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Theory of a two-mode phase-sensitive amplifier

Nadeem A. Ansari

(Received 6 November 1991)

A theory of two-mode phase-sensitive amplification by a three-level atomic system in the cascade
configuration is presented, within the framework of the theory of multiwave mixing. Two photons of a
strong external pump field induce coherence between the top and bottom levels. It is shown that both
quadratures of the field modes acquire unequal gain and added noise. For large values of the dimension-
less pump intensity, with a particular choice of its phase, and zero side-mode detuning, the system
behaves as a nondegenerate parametric amplifier.

PACS number(s): 42.60.Da, 42.65.Ky, 32.80.8x

I. INTRODUCTION

In optical amplifiers the bosonian nature of light adds
noise to the signal in order to satisfy the uncertainty prin-
ciple. The added noise depends on the internal degrees of
freedom of the particular systein [1]. In phase-insensitive
amplifiers, an equal amount of noise is added to each
quadrature of the signal field modes and the quadratures
acquire equal gain [2—4]. The situation, however, be-
comes more interesting when we consider phase-sensitive
amplification. In such amplifiers, an unequal amount of
noise is added to the two quadratures of the field [5—7].
Recently, Scully and Zubairy [8] presented a theory of
two-photon phase-sensitive arnplification by a three-level
atomic system in cascade configuration, where coherence
was induced by injecting the atoms in a coherent super-
position of the upper and the bottom levels. They
showed that both the quadr atures of the field are
amplified with equal gain and added noise in one of the
quadratures goes to zero at the expense of increased noise
in the other quadrature, under certain conditions. In
another type of two-photon phase-sensitive amplification,
Ansari, Gea-Banacloche, and Zubairy [9] considered a
three-level atomic system in cascade configuration, where
a strong external field induces coherence by coupling the
top and bottom levels. They showed that when the Rabi
frequency of the classical field is much larger than the
atomic level width, the system behaves as a degenerate
parametric amplifier. They also predicted certain limits
for phase-sensitive and phase-insensitive amplification.

In this paper, we assume the amplifier medium to con-
sist of three-level atoms in cascade configuration. The
bottom-to-top-level transition requires two photons of in-
tense pump field. One pump photon detuning is assumed
to be large, so that the transition from the bottom level to
middle level with pump frequency is negligible. The tran-
sition from the top level to the bottom level via the inter-
mediate leve1 results in a buildup of two modes of fre-
quencies v& and v3. Our calculations are within the
framework of the theory of rnultiwave mixing given by
Sunghyuck and Sargent [10]. They considered this atom-
ic system in cavity configuration and predicted strong
squeezing under certain conditions. We show that the

amplifier under consideration adds unequal amounts of
noise to the two quadratures of the field modes, and they
are amplified with unequal gain. For large values of the
dirnensionless pump intensity, particular choice of its
phase and zero side-mode detuning, the added noise to
the two quadratures goes to zero, and the system behaves
as an ideal nondegenerate parametric amplifier.

II. DENSITY MATRIX EQUATION OF MOTION
FOR THE FIELD MODES

We consider a three-level atomic system in cascade
configuration as shown in Fig. 1. The upper level a and
the bottom level c have the same parity and the inter-
mediate level b has the opposite parity. The dipole-
allowed transitions a~b and b~c with frequencies v,
and v3, respectively, are considered weak and treated
quantum mechanically up to second order in coupling
constant. The a+-+c transition requires two pump pho-
tons of frequency v2. Strong pump field is treated classi-
cally up to all orders. The one-photon detuning
cob

—co, —v2 is assumed to be sufficiently large so that the
dipole transition c~b with pump frequency is negligible.
The pump frequency v2 is exactly one-half the atomic
transition frequency co, —co, and the resonance condition
v] + v3 2V& iS SatiSfied.

The Hamiltonian for the atom-Geld system is

H =Ho+ V,
where the unperturbed part of the Hamiltonian is

co, 0 0
3

Ho= 0 cob 0 +gvaa, ,

0 0 co,

and the perturbed part is

3
V= g g, a U, (r +H c.

j=l
where a& and a3 are the annihilation operators for the
field modes 1 and 3, az is the effective two-photon annihi-
lation operator for the pump mode Uj Uj ( r ) is the spa-
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The complex Lorentzian for the field modes 1 and 3 is

1
+1,3

V1 3+i~1 3

(7a)

where h&=co, —
cob

—v, = —b' and h3 cob co, v3
The side-mode detuning 6' =~b —cu, —v2

—5 and
=v2 —

v& is the beat frequency. The dipole decay con-
stants for the a~b and b+ c transitions are y, and y3, re-
spectively, and

FIG. 1. Three-level atomic system in cascade configuration
for phase-sensitive amplification.

1D2=
y2

(7b)

p, f = —i[Hp, f ]+r, (4)

where r denotes the relaxation processes. By considering
the slowly varying field modes and taking traces over the
atomic states, the density matrix equation of motion for
the field modes as obtained in Ref. [10] is

p= —A i(pa, a 1
—a, pa i ) —Bi(a iaip —a ipa 1 )

—A3(pa3at3 —a3pa3) B3(a3a—3p a3pa 3 )—

+C3(a3tatip —a ipa3 }+D,(pa3a, —
a ipa3 }

+adjoint .

Diff'erent coefficients which appear in Eq. (5) are

Ng 12), f, +I22)3 D2 l4T, T2

(1+I2' 1+I22)P)3 l4T, T2

Ng iX i fb
(1+I2' 1+I22)12)3 /4Ti T2

(6a}

(6b)

A3=
Ng 32)3

(1+I"
Ng 32)383= (1+I '

C3=
iNg32)3

(1+I2 )

fb
1+I22)12)3/4T, T2

f, I22)i D2/4Ti T—
2

1 +I22)'21/)43T i T2

I2 —f,2)1 +D2

2(Ti T2)' 1+I22)12)3/4Ti T2

(6c)

(6d)

(6e)

iNg, 2), I2 f,2)3 +D3Di= e '&.
(1+I ' 2(TiTq)' 1+I 2) 2)3!4TiT2

(6f)

tial mode factor for the jth field mode, and g is the cor-
responding atom-field coupling constant. The matrices
cr areJ

0 1 0 0 0 1 0 0 0
o&= 0 0 0, o2= 0 0 0, o.3= 0 0 1

0 0 0 0 0 0 0 0 0

The time dependence of the atom-field density operator
p, f can be obtained from the basic density operator
equation of motion, as

where y2
——1/T2 is the two-photon coherent decay rate

between the levels a and c. The dirnensionless pump in-
tensity I2 is

Iz =2i V3 ~( T, T2 )' (7c)

where Vz=gzU2(n2)' is the effective two-photon in-
teraction energy. The population difference decay time
Tj 1S

(7d)

where I, ( =I'1+I 2) is the upper level decay rate to the
lower levels b and c. I

&
and I 3 are the decay constants

for the a~b and b~c transitions and I 2 allows for the
nonradiative decay of level a to c. The probability factors
fk al'e

I3
r, +2r3 ' ' (7e)

r'
I i+2I'3

f, =l+f, .

(7

(7g)

Also (t is the phase of the classical pump field which can
be obtained from the relation

(711)

and N is the total number of interacting atoms.
The physical interpretation of these coefficients is as

follows. The terms A and 8. with their complex conju-
gates are the gain and absorption coefficients for the jth
mode, respectively, and the phase-dependent coefficients
C3 and D, lead to phase-sensitive amplification.

III. TWO-MODE LINEAR AMPLIFIER

In this section we consider the case of a two-mode
linear amplifier. We first calculate the time-dependent
solutions of the various operator expectation values and
discover certain conditions under which we can factor
out real gain and added noise in the two quadratures of
the field modes.

We define the linear superposition of the coupled-mode
annihilation operators for the field modes 1 and 3 as

X = —(a, +a3) .1
(&)v'2
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The canonical-conjugate Hermitian operators are

(9a)

3C
6+I (12a)

X~= —(X—X ) .
1

21 2
(9b)

—(a, ) = —a, (a, ) D, (—a3),d
(10a)

The equations of motions for the expectation values of
the annihilation operators for the field modes 1 and 3 are

A3=B) = 2C
6+I

CB 6+I
—2&1.5I~ C

C3= —DI =
3(6+I~ )

(12b)

(12c)

(12d)

—(,&=—,(,)+C, ( ', ),d
(lob)

where C =Ng /y. Using Eqs. (9), (1 la) and (lib) along
with their complex conjugate and (12a)—(12d), we get

where al =BI A I and a3=B3 A3.
The time-dependent solutions of Eqs. (10a) and (10b)

are

(X, ), =(G )' (X )

(Xg ), = ( Gp )
' '(X~ )(),

where

(13a)

(13b)

1(a, ), = —s—

D (a't )
1 e( —r+s)t

3 0

al —n3+ —s+ ' ' (a &,

(at )
1 —(r+s)tDI

s

nl —a3
(a, ), = s'+ (a, )()

s

(1 la)

1/2 ( —a+ c3 ) t
(G( )=e ' =exp

—(a+c3)t(Gz~ )=e ' =exp

3 —2& l. 5I~
Ct,

3(6+I' )

3+2&1.5I~
Ct .

3(6+I~ )

(14a)

(14b)

From Eqs. (14a) and (14b) it is clear that both the quadra-
tures acquire unequal gain. For Iz) 1, the first quadra-
ture is deamplified, i.e., G, &1, and the second quadra-
ture is amplified with some gain, Gz & 1. In the following
calculations we will replace the = sign with =, in order
to avoid any complications.

Using Eqs. (5) and (12a)—(12d), the equations of motion
for various expectation values of second-order moments
are

+ 1
s

C t )
1 —(r*+s )tal 0 e

s
(1 lb)

—(a) ) = —2a(a()+2C3(a, a3),d

—(a3 ) = —2a(a3 )+2C3(a, a3 ),d

—(a, a3 ) = —2a(a, at3 )+C3((a, )+ (a3t~ ) ),d

(15a)

(15b)

(15c)
s =[(a( a3 )where r =(a(+a3 )/2 and

4D, Cs ))/2/2. —
Equations (lla) and (lib) along with their complex

conjugate give the gain of the two quadratures of the field
modes. At first sight of these equations it seems very
dif5cult to factor out gain in the two quadratures. If we
impose certain conditions like a, =a3=al =a3 =a and
C3=C3 = —D, = —DI =C3, then we can get real gain
from Eqs. (1 la) and (1 lb). For Iz ) 1 and I,= 1,
&)=r 3= 1, y(=yz=y3=y =1 we get f, =fb =f, . Also
for zero side-mode detuning, i.e., 6'=0, gl =g3=g, and
(() =m /2, the above conditions are satisfied and we get the
simplified expressions for the coefficients of Eqs. (6a)—(6f),
as

—((a,a, )+(a3a3) )= —2a((a, a, )+(a3a3) )
d

+2C3((a, a3) +(a,a3 ) )

+2( A) + A3),

—((a, a3 )+ (a,a3 ) )= —2a((a, a3 )+ (a,a 3+ ) )
d

+2C3((a(a()+(a3a3) )

+2C3 .

The time-dependent solutions of Eqs. (15a)—(15e) are

(15d)

(15e)

(aP &,

2 2( —'+ cosh2C3 t ) + ( ——'+ cosh2C3 t )+2 ( a ( a 3 )Osinh2C3 t e
2 2

(16a)
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(a3'), = & l'),
2 2( —'+cosh2C3t)+ ( ——'+cosh2C3t)+2(a, a3)osinh2C3t e3 2

(16b)

(a, a3 ),=[(a,a3 )ocosh2C3t +((a, )+(ap ) )Osinh2C3t]e

((ata, )+(a3a3)),=[((a,a, )+(a3a3))ocosh2C3+((a, a3)+(a,a3))osinh2C3t]e

( A, + A3)a+C3 ( A, + A3 )C3+C3a+
2 2 (cosh2C3te '—1)+ sinh2C3te

Q2 ~2 Q2 ~2

( ( a
&
a 3 ) + ( a ta 3 ) ), = [( ( a

&
a 3 ) + ( a ta 3 ) )Ocosh2C3 t + ( ( a ta t ) + ( a 3a 3 ) )Osinh2C3 t]e

( A, + A3 }C3+C3a (A (+ A3}a+C3+
2 2 (cosh2C3te ' —1)+ sinh2C3te

C2 ~2 Q2 ~2

(16c)

(16d)

(16e)

To find out the added noise in the two quadratures
defined by the Eqs. (13a}and (13b), we must consider the
variance in both the quadratures, i.e.,

(~;)',=&X &,
—&&;&', ('=1,2) . (17)

Using Eqs. (12a)—(12d), (1 la), (1 lb), and (16a)—(16e)
along with their complex conjugate and (17), we finally
get

(~]), =G&(~t )0+(Gt —1)Nt,

(~2 )~ G2(EX2)0+ (G2 1 )N2

(18a)

(18b)

where G, and G2 are given by Eqs. (14a) and (14b), and

Ni=
A)+ A3+a
4(C3 —a)

3
3—2.45I2

A)+ A3+a
4(C3+a)
3

3+2.45I2

(19a)

(19b)

Equations (14a), (14b), (19a), and (19b) give the approxi-
mate expressions for the gain and added noise in both
quadratures of the coupled field modes. These expres-
sions show that the two quadratures are amplified with
unequal gain and an unequal amount of noise is added to
them. Using Eqs. (14) and (19) Caves's theorem for
phase-sensitive amplifiers becomes

N& and N2~0, i.e., both the noises approach zero. Also
for Ctree and I2~0e, G, =l/G2 where G2) 1. Thus
for very large values of dimensionless pump intensity the
system behaves as an ideal nondegenerate parametric
amplifier. As discussed in Ref. [9], we can also check it
from Eqs. (5) and (12a)—(12d). For large values of I2, the
coefficients A&, A3, B&, and B3 approach zero much fas-
ter than C3 and D, and (C3+D, ) becomes zero. Under
such conditions Eq. (5} reduces to the master equation for
the nondegenerate parametric amplifier, in the absence of
pump depletion. The amplifier uncertainty principle is
also satisfied where both sides of Eq. (20) are equal to
zero. In Fig. 2 we have plotted gain term versus dimen-
sionless pump intensity I2, for Ct=1. We start from
I2=5 so that I2 =25) 1 to satisfy the above conditions
which are essential to factor out real gain and added
noise terms. The figure illustrates that 6& is always less
than one while the second quadrature amplifies with
some gain. For large values of I2 both the gains ap-
proach unity. In Fig. 3 we have plotted N, and N2
versus I2. This graph shows that N, noise is negative in
order to keep the second term of Eq. (18a) positive for
G, & 1. Here first we have phase-sensitive amplification

1.2—

N'~ 6',
where

N'=IN, N21,

(20)

(2 la)

10—

and

G'= [(G G )1/2 1]2

16(Gt —1)(G2 —1)
(21b)

0.8

I2

I

15 20

Equation (20) is also known as the amplifier uncertainty
principle.

From Eqs. (14} and (19) it is clear that when I2~0e,

FICx. 2. Plot of gains G„G& vs the dimensionless pump in-
tensity I2. Pump phase angle p =n.l2 and Ct = 1,
y, =y, =y, =1,I,=1, and I,=I,=1.
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FIG. 3. Added noise in the two quadratures, N& and N2, vs

I2. All parameters are the same as in Fig. 2.
FIG. 4. Plot of total added noise number N' and total gain

number G' vs dimensionless pump intensity I2. All parameters
are the same as in Fig. 2. Note that N' always remains larger
than G', thus satisfying Caves's theorem.

and then for large values of I2 both the noises go to zero
(nondegenerate parametric amplifier limit). In Fig. 4 we
have plotted both sides of Eq. (20) versus I2. It can be
seen from the graph that the amplifier uncertainty princi-
ple is satisfied for all values of I2.

For nonzero side-mode detuning no condition is
achieved under which Eqs. (13a), (13b), (18a), and (18b)
are satisfied.

IV. DISCUSSION

In this paper we have developed a theory of the two-
mode phase-sensitive linear amplifier. We consider a
three-level atomic system in cascade configuration. Two
photons of intense pump mode of frequency v2 are re-
sponsible for bottom-level —to —top-level transition. The
top-level —to —bottom-level transition via the middle level
results in the production of two modes of frequencies v&

and v3 and the exact resonance condition 2v2=v, +v3 1s

satisfied. Treating the v, and v3 frequencies quantum
mechanically up to second order in coupling constant

and pump-mode frequency up to all orders, we discuss
conditions under which real gain and added noise can be
factored out for the coupled field-mode Hermitian opera-
tors. We have predicted that these quadratures are
amplified with unequal gain and an unequal amount of
noise is added to them.

In Ref. [9], a theory of the two-photon phase-sensitive
amplifier was developed, where the system behaves as a
degenerate parametric amplifier under certain conditions.
In the present case, we have predicted that the three-level
cascade atomic system for two field modes also reduces to
a nondegenerate parametric amplifier for the large values
of dimensionless pump intensity.
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