoms is equivalent to a random se-
quence of phase reversals in the two-level density matrix.
Is the strong-measurement limit S>>1 achievable?
The answer is yes but it necessarily requires that 6 be
small. The size of y is immediately given by the require-
ment that we have only one atom in the cavity at a time.
If the length of the cavity is L, and the velocity of the
atoms is v then y=v/L,. We thus require an object
atom with single-atom Rabi frequency k such that
k<<v/L.. However, @ is proportional to the time of
flight of the atom through the cavity, which cannot be
greater than y ~! without violating the assumption that
there is only one atom in the cavity at a time. Increasing
v will necessarily decrease 6. In other words, the
strong-measurement limit necessarily implies the weak-
coupling regime. Typically single-photon Rabi frequen-
cies for Rydberg atoms are in the range [10] 10* <« < 10°

O]

FIG. 5. A plot of the survival probability vs time for the case
of Poisson injected probe atoms, with different injection rates.
(a) 8=m/2, (b) 6=0.01.

s”!. Thus we require y>10° s For a 1-cm-length

cavity this means a velocity of the order of 1000 m/s.
The velocity of probe atoms is limited by the source. It
could possibly be increased by reversing a laser-cooling
scheme, i.e., propagating a resonant laser field along the
beam of probe atoms. For example, using a scheme of
two slightly detuned counterpropagating waves [11], ve-
locities of the order of 1000 m/s could be achieved for
sodium.
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