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We present a theory of the homogeneously broadened laser that is based on the simple boundary con-
ditions that govern the connection of intracavity traveling fields and the leaking vacuum field at the cavi-

ty mirrors. The approach is uniformly valid for arbitrary output-mirror transmissions. We compute the
intrinsic linewidth of the laser both below and above threshold and for arbitrary mirror outcoupling. In
the limit of complete output-mirror transmission, for which any semblance of the cavity to a lasing cavi-

ty is completely untenable and the laser is severely below threshold, we show that the laser linewidth

reduces to the natural linewidth of spontaneous emission by atoms in free space. Above threshold, in

contrast with most previously obtained results, the fundamental linewidth exhibits a power-independent
contribution that arises from gain saturation that is spatially nonuniform.

PACS number(s): 42.50.Kb, 42.55.Hq, 42.55.Px

I. INTRODUCTION

Since the advent of the laser, many theoretical analyses
have attempted to capture the subtlest of quantum-
mechanical effects that characterize laser operation. One
of the most important of these effects is the laser
linewidths [1—7], since it determines the phase stability of
the laser and therefore the sensitivity of the most precise
interferometric measurements possible with a laser [8].
In stable operation well above threshold, the smallest
possible linewidth of the output light is a consequence of
the diffusion of phase arising from vacuum fluctuations
entering the laser cavity through its output mirror and
spontaneous emissions from active atoms. Thus the ulti-
mate limitation on the phase stability of a laser is posed
by effects that are purely quantum mechanical.

In recent times, the emergence of semiconductor lasers
[9—12] has begun to have an impact on many fields of
research, including optical communication and comput-
ing. As with traditional lasers, the ultimate limitation on
phase-sensitive measurements done with semiconductor
lasers will come from the quantum-mechanical diffusion
of phase of the light field. In spite of many similarities
between the traditional atomic or molecular lasers and
semiconductor diode lasers, one of the important
differences lies in the much larger output coupling of the
latter. Such large output transmission makes any at-
tempt to treat it as a distributed-damping mechanism,
usually done in the context of traditional lasers with high

Q cavities, invalid.
The principal objective of this paper [13] is to present a

comprehensive theory of a homogeneously broadened
laser and to treat quantum mechanically the intrinsic
linewidth and the diffusion of the phase of the laser in the
steady state. The key emphasis in the present work is on
an exact treatment of mirror outcoupling, which, unlike

previous treatments of the subject, is uniformly valid for
all values of output-mirror transmission. Thus, as the
transmission changes from being essentially zero (perfect
cavity) to 100% (no cavity at all), we shall see that the in-
trinsic linewidth of the laser broadens from a very small
value, described by the Schawlow-Townes linewidth for-
mula [1], to the free-atom natural linewidth. Clearly, in
the limit of 100% outcoupling, the feedback of light in-

side the cavity goes to zero and the active atoms essen-
tially radiate in free space with the spectral linewidth
nearly equal to the natural linewidth. The present ap-
proach makes essential use of mirror boundary condi-
tions described via the reflection and transmission
coefficients.

One of the important hurdles to any approach based on
the concept of quasimodes [14], often simply called
modes, is the lack of a rigorous definition for them inside
leaky cavities. A distributed-damping theory, which as-
sumes that the modes of a leaky cavity have the same
spatial dependence as the corresponding modes of a per-
fect cavity, but unlike the latter have a damping constant
or equivalently a linewidth associated with them, is obvi-
ously wrong when the outcoupling is large. For in a laser
operating inside such a cavity, the field in steady state
must have a nontrivial spatial dependence so that at the
output mirror the loss of amplitude exactly compensates
for the round-trip arnplification.

An effort to remove this deficiency was made by Lang,
Scully, and Lamb [15], who demonstrated how one may
define rigorously the modes of an empty but leaky cavity
and use those modes to quantize the electromagnetic field

throughout space. They were able to establish the
equivalence of the usual quasimode treatment of the cavi-

ty and the rigorous picture in the good-cavity limit. Fur-
ther extension of this work was carried out in Ref. [16],
in which the connection between the inside and outside
quantum fluctuations of a leaky cavity was established in
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a rigorous manner.
Ujihara [17] extended the good-cavity analysis of Lang

and co-workers to lasers with arbitrary output-coupling
constants. In a series of several papers, he treated both
the steady-state intensity and the quantum noise leading
to the linewidth. The essential difference from all the
other previous treatments arose from the nontrivial spa-
tial dependence of the field in a low Q cavity. His
analysis, based on the rigorously defined modes, the so-
called modes of the universe, seems to the present author
to obscure the essential physics by an excessive use of
mathematical formalism. Moreover, as we shall see later,
his analysis contains an implicit assumption that in effect
restricts the applicability to strictly two-level active
atoms for which the sum of the occupation probabilities
of the two levels is always 1, regardless of the field
strength. Other approaches to the problem, notably of
Henry [11]and of Hamel and Woerdman [18],make use
of semiclassical analyses and reproduce the answers of
Ujihara when saturation is ignored.

With Abbott, the present author adopted a traveling-
wave analysis [19] of the linewidth problem, although
they stayed within the single-quasimode formalism. In
this analysis, the cavity damping due to mirror outcou-
pling was correctly treated in a nondistributed fashion
that takes place once every round trip from the output
mirror. However, this approach proved suitable only for
high to moderately high Q cavities.

The analysis presented here obviates the need for the
intermediate step of introducing any modes whatever of
the leaky lasing cavity. Yet, the treatment is in effect
multimode, since the spatial and temporal variations of
the field are correctly analyzed. The cavity damping of
the field at the output mirror is carefully treated by the
boundary conditions at the mirror, which can be specified
in terms of its transmission and reflection eoeScients t
and r, respectively. Thus there is no need to have a reser-
voir model for the cavity losses. The fluctuation-
dissipation theorem is automatically enforced for such
losses by the boundary conditions.

It is important to point out here that the approach de-
scribed in this paper defines a general formalism for any
matter-light resonant interaction problem inside a cavity
in which quantum-mechanical phenomena —as well as
classical ones —are treated accurately. The method of
boundary conditions espoused here addresses the connec-
tion between the fields inside and outside without requir-
ing any special problem-dependent modification for its
implementation. Indeed, this approach has been gainful-
ly used by Abbott and the present author [20] in a quanti-
tatively correct description of quantum noise and squeez-
ing in a degenerate parametric oscillator with arbitrary
mirror outcoupling.

The layout of the paper is as follows. In the next sec-
tion, the basic equations of motion for the dynamics of
two-active-level atoms and the coherent field with which
the atoms interact are derived. The nature of incoherent
spontaneous emission and its effect on these equations
are clarified. An improved adiabatic approximation is in-
troduced to eliminate the atomic variables in order to ob-
tain an equation for the field alone. In this approxima-

tion, the quantum noise operators representing in-
coherent emission are properly treated. In Sec. III, the
theory of the laser operating below threshold is present-
ed, which treats the cavity damping as well as the vacu-
um fluctuations causing spontaneous emission into the
longitudinal on-axis modes via the output-mirror bound-
ary conditions. The most interesting result of this section
is an expression for the power spectrum of light that goes
from the usual Schawlow-Townes description to spon-
taneous emission by atoms in free space as the output-
mirror transmission is increased. In Sec. IV, the steady-
state operating point (amplitude and frequency) of the
laser oscillating above threshold is derived, on which the
calculations of Sec. V on phase diffusion and linewidth
are predicated. The intrinsic linewidth of the laser
operating above threshold exhibits several interesting
features, most notably the presence of a power-
independent term arising from gain saturation and its
spatial nonuniformity. Finally, in Sec. VI, we summarize
the conclusions of this paper.

II. FORMAL. ISM

We consider a single-ended cavity of cross section A
bounded by a perfectly reflecting mirror at one end, z = l,
and a partially transmitting output mirror at the other,
z =0, with real outside-to-inside reflection coeIcient r
and transmission coefBcient t. This cavity contains N~
randomly distributed active atoms, as in a gas, which are
assumed to be pumped incoherently into the upper and
lower laser levels, a and b, at the rates A, and Ab per unit
volume per unit time. We assume in the following that
only axial modes of the electromagnetic field are
coherently excited and that the coherent field is linearly
polarized in the x direction.

Let o', o, and o* denote the atomic level population
and dipole operators, which at time t =0 have the follow-
ing representation:

and

o'= ia) &a/, o'= ib) &bi

=lb)&al, o+=la)&bl,

Their commutation rules are easy to derive by exploiting
the orthonormality of the states ~a ) and ~b ). Since they
are well known, we shall not write them down here.

We may express the pumping rates A, and Ab in terms
of the rates A,, and A, b at which an individual atom is
pumped: A,,=A, /no and A, b

=Ab /no, where
no=N„/Al is the gas density. We assume that the ran-
domly distributed atoms are at a sufficient low tempera-
ture and density so that their motion or collisions are of
no significance over the lifetimes of their excited states,
during which they interact with the field. This is the limit
of homogeneous broadening to which we restrict our cal-
culations.

The interacting atom-field system may be described in
terms of the following Hamiltonian:
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H =HF+H~+HqF ~ (2.1)

where HF is the free-field Hamiltonian, H~ is the free-
atorn Hamiltonian given by

'Rcoo
H„= g (cr;'o—

; ),
i=1

(2.2}

N~

H~z= —p. g [o,+E'+'(r, , t)+o, E' '(r;, t)] . (2.3)

and H~F is the atom-field dipole interaction potential in
the energy-conserving rotating-wave approximation
(RWA}

In what follows, we shall treat the forward-propagating
coherent field dynamically via the spatially smoother ver-
sion of Hamiltonian (2.1), while contribution (ii) to the
field will be incorporated rigorously via mirror boundary
conditions. Lastly, the contribution (iii) to the field will
be included indirectly into our dynamical equations via
the Wigner-Weisskopf formalism.

Since Maxwell*s equations of electromagnetism are
linear in the fields, it follows that in the Heisenberg pic-
ture the field operators formally obey the same wave
equation that the classical field obeys. The positive-
frequency part of the coherent electric-field operator
satisfies the following wave equation:

In the preceding equations, coo is the resonance frequency
of the atomic transition, p is the dipole matrix element
between the two laser levels, and E'+' and E' ' are the
positive and negative frequency parts of the full trans-
verse electric-Geld operator.

The interaction part of the Hamiltonian H~F describes
all coherent and most of the incoherent radiative process-
es (within the dipole approximation) in our atom-field
system. In the present context, "coherent" refers to the
essentially forward-scattered field, which evolves via
stimulated emission and absorption processes and there-
fore maintains its phase. On the other hand, "in-
coherent" refers to the oft'-axis scattered field generated
mostly by spontaneous emission by atoms, a field that is
essentially isotropic. It is worth noting here that even in
the forward direction there is spontaneous emission,
which is amplified by the inverted active atoms. This
on-axis spontaneous emission can be construed as arising
from the fluctuations of the vacuum field outside that
leaks into the laser cavity through the partially transmit-
ting output mirror.

In other words, there are three kinds of fields that
make up the total radiation field (i) the forward-
propagating coherent field, (ii) the forward-propagating
incoherent field (transmitted and amplified, fluctuating
vacuum field), and (iii) the off-axis incoherent field
("spontaneous emission"). The off-axis field (iii) may be
conveniently eliminated from the full field at any location
by a spatial averaging [21] of the full field over a thin
transverse slice of atoms centered at that location. The
thickness Az of such a slice is taken to be small compared
to the wavelength of emission so that the full wave struc-
ture of the propagating fields is not compromised. The
spatial averaging leaves the coherent and incoherent
parts of the forward-propagating field [contributions (i)
and (ii)] intact. At this point one may identify the
coherent part of the forward-propagating field as that
arising from the in-phase excited atomic dipoles, while its
incoherent part may be separately treated as arising from
a random-phase excitation of the atomic dipoles by the
outside vacuum field that is transmitted into the cavity
and is amplified by the gain medium, as stated before.
This separation of the forward-propagating field into
coherent and incoherent parts may seem a bit ad hoc at
the moment, but we shall justify it later by means of the
boundary conditions on the fields at the output mirror.

1 8
, P (z, t), (2.4)

coo Bt

in which the macroscopically coherent polarization
operator P (z, t) is defined as the spatially smoothed ver-
sion [21]of the microscopic operator P;,(r, t)

P;,(r, t)=@go, (t)5(r —r;) (2.5)

and n is the refractive index of the medium in which the
active atoms reside. As we have indicated before, the
spatial smoothing is done by averaging the preceding ex-
pression over the entire cross section A and over a longi-
tudinal interval (z —M/2, z+hz/2), which, although
much smaller than the wavelength A, &)Az, still contains
many atoms. Thus,

P (z, t)= f dp f dz'P;, (r', t)
A hz z z —az/'s

hz

ga, (t),
Ahz

(2.6)

Az

R'(z, t)= g o,'Ahz
(2.7a)

and

hz
R "(z,t) = go,.

Ahz
'z

(2.7b)

By employing the Hamiltonian (2.1) and making expli-
cit the incoherent pumping, damping, and associated
noise terms, we may write down the following atomic
evolution equations:

in which the symbol hz over the summation sign indi-
cates that i, labels atoms located in the slice
(z —b,z/2, z +b,z/2).

Just like the macroscopic polarization operator above,
we also define macroscopic population density operators
R, (z, t) and Rb(z, t) as follows:
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—P (z, t) = —(icoo+y )P (z, t)a

(2.8a)

+ [P+—(z, r)E'+ '(z, r)

P—(z, t)E' i(z, t) ]+F'(z, t), (2.8b)

2

+ [R,(z, r) R—b(z, r)]E(+)(z, r)
sA

+pF (z t),
—R '(z, t ) =A, —y, R '(z, t )
a

and the atomic transition frequency coo. Its actual value
is governed by a competition between the cavity reso-
nance and the atomic resonance. This phenomenon of
frequency pulling is contained in our equations, as we
shall see later.

A similar decomposition should also obtain for the spa-
tial variation of the electric field, where the fast spatial
variation is governed by the wave vector k=nQlc.
Since the preceding statements regarding fast and slow
variations can also be made about the polarization opera-
tor P, we may express both the field and polarization
operators as follows:

and

R(z,—r) =A& ybR —"(z, r) [P—+(—z, r)E'+ '(z, t)

E'+ '(z, t)= [e+ (z, t)e'"'+e (z, t)e '"']e

.and

P (z, t) = [p+ (z, t)e'"'+p (z, t)e '"']e

(2.10a)

(2.10b)

+Fs(z, r),

P' '(z—, t)E' '(z, t) ]

(2.8c)

where the noise operators F, F', and F are related to
the individual atom noise operators f;,f, and f; by re-
lations of form (2.6)

hz
F (z, t)= g f;, a= , a, b . —

Ab,z
(2.9)

The pumping terms A, and Ab represent the excitation of
atoms from other levels to the levels a and b, under the
assumption that the other levels are not significantly de-
pleted. The damping and associated noise terms are a re-
sult of a Wigner-Weisskopf type of analysis of spontane-
ous emission in the Heisenberg picture and represent the
effects of the off-axis incoherent field, as mentioned ear-
lier.

Equations (2.4) and (2.8) constitute the system of equa-
tions that, when supplemented with the boundary condi-
tions appropriate to the perfect reflector at z =I and the
partially transmitting mirror at z =0 [to incorporate the
on-axis incoherent field contribution (ii) above], describe
fully the temporal and spatial forms of the radiation field.
However, since the equations are nonlinear, solving them
exactly is not possible. We shall invoke the resonant na-
ture of the coupling of the atoms to the field to approxi-
mate Eq. (2.4) by a first-order differential equation.
Below threshold, the field is sufficiently weak that non-
linearities in the equations can be ignored. Above thresh-
old, the nonlinearity mostly affects the field amplitude in
steady state, not its phase evolution, and can be treated
classically since the field intensity is large. In the latter
case, we shall linearize the quantum fluctuations of the
field around such a classically describable amplitude in
order to calculate the phase diffusion and the linewidth of
the laser. These assumptions are the usual ones [6] that
describe a stable laser oscillating well above threshold.

Since the radiation field emitted by the active atoms is
quasimonochromatic, we may decompose its electric field
as a product of a fast varying time exponential
exp( —iQt) and a much more slowly varying function of
time. The nominal operating frequency 0 of the field is
expected to be close to a bare-cavity resonance frequency

The subscripts + and —refer to the right- and left-going
waves, respectively, whose amplitudes, denoted by lower-
case letters, are slowly varying both in time (over a scale
of the inverse frequency) and in space (over a scale of the
inverse wave vector).

When the forms (2.10) are substituted into Eqs. (2.4)
and (2.8), and the second derivatives of ez and pz as well
as terms modulated by factors such as exp(+2ikz) are ig-
nored, one obtains the following equations:

8 n 8 iQ+——e+(z, t)=+ 2p+(z, t), (2.11a)
260kc

+id+@ —p~(z, r)= — [R.(z, t) R, (z, r)]—

Xe+(z, t)+pf+(z, t), (2.11b)

—+y, R, (z, t)=A, +—(p+e++p e —p+e+at

—p et )+F,(z, t),
(2.11c)

and

+y& Rb(z, &)=A& —
&

(p+e++p e —p+e+at

—p et )+F~(z, t) .

(2.11d)

The noise forces f+ in Eq. (2.11b) are obtained by
averaging the noise term F (z, t) in Eq. (2.8a) multiplied
by exp(+ikz) over a wavelength. Noting that F (z, t) is
already smoothed, this additional spatial averaging yields
the result (see Appendix A)

+ikz,.
f+(z, t)= g f, (t)e ' e' ',

AA,
(2.12)

where the index A, over the summation sign indicates that
i, labels those atoms that lie in the range
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(z —
A, /2, z +A, /2).

The calculation of linewidth, which is the central
theme of the present work, involves several steps and ap-
proximations, which begin with the preceding nonlinear
system of operator equations. We first note that since the
noise operators I', and Fb governing the evolution of the
population operators R, and Rb implicitly enter the po-
larization equation (2.11b} quadratically in the coupling
constant p, they will be dominated by the noise term

pf+(z, t) in that equation. We shall assume, as tradition-

ally done [6], that F, and Fb may in effect be ignored. In
other words, the population operators may be treated in
the expectation-value sense without much effect on our
final results.

Thus the noise operators f+(z, t) associated with the
radiative spontaneous relaxation of the atomic dipoles
represent nearly the entire spontaneous-emission contri-
bution to the interaction dynamics. Furthermore, since
the linewidth is determined from the second-order auto-
correlation function of the field, we shall only need two-
time correlations of the noise operators f+(z, t). Since
the charaeteristie correlation time of spontaneous emis-
sion from atoms is of the order of the fundamental period
of the emitted light, it is quite appropriate, on the much
longer time scales characteristic of phase diffusion and
other relaxation phenomena, to assume that f+(z, t) are 5
correlated. We shall see in Appendix B that the diffusion
constants for f+, which govern the strength of the 5
correlation, linearly involve the saturated level popula-
tions [see also Eqs. (20.21) and (20.22) of Ref. [6] .]

To proceed further, we assume atomic decay rates
much greater than the cavity damping rate of the field, so
that the field does not change much over an atornie decay
period. This lets us integrate Eq. (2.11b) formally as

p+(z, t) = JVe+(z, t)lP
A' y+ib,

+p j"f (z, t t')e "+—""'dt',
0

in which JV is the population difference:
JV= (R, ) —(Rb ). Atomic memory "colors" the 5-
correlated (white) noise f+ via the integral in Eq. (2.13).
This represents a departure from the traditional treat-
ments of laser noise, which wrongly assume in effec that
the fluctuations f+ do not vary much over an atomic life-

time, y . This refinement, which we call an improved
adiabatic approximation, allows, as we shall see, the
atomic linewidth to serve as the limiting value for the in-

trinsic laser linewidth for large outcoupling.

III. LASER OPERATING BELOW THRESHOLD

Below threshold, the laser is very noisy with strong
amplitude and phase Auctuations. However, in steady
state the field is generated by spontaneous emission alone
and is quite weak. For such weak fields, the populations
(R, } and (Rb ) may be assumed to be unchanged from
their zero-field values, the so-called unsaturated values
denoted by appending the superscript (0). In steady state,
these are given by setting the noise terms, the time
derivatives, and e+ to zero in Eqs. (2.11c)and (2.11d),

8 n+——e+(z, t) =+aoe+(z, t)+P+(z, t),
Bz c Bt

(3.2)

where a0 given by

p'02JVO

2eokc A'(y+ib, )

(3.3a)

is the usual linear gain coefficient proportional to the un-

saturated population inversion density

JV =0(R,' ') —(Rb '}=A, /y, —Ab/yb

and the fluctuating forces P+ are given by

p (, )=+ P' f (,t') (r+'aI(' ' Ii 0
2E0kc

(3.3b)

(3.4}

Equations (3.2) may be reduced to ordinary differential
equations in single independent variables by transforming
to the retarded times r+ = t nz Ic—(for e+ ) and

=t n(i —z)/—c (for e ), since these transformations

imply the following derivative transformations:

n 8+
Bz c Bt Bz

The resulting differential equations are easy to integrate
and yield the following integral solutions for Eqs. (3.2):

e+ (z, t) =e+ (0, t nz /c)e—'

I

+ I dz'e P+ {z',t n(z —z—') Ic )
0

(3.5a}

and

ao(l —z}
e (z, t) =e (1, t n(i —z Ic))e '—

—I dz'e '
P (z', t n(z' —z) lc ), —

z

(3.5b)

as one may also verify by direct substitution into Eqs.
(3.2}. Equations (3.5) describe how the radiation field

amplifies in the rightward traveling direction [Eq. (3.5a)]
and on the return trip in the leftward traveling direction

[Eq. (3.5b)].
The boundary conditions on the fields e+ at the mir-

rors, namely,

and

e+(I, t)e' '= —e (l, t)e

e+(0, t)= re (O, t)+te'+"'(0, —t)In,

(3.6a)

= & ~y Rb =Ab ~yb

By substituting these values in Eq. (2.13) and combining
the resulting equation with Eq. (2.1la), we obtain the fol-
lowing quantum Langevin equation for the time evolu-
tion of the full Auctuating field:
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in which e(+~'(O, t} is the incoming on-axis vacuum field

amplitude, provide the needed connections between the
two traveling fields, which when employed with Eqs. (3.5}
permit one to determine how the field evolves over a
complete round trip. We also note from Eq. (3.6b) that
the on-axis vacuum field, whose fluctuations drive the
on-axis spontaneous emission from excited atoms, enters
our analysis via the leaky-mirror boundary condition.

The derivation of the complete round-trip evolution
equation for either traveling field, say e (z, t), now

proceeds in four steps. Set z =0 in Eq. (3.5b). Replace
e (l, t n—1Ic) on the right-hand side of that equation in

terms of e+(l, t nl—lc) via Eq. (3.6a). Follow this step

e (0 t+t~)=re ' e (0 t)+6(t), (3.7)

where tz —=2ln/c is the light round-trip time in the cavi-
ty. The noise operator 6 (t) is a sum of the amplified vac-
uum field entering the cavity and the amplified dipole
fluctuations (related to P+} resulting from off-axis spon-
taneous emission

with the replacement of e+ (l, t —nl Ic) in terms of
e+ (0, t —2nl Ic) via Eq. (3.5a). Finally, employ the
boundary condition (3.6b). The net result of these four
steps is the following round-trip equation (a trivial overall
time shift by the round-trip time is also involved):

6(t)= ——e e ""
(O, t)

2(ap+ik)l ~vac

n
+

PQ2(QP+ lk)1 I
P f f ~o —( +is)s'e ' dz' dt'f+(z', t+nz'Ic t')—e e

2E'0kc 0 0

l I I

+ ~ f dz f dt'f (z', t+tt( nz'Ic —t')e —e
2e0kc

(3.8)

The structure of the noise expression (3.8) is quite clear.
The vacuum field enters at time t through the mirror at
z=0 at time t and then amplifies through the entire
round trip before contributing to e (0, t + tR ). As for
the dipole fluctuations, their left-going piece f (z', t')
amplifies through a distance z' before arriving at the mir-
ror at z =0, while their right-going piece f+(z', t')
amplifies through a distance 2l —z' before arriving at the
mirror at z =0.

In the good-cavity limit, since fields do not change
much over a single round trip, Eq. (3.7} may be approxi-
mated by the usual differential Langevin equation of
single-mode theories by writing e (0, t + tt( )

—e (0, t) as
tRde (O, t)ldt However. , for an arbitrary Q cavity, the
difference equation (3.7) has to be treated accurately. In
what follows, we look at the expectation value of intensi-
ty of the leftward traveling light wave as well as its power
spectrum just to the right of the output mirror at z =0.
We note that the power spectrum so calculated is the
same, up to an overall power transmission factor, as the
power spectrum of the observed output field. In order to
compute these expectation values, which involve second-
order, normally ordered field products, we need, as indi-
cated by Eq. (3.7), to know what the second-order, nor-
mally ordered moment of 6(t) is. The calculation of
(G (t)G(t')) is presented in Appendix B, where it is
shown that the correlation time for G(t) is about y

i (0)=r e ' i (0)+(G (t)G(t)), (3.9)

in which use was also made of the fact that
(G (t)G(tutti )) is negligible, since yts »1. We may
now write with the aid of Eqs. (3.9) and (B16)

(
4 Re(ae)l

1 ) ~~ (g (0) )
i (0)=

R ( 0)l 2e cnA (g( )) (g( ))

y2+ Q2

2y
(3.10)

GT(5')
(3.12)

B. Power spectrum of outgoing light

To compute the power spectrum of the outgoing light,
which is proportional to the power spectrum of the e
field at z =0, we take a finite Fourier transform of Eq.
(3.7) defined as

Az.(5')= f e (O, t)e' "'dt, (3.11)—T/2

in which T is the measurement time (inverse of the spec-
tral resolution of the spectrum analyzer) to be set to oo in
the end. In the limit T~ ao, such a Fourier transform of
Eq. (3.7) yields

A. Average intensity in the leftward-traveling wave

In steady state, the average intensity is independent of
time. If we define the average intensity of the leftward-
traveling wave at z =0+ in steady state by the relation
i (0)=(e (O, t)e (O, t)), then from Eq. (3.7) it follows
that

where GT(5co } is the Fourier transform of 6 (t).
The power spectrum S(5o)) of the e field at z =0 now

follows on taking the following limit:

S(5o))= lim —( AT(5~) AT(5'),1

T~ 00

which with the help of Eq. (3.12}produces the result
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S(5')= 2r
I+r e ' 2r—ql cos[5cotz+2kl+21m(uo)l] )' +(5~

(3.13)

In order to derive Eq. (3.13), we also used the fact that
the power spectrum of G(t) given by

lim —(G (5co)G(5a)) )T~~ T

may, via the Fourier-transform definition, be written as

lim —f dt, f dt, (G (t, )G(tz))eT~ ~ T —T/2 —T/2

which in turn via relations (816) and (3.10) may be ex-
pressed in the form

(0) 1
e'o)1 2P

y +(5'—b, )

By now employing the trigonometric identity

20cos0= 1 —2 sin —,
2

we may rewrite the power spectrum given by Eq. (3.13) as
a product of the power spectrum of G(t), which is a
Lorentzian with width equal to the atomic linewidth y as
seen above, and a Fabry-Perot-like resonant factor

2
1S(5')-

z
(3.14)

y +(co co )0
—1+Fsin (5cot. 12)

in which we have suppressed the constant Im(ao)l+kl
from within the argument of the sine, since it is expected
to be close to a multiple of ~ anyway [see Eq. (4.10b)].
Even when that is not the case, the suppressed term
merely represents an overall frequency shift of the spec-
trum. We have also suppressed an overall proportionality
factor in writing Eq. (3.14), but that may be easily writ-
ten down by comparing Eqs. (3.13) and (3.14). The
coeScient F given by

I-
V)

Ci

O
O

&3
I

-2

F=S.O

/
/

/
/

I

I 1
I l

\
I \

I \
I

I \

I \
I

I
I \

/ \

/ \
I \

/
I \

I \
I

W

F=1.

2 Re(ao]I
4re

2Re(ao)l &(1 re—
determines the linewidth.

In the limit of large y and near threshold,
r exp[2Re(ao)l]~ 1, F can be quite large, so that the
power spectrum consists of many individual lines (or
quasimodes) separated successively by Ace =—2m/tz and
sitting under the atomic line shape envelope with half-
width y, as shown in Figs. 1(a) and 1(b). With increasing
mirror transmission the individual lines broaden until
their width becomes comparable to hen . Then they lose
their individuality and the spectrum begins to resemble
the natural atomic line shape with half-width y. In this
limit the laser cavity no longer confines light.

If t is not too large, the full width at half maximum
(FWHM) b,0=4/tz~F of each individual line may be
expressed in a form involving the total output power. To
do so, note from Eq. (3.10) that

0-I-

O

0

/
I

/
/

/
/
I

/
/
I

I
I

I
I

\
1
I
\

l
1

\
\

1

O
O

&3

FIG. 1. Power spectrum below threshold. The detuning u is
in units of y, and A=cop ptg =10, and (a) F=8 and (b) F=1.
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4 Re(ao)1
1 —r e

i (0)

where

(3.15)
A'Qn h=An e0f dz((e+e+ )+(e e )),

0

Eq. (3.20) may be shown to be equivalent to

XQE=
2e0cn A ( R '0) ) —(Rb(0) )

4 Re(ao)l
X e

y2+ Q2

2y

(3.16)

AQ=
(R,' ) —(Rl', ) 2ln(1/r)r tz n ),

Q21+',y'.
(3.21)

2 Re(ao)1If the laser is not too far off threshold, re ' ~ 1, we
may rewrite Eq. (3.15) as

2 Re(ao)1

2i (0)

This expression tends to the correct value y&/noh for
high inversion, zero detuning, and the good-cavity limit
(r~ 1), y& =(1 r )/—tR being the cavity decay rate. We
shall, however, not present the arduous but straightfor-
ward demonstration of this equivalence here.

so that

2 Re(ao)1

dn= '
2 Re(ao)l )/2lt 2re

E
i (0)tl(

(3.17)
IV. STEADY-STATE OSCILLATION

ABOVE THRESHOLD

fiQ (1 r)—
t2 F2

(R.")) yt„/2
( R (0) ) ( R (0) ) P ~2

1+

(3.18)

At this point, it is worth reminding the reader that P,„,
is the total output power that is partitioned among all
quasimodes oscillating under the atomic linewidth profile
contained in Eq. (3.14). It is usual to express iI) Q not in
terms of P,„, but in terms of P&, the output power con-
tained in the single central quasimode. The relation be-
tween P,„, and P, , namely,

We may reexpress this result in terms of the total output
power P,„„which is equal to P,„,
=[2Ae0ni (0)c](1 r ). Thus—, the linewidth bQ be-
comes

2Kn A eoc ( 1 r)—
bQ=

R out

which by definition (3.16) of K is equal to

+ t'Q
e+(z)=+,p~(z),

2g kc
(4.1a)

l
2

(i b, + y )p+(z) = — [R,(z) Rb(z) ]e+(z)—, (4.1b)

y, R, (z) =A, +—(p+e++p e —p+e+ —p e ),

If the laser is oscillating well above threshold, then its
field intensity has an average that is large compared to its
fluctuations. This is the characteristic regime of stable
laser operation where questions concerning quantum-
limited phase diffusion and linewidth are of experimental
relevance. We shall therefore assume such operation. In
this regime, the calculation of the average intensity in
steady state can be performed semiclassically. We note,
however, that the calculations of this section permit no
time dependence of the fields and so cannot describe
phase diffusion, which we shall cover in the following sec-
tion.

On taking the expectation values of Eqs. (2.11) and set-
ting the time derivatives as well as correlations equal to
zero, we obtain the following simple algebraic equations:

P,„,=P) ( Y tlt /2), (3.19) (4.1c)

has been derived in Appendix C. So finally, in terms of
P„we obtain the intrinsic laser linewidth as

and

fiQ (1—r )

p
(R (0) )

( R (0) ) ( R (0) ) ~2
1+

ybRb(z) =Ab —
&

(p+e+ +p e —p+ e+ pe —) .

(4.1d)

(3.20)

which has the same form as the result derived by Ujihara
[17] and Henry [11] for an above-threshold laser. Note
also the presence of the detuning dependent factor
(I+6 /y ), which is the analog of Henry's linewidth
enhancement factor [11] for semiconductor lasers. This
factor goes back to the work of Lax [2] in the late 1960s.

In terms of the total photon number n h in the central
quasirnode, which one may relate to i (0) via the in-
tegral

In the preceding equations, we have dropped the expecta-
tion value signs for brevity of notation.

In the absence of the radiation field, the population in-
version (R, —Rb) would have assumed the unsaturated
value JV0 given by Eq. (3.3b), which arises from the bal-
ance of pumping and damping. However, the coherent
radiation field saturates the inversion and therefore the
gain via stimulated emission and absorption processes. It
is easy to solve Eqs. (4.1b)—(4.1d) for (R, —Rb ) in terms
of JV0 and the total saturating intensity proportional to
( I e+ I'+

I
e
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JV0
R, (z) —R&(z) =

1+[le (z)l +le (z)l ]/I,
(4.2)

satisfied if and only if the following condition is met:

s 2ikl2A I
(4.9)

where the saturation parameter I, is defined by the rela-
tion

AM 1 1 y
b ~ + (4.3)

where uo, the complex linear gain coefficient, is given by
Eq. (3.3a). The sign of the right-hand side of (4.4) is such
that for an inverted active medium JVO) 0, the rightward
wave e+ increases in amplitude as z increases from z =0
to z =I, while the leftward wave e increases in ampli-
tude as z decreases from z =l to z =0. In a traveling-
wave picture [19], this corresponds to the wave field am-

plifying in time during a round trip.
The spatial dependence of the field is determined une-

quivocally by Eq. (4.4) and by the boundary conditions
appropriate to the partially transmitting mirror at z =0
and the perfectly reflecting mirror at z = l

and

e+ (0)= re (0)—

(1)e ikl e (1)e
—ikl

(4.5)

(4.6)

We have assumed here that no coherent field is injected
from outside through the mirror at z =0. Otherwise, the
first of the boundary conditions above is modified by an
additive term proportional to t times the injected field.

Eliminating p+ between Eqs. (4.1a) and (4.1b) and then
using Eq. (4.2), we obtain the following equation describ-
ing the steady-state spatial dependence of the radiation
field inside the lasing cavity:

d ao
e+(z) =+ e+ (z),

[1+[le+(z)l'+ le (z)l']/I, ]—
(4.4)

Taking the modulus and phase of this relation, we arrive
at the steady-state amplitude and operating frequency
conditions

and

1 1
Re(A, )=—ln—

21 p

(4.10a)

kl+ Im(A, )l =pm, p=integer . (4.10b)

B. Cavity with arbitrary output coupling

Even for arbitrary values of the mirror reflectivity r, it
is still possible to solve Eq. (4.4) exactly. As we shall see
presently, this will yield the spatial dependence of the
field intensity in an implicit form and the operating fre-
quency in an explicit form. The results presented in this
subsection are essentially identical to those of Rigrod
[22], who considered saturation effects in an arbitrary-
transmission lasing cavity; but we include them since we
shall use them to calculate the linewidth in Sec. V.

The solution is facilitated by first writing the fields
e+ (z) in terms of their amplitude and phase as

i 0+(z)
e+(z) =r+(z)e (4. 11)

Equation (4.4) transforms to the following equations for
r+ and 0+.

By noting that in the good-cavity limit r = 1,
ln(1/r ) =(1 r) =t—/2 to which the cavity damping rate
y, is proportional, we recover from (4.10a) the usual
steady-state condition of the saturated gain being equal to
the cavity loss. The actual frequency of oscillation Q is
determined from (4.10b).

A. Good-cavity limit

Re(ao)r+(z)
r+(z)=+

1+[r+(z)+r (z)]/I,
(4.12a)

If r is not far from 1, then e+(z) will not have a strong
spatial dependence inside the cavity. The field does not
have to amplify much to compensate for the small mirror
loss. In that case we may assume that the saturation
term in the denominator of (4.4) has no z dependence. In
this good-cavity limit, one may solve Eq. (4.4) approxi-
mately as

and

d Im(ao)
0~(z) =+

1+[r+(z)+r (z)]/I,
(4.12b)

The boundary conditions (4.5) and (4.6) transform to the
following relations:

+A, z
e+(z) =e+(0)e (4.7) r+ (0)= rr (0), 0+(0)—0 (0)=~ mod2vr (4.13a)

ceo

1+[&le I +le I &, ]/I,
(4.8)

By substituting z =1 into (4.7) we may demonstrate
easily that the boundary conditions (4.5) and (4.6) will be

in which A, is the saturated gain coefficient defined in
terms of the spatially averaged field intensity
& le+ I'+

I
e

and

r+(1)=r (1), 0+(1) 0(1)+2kl=@mo—d2m . (4.13b)

Now, by dividing Eq. (4. 12a) by Eq. (4.12b) we obtain a
simple differential equation connecting 0+(z) to r+(z).
On solving this equation in conjunction with the spatial
invariance of 0+(z)+0 (z), a result that follows from
Eq. (4.12b), we get the following result:



46 THEORY OF A HOMOGENEOUSLY BROADENED LASER WITH. . . 1549

Im(ao) r+ (1}
8+(I)—8+(0)= —[8 (1)—8 (0)]= ln

Reao r+ 0

(4.14}

By first subtracting the phase part of the boundary condi-
tion Eq. (4.13a) from that of Eq. (4.13b) and then by ap-
plying result (4.14) we achieve the operating-frequency
condition

C as follows:

C=
2 Re(ao)1 —ln—1

r

( 1 lr r)— (4.22)

In Figs. 2(a) and 2(b) we display the spatial dependence

Im(ao) r+ (1)
+kl =p~, (4.1S)

in which p is an arbitrary integer.
We note that Eq. (4.1S) still involves the unknown am-

plitudes r+(0) and r+(1). These may be determined by
solving Eq. (4.12a). This is accomplished by noting that
the product r+(z)r (z) is spatially invariant, since it fol-
lows from Eq. (4.12a) that

[r+(z)r (z)]=r (z) r+(z)+r+(z) r (z)=0.d = d d
dz + dz + + dz

(4.16)

By writing

O

I-
M

O

Z
0
LL!

C4

r+(z)r (z)=C, (4.17)

in which C is a constant to be determined later, we obtain
from Eq. (4.12a) the following equation for r+ alone:

Re(ao)r+ (z)

1+[r+ (z)+C Ir+ (z)]jI,
which is easily integrated into the form

(4.18)

O
O

0.2 0.4 0.6
SCALED z

I

0.8

r~(z)
I, ln + ,'[r+(z) r+—(0—)]— [r+ (z) —r+ (0)]

or equivalently, via (4.17), as

=Re( ao)I,z, (4.19a) tCI

O

I, ln + ,' [r+ (z) —r(z) —r+ (0)+r (0)]-"+ 2 z z 2

r+ 0

=Re(ao)I, z . (4.19b)

Equation (4.19a) [or (4.19b)] represents the implicit solu-
tion of r+ (z) in terms of z.

The constant C is specified uniquely by the boundary
conditions (4.13). By putting z =1 in Eq. (4.19b) and us-
ing the amplitude part of Eq. (4.13b), we get the simple
relation

r+ (1}
I, ln —

—,'[r+(0)—r (0)]=Re(ao)I, / . (4.20)
r+ 0

Note that Eqs. (4.17) and (4.13) imply that

t- co
(/) o-
Z
UJI-
Z
Cl
UJ

Ch

CV

O

and

r+ (I)=r+ (1}r (1)=C (4.21a)
I

0.2 0.4 0.6
SCALED z

I

0.8

r+(0)=r rf(0)=rC, (4.21b)

and therefore from Eq. (4.20) it is now easy to determine

FIG. 2. The steady-state intensities of the right and left trav-
eling pieces of the circulating coherent laser field. (a)

2 22Re(ap)1=0. 5, F =0.9 and(b) 2Re(ap)1 =0.5 F =0 6.
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k/ — ln —=pm .1

2f r
(4.23)

of the steady-state intensities r+(z) and r (z) in the
right- and left-traveling parts of the radiation field inside
the lasing cavity. The intensities are shown scaled rela-
tive to the saturation parameter I, and plotted for the
round-trip linear gain coefficient 2 Re(ao)l =0.5 and two
values of the mirror reflectance r . For values of r that
are not too small, the spatial dependence of the intensity
can be well approximated as a simple linear growth.

Since Im(ao)/Re(ao) = —b, /y' and since
r+(l)/r+(0)=1/(r' ) from Eq. (4.21), we may express
the frequency condition (4.15) in the simpler form

JV0
X e~(z, t)

I+[&le, (z)l'&+&le (z)l'&]/I, -+ '

+p f f+(z, t —t')e 'r+' "dt' . (5.1)

On combining Eq. (5.1) with Eq. (2.11a), we have the
following evolution equation for the laser field:

the previous section. So we may take result (4.2) for the
population inversion density and substitute it into Eq.
(2.13) to obtain

2

fi(@+i5)

By writing k =nQ/c and r3 =coo—II, we derive the fol-
lowing result for 0:

n+——e+(z, t) =+a, (z)e+(z, t)+/+(z, t),
Bz c Bt

(5.2)

(4.24)
in which a, (z) is the spatially nonuniform saturated gain
coefficient given by the relation

in which 0, —=p~c/nl is an empty-cavity quasimode fre-

quency and

ao
a, (z) =

1+[(le (z)l )+(le (z)l )]/I,
(5.3)

c 1
y, = ln-

2nl r
(4.25)

reduces to the familiar cavity damping rate in the good-
cavity limit. We note that in spite of its simple appear-
ance, Eq. (4.24) is valid for arbitrary values of the saturat-
ing field intensity r+ +r and reflectance r .

Having established the steady-state operating point for
the average intensity and oscillation frequency, we are
now in a position to address questions concerning phase
diffusion and line width that arise from quantum-
mechanical fluctuations about this operating point. In
the absence of any phase locking, the phase of the laser
field is unconstrained and therefore diffuses freely on ac-
count of random kicks from spontaneous emissions into
off-axis modes and on-axis longitudinal modes, the latter
emissions being driven mostly by transmitted vacuum
fluctuations.

V. INTRINSIC LINEWIDTH ABOVE THRESHOLD

As we have noted before, in a steady-state laser oscilla-
tion above threshold, the intensity is high on average and
well stabilized by the equality of gain and loss. So, the in-
trinsic linewidth of the laser light is determined almost
solely by phase diffusion [23].

To address phase diffusion, we go back to the field-
evolution equation (2.1la) and to the atomic evolution
equations (2.11b)—(2.11d) with the latter equations to be
treated in our improved adiabatic approximation in
which the atomic relaxation rates y„yb, and y are all
much greater than the field damping and phase-diffusion
rates. In this approximation, the atomic variables quick-
ly adjust to the slower variations of the field. Mathemati-
cally, the approximation amounts to setting the time
derivatives in Eqs. (2.11c)and (2.lid) to zero. Further, as
we have noted before, we also ignore any fluctuations of
the population density operators R, and Rb. In effect, we

may calculate (R, ) and (Rb ) in steady state as done in

n 8+——0+(z, t) =+Im[a, (z) ]+F+(z,t),
Bz c Bt

(5.4)

where the noise forces driving the phase fluctuations are
related to the 0+ quadrature of P+ via the (steady-state)
amplitudes r+ (z) =

l e+ (z) l

1 —i 8+(,Z, f)
F+(z, t) = [P+(z, t)e

2ir+(z)

P+(z, t)e + '—
) . —(5.5)

The solution of Eq. (5.4) is analogous to that of Eq.
(3.2), when one uses the boundary conditions on the
phases that follow from Eqs. (3.6). These boundary con-
ditions on 0+(z, t) are derived in Appendix D. Driven by
the vacuum field and the atomic spontaneous emission
noise, the phase 0 (O, t) of the leftward field at the output
mirror evolves via the difference equation

0 (0 t+t~) —0 (0 t)
I=ee(t)+ dz'F+ (z', t +nz'/c)

0

—f dz'F (z', t+n(21 —z')/c)
0

—2 f Im[a, (z) ]dz —2kl mod2ir,
0

(5.6)

where e&(t) is related via Eq. (D4) to the 0+ quadrature
of the transmitted-in vacuum field at z =0

We note that Eq. (5.2) is formally identical to Eq. (3.2),
except that the linear gain coefficient e0 is replaced by
the saturated gain function a, (z), which depends on the
intensity in both the rightward and leftward beams.

We now look at the imaginary part of Eq. (5.2), treat-
ing the electric field classically consistent with the ap-
proximation that the amplitudes are well stabilized and
only the phases evolve in time. If 0+(z, t) represents the
phases of the fields e+(z, t), then the phases evolve ac-
cording to the relation
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(r/n), ~„„~
—ie+~o, n

2ir+ (0)

(vac)t(0 r)
'8+'~") (5.7)

8 (O, r+r„)—8 {O,r)

=e&(t)+ f dz'F+(z', t+nz'/c)

—f dz'F (z', t+n(2! —z'}/c) .
0

(5.9)

Since one may show that (see Appendix E)

I 1
2f Im[a, (z)]dz+ —ln —=0,

0 y
(5.8)

it follows that at the steady-state operating point given by
Eq. (4.23),

l2f Im[a, (z)]dz+2kl=Omod2m,
0

so that Eq. (5.6) simplifies to

This expression is exact (and not indefinite up to an addi-
tive multiple of 2n. ) since the change in the field phase
from one round trip to the next can only be small, which
each one of the quantities on the right-hand side of Eq.
(5.9) already is.

From Eq. (5.9), which describes how the phase evolves
over one round trip, one may compute how the phase
evolves over N round trips by considering Eq. (5.9) N
times, once for each round trip, and adding all such suc-
cessive round-trip contributions

X—1

48(t)= [8 (O,—t =Ntz) —8 (0,0]= g Es(t+pta)+ f dz'F+(z', t+ptii+nz'/c)
p

—0 0

—f dz'F (z', t +pta+n (21 —z')/c
0

(5.10)

The variance of b, 8(t},which determines the linewidth,
is then obtained in terms of bilinear moments of e& and of
F+. From definition (5.7}of ee, the bilinear two-time mo-
ments of ee( t) are obtained in terms of such moments of
the positive- and negative-frequency parts of the vacuum
field. These moments are of course zero unless the two
times are one and the same [see Eqs. (B3) and (B5) in Ap-
pendix B]. It is evident from Eqs. (3.4) and (5.5) that the
bilinear moments of F+ are obtained in terms of the
diffusion coefficients for f+ noise operators. These mo-
ments have been computed in Appendices B and D.
From the form of Eq. (5.10), it is clear that the variance
of 68 involves single-time second-order moments of es(t)
and of F+(z, t), as well as their two-time moments. The
latter are all either exactly zero (for ee} or are close to
zero (for F+, whose correlation time of order y

' is very
short coinpared with the round-trip time t'ai ). Since all
single-time moments of e& are equal, as they are separate-
ly also for F+ and for F, it follows that ( [58(t)] ) is
proportional to N, or equivalently, to t. Thus, we may
write

([b,8(t)]2) =2Dt .

The proportionality constant 2D is the FWHM linewidth
EQ of the laser field arising from a Gaussian random pro-
cess like phase diffusion. Clearly, 2D is the sum of a

vacuum-fluctuation piece 2D„„and a spontaneous-
emission piece 2D,„

(5.11)LRLI0 2D 2D ygg +2D s ~

From the preceding arguments, it may be seen that

2D„„= (e', &,
1

tg

which, with the aid of result (D5) of Appendix D and the
relation

(5.12)

AQn (1 r)—
VRc 4p , t~ r

(5.13)

On the other hand, D, involves a double integral of
the single-time moinents of F+(z, t) over the cavity length
[see Eq. (5.9)]. These moments, computed in Eqs. (B21)
of Appendix B, depend on the diffusion constants D t(z)
and D t (z) of f+, which are in turn expressed in terms

of spatially nonuniform fields and locally saturated popu-
lations via Eqs. (B10') and (Bl 1'}. Thus, 2D» may be
shown to be equal to

P, =2Aeonc(1 F)[r+(0)/r ]—
between the output power P, and the field amplitude
r+ (0), may be written as

2~)'~g 4eokc 0 r+ (z) r (z)

X [[A —y, (R,(z))]+[Ab —y&(R&(z)))+2y[(R, (z))+(Rb(z))]] . (5.14)
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The integral in Eq. (5.14) is quite involved, but may be
carried out analytically as follows. One first notes from
Eqs. (4.1c) and (4. ld) that the sum of the quantities in the
first two pairs of square brackets in Eq. (5.14) vanishes
exactly. The explicit expression for the sum of the sa-
turated populations (R, (z)) and (Rb(z}), which is all
that survives in the integrand, is obtained easily by solv-
ing Eqs. (4.1b)—(4.1d) with the help of Eq. (4.2).

Before we state the explicit expressions for (R, (z))
and (Rb(z) ), we should like to point out that in
Ujihara's treatment [17] the aforementioned sum is
forced to become independent of the field strength (and
therefore of z) and in fact equal to the total number den-
sity np of atoms. This is a result of his inconsistent as-
sumption, insofar as his expressions for the noise mo-
ments Dxxt and Dxgx (6 and G in his notation) are

concerned, that each laser atom has exactly two levels.
Nevertheless, the final form of this linewidth expression is
correct if saturation can be ignored, as one might expect
on the basis of this assumption.

The explicit expressions for the saturated population
densities are

JVO [r+ (z)+r (z)]

r. /rb+1 [I,+r (z)+r (z))

(5.15a)

Via the use of these expressions in Eq. (5.14), the expres-
sion for D,~ becomes

2 2
1 pQ

At~ 4epkc

X ((R ()0+(R' )o)I+IV' J'(r. +r }

(5.16)

where I and J are the following two integrals:

I dz +1 1

r+ (z) r (z)
(5.17)

and

I [r+ (z)+ r (z}]
dz

r+ (z)r (z)[I, +r+ (z)+r (z}]
(5.18)

The calculation of these two integrals is carried out in de-
tail in Appendix E.

By making use of expressions (E2) and (E3) from Ap-
pendix E and the fact that the output power P& in the
central surviving quasimode is down by the factor [24]
rt~/2 from the power P,„, related to r (0)=C/r [see

and

JVO [r+ (z)+r (z)]
Rb(z) = Rb ) +

rb/r, +1 [I,+r+(z)+r (z)]

(5.15b)

Eq. (4.21b)] via

P,„,=2& Eoncr (0)(1 r—),
we may finally express D, in the form

(5.19)

((R,' ')+(R' ') ) (1—-„)
4t ((R,' ') —(R& ')) P

1

P„,
ln + (1 r—)

1 1 4

r r
(5.20)

The power-independent piece in Eq. (5.20) is given in
terms of a saturation power

Psa~ n&&p
2p

(R(0}) (R(0))

A, +Ah

The presence of the power-independent term in Eq.
(5.20) is a key result of this paper. It is related to the sat-
uration of population densities and its spatial nonunifor-
mity for laser operation well above threshold. We wish
to note that a careful treatment of the laser linewidth
above threshold even in the good-cavity limit should con-
tain an analogous term, as also noted by Yariv and Vaha-
la [25], since indeed such a treatment must express the
linewidth in terms of saturated population densities, not
the unsaturated ones. However, as we have demonstrat-
ed in the present work, the dependence of this term on
the cavity outcoupling becomes more and more nontrivi-
al the larger the outcoupling, since with increasing
outcoupling the spatial nonuniformity of gain saturation
becomes important. The relation of this power-
independent term to an observed power-independent con-
tribution to the linewidth of semiconductor lasers [10] is
worthy of further investigation.

The dependence of the linewidth on the mirror
transmission coefficient T:(1 r) is—q—uite different
above threshold from that below threshold [Eq. (3.20)].
This difference arises mainly in the power-independent
term of Eq. (5.20), which results from nonuniform gain
saturation. This is in contrast with the results of Ujihara
[17], Henry [11], and Hamel and Woerdman [18], who
for fixed output power predict a dependence on mirror
refiectivity that is in fact identical to Eq. (3.20). Above
threshold, Ujihara's results, as we have discussed above,
differ from our results, applying correctly only when sat-
uration is negligible. Since Henry and Hamel and
Woerdman do not include nonuniform gain saturation,
their results are naturally quite different from ours.

We plot in Figs. 3(a) and 3(b) the intrinsic linewidth
versus the output-mirror power transmittance
T= (1 r) for a fixed—outp—ut power in a gas laser (n = 1)
for high inversion and for two values of P, /P„, .

For P, /P„, =0.2, which may not be unreasonable for
a diode laser too, the two upper curves do not differ by
more than a few percent over much of the range of T.
The distributed-loss approximation to the linewidth just
above threshold [6] for high inversion
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regime operation as well. In contrast, the present work
establishes two different but equally important results,
namely, the manner in which the natural atomic
linewidth serves to limit the laser linewidth below thresh-
old and the detailed treatment of the power-independent
linewidth above threshold and its complete dependence
on the cavity outcoupling. The second paper continues
the work of Woerdman and co-workers to calculate the K
factor, focusing on a traveling-wave alternative to their
previous calculation in terms of nonorthogonal eigen-
modes of a leaky cavity. They also estimate the effects of
saturation on linewidth but do not provide a comprehen-
sive treatment.

N i Az

f+(z, t)=—e' '—g g f; e
Ahz

Z

—i kz, .

Az

ni

z

—ikz,
Z (A4)

APPENDIX B

1. Two-time moments of the input field e+ (0, t)
in a thermal state

in which the superscript A, over the summation sign
represents a sum over all atoms i, belonging to the inter-
val (z —

A, /2, z +t(, /2).
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APPENDIX A

Projection of left- and right-traveling pieces
from the dipole fluctuation operator pF (z, t)

On substituting Eqs. (2.10a) and (2. 10b} into Eq. (2.8a)
we obtain

—+y [p+ (z, t)e'"'+p (z, t)e '"']
at

2

[R,(z, t) Rb(z, t )]—
X [e+(z, t)e'"'+e (z, t)e '"']+pF (z, t)e'"' .

In Ref. [16], the general expansion of the electromag-
netic field operator in terms of the modes of the universe
was written down. The rightward-traveling component
of the electromagnetic field just outside the cavity at
z =0 is given by the expression

1/2
fiQk

e+(O, t)= —.Q2l k
6'0 AL

where gk alternates between +1 and —1 from one
universe mode to the next, L is the length of the one-
dirnensional universe, and 50k =A, k

—Q. From this ex-

pression, the normally ordered, two-time moment of the
electromagnetic field in the input state, which we take to
be the thermal blackbody field, is the following:

(e""'t(P t)e '"'(0 t') }
$Q

~

~~
(snt, (t —t )'

$Q L + tsn„(t —t')

4eoAL cm

(Al) flQ n

2e0 Ac
(B2)

We may "project out" the p+(z, t) [or p (z, t)] dynamics
from this equation by multiplying both sides by e
(or e'"'), integrating the resulting equation over the
range (z —A, /2, z +A, /2), and by noting that since

p+(z, t) and e+(z, t) are slowly varying
in z over the scale of a wavelength, integrations
of the form jp+ (z, t) exp(+2ikz)dz and

1 e+ (z, t) exp(+2ikz)dz over the stated range are negligi-

ble. This procedure then yields

in which nk ——n represents the average photon number in

one mode of the broad-bandwidth blackbody field. In the
vacuum state, n =0 and so,

( (vac)t(() t) (vac)(() ti) ) p (B3)

Similarly, the antinormally ordered moment is

(B4)(e'"'(O, t)e'"' (O, t') }-=(n+1)5(t t'), —AQ

260 Ac

where

p—+y p+(z, t)= [R.(z, t) R„(z,t)]e+(z,t)—
Bt

'
iA

which reduces, in the vacuum state, to

(e'""'(0,t)e""' (0, t') ) = 6(t t') . —AQ

2e0Ac
(B5)

(A2)+pf+(z, t),

lQE+g/2
f+(z, t)= F (z', t)e '"' dz' .

z —
A, /2

(A3)

2. Single-time second-order moments

of the input field in a thermal state

To simplify Eq. (A3},we split the integration domain into
X subintervals, each of width hz, the smoothing interval
introduced earlier. Thus,

Note that

(e(+")t(p, t)e(+"'(O, t) &
= g n„.

0 k
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and

( (in)t(0 ) (in)(p ) ) AQn L fiQn

4ep AL, I 4ep AI

Clearly, the k sum diverges for nk =(e" ~" —1) ' since

f p
dto(e" ~" —1) ' has a logarithmic singularity com-

ing form the lower integration limit. The singularity is of
course "cured" in three dimensions, since the density of
states provides a regularizing factor there. However, we
are interested in the on-axis field only. So, we cure this
problem differently: we assume that there is only one
quasimode with wave vectors in the range
[
—m. /21+k, m/2l +k] involved, so that

(f+ (z, t)f+(z', t') )
—iQ(t —t')

A k g ge ' ''2D t 5 5(.t. —t')

1
, , 2D ~ 5(t t') —g 1 5„,

A A,

where the symbol 5, , represents 1 if z and z' refer to the
same slice (of thickness A, ) and 0 otherwise. Note that in
the limit A, ~p, 5„/A, ~5(z —z'), so that

(f~+ (z, t)f+(z', t') )

(()(p)()t(p))RQ(n+ 1)
+ + 4

(B7) , , 2D t 5(t t')n—pAA'5(z —
, z')

A A,

For Q quasimodes, each of the expressions (B6) and (B7)
gets multiplied by Q. For the special case of the vacuum
state,

2noD
5(t —t')5(z —z')

on distance scales much greater than A.. Similarly,

(B12)

and

(e(vac)t(p t)e(vac)(p t)) p (B8) 2npD
(f+(z, t)f+(z', t')) = 5(t —t')5(z —z'),

&
e'"-'(o t)e'"-"(o t) ) = RQ

4ep Al
(B9)

while the other two left-right-mixed moments

(B13)

3. Second-order moments of the noise operators fy (z, t )

and

(f;+(t)f, (t')) =2D,t,5,,5(t —t') (B10)

Since f+ (z, t) are composed of the individual atomic
dipole fluctuation operators f; via Eq. (A4), we first
need the second-order moments off;, which we find, for
example, in Ref. [6],Chap. 20,

(f+(z, t)f (z', t')), (f+(z, t)f (z', t'))
+2ikz, .

involve the sums g;e ', which are identically zero,
since

+2ikz.i A d t (47ri /A)z'z +A. /2

l z —A, /2

np Ae 2ikz e t8d 0
2m

2k —2~

(f, (t)f+(t') ) =2D t5,,5(t t'), — (Bl 1) =0.

2n, D,t, ——A. +(2y —y. )(R.(z, t) ),
2npD&&('=Ab +(21 ) g )(Rb(z t) )

Use of these relations in Eq. (A4) implies

(B10')

(Bl 1')

in which, in terms of the number density n p of atoms,
4. Normally ordered two-time moments

of the noise operator 6 ( t)

We assume that the incoming external field is in the
vacuum state, so that Eqs. (B3) and (B5) apply. Then,
from Eqs. (3.8) and (B12) it follows that

2

&G'(t, )G(t, ))=
2epkc'

I a

X I dz' I dt' I dt"e )'"+' '+' "+' '5(t t t'+t")[e ——' +e '
)

0 0 0

pQ
2E'pkc

2Re(a())l 2 Re(a())l

XX 2 Re(ap)

i 5[t l
—t~ ) oo oo

Xe dt dt e r( )5(t —t —t +t ) . (B14)
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The t' and t" integrations may be done by first noting
that the result must be invariant under the interchange of
t, and t2. Thus, we may assume, for the moment, that
t, &t2. Then, since

For finite y, G (t) is indeed not 5 correlated.
We may express Eq. (B15) in terms of more familiar

quantities by taking the real part of expression (3.3a) and
substituting it and expression (B10') into Eq. (B15). One
may show after some straightforward algebra and the use
of Eq. (3.1) that below threshold

—y(2r' —i
l
+ i2

e
i(

—i2 2r
it follows that in general

f "dt'f "dt"e r"+"5(t, t t—'+t—")

1 —ylrl rz

2y'

(g (0) )(G'(t, )G(t, ))= ""
2e0cnA (g,' ' —(gb( ')

4 Re(a0)l 1 +5
X e

2r

x
—ylr —r I+id(r —r )

(B16)

Use of this relation in Eq. (B14) gives us the desired mo-
ment of G(t)

In terms of i (0} defined by Eq. (3.10), we may rewrite
Eq. (B16) as

(G'(t, )G(t, )) =
'2 2n0D y

26'0kC

4 Re(ao)l

X
e

2 Re(a0)

1 2 1 2
—ylr —r I+iA(r —r )

2y' (B15)

(G (t, )G(tz))=i (0)(1—r e '
)

x
—yli —r I+id(r —t )

5. Second-order moments
of phase-noise operators F~ (z, t)

From Eqs. (5.5) and (3.4), we find that

(B17}

F+(z, t) =+ ~2
e

' +' f—"f+(z t —t')e (r+' "'dt'+e ' f ft+(z t t')e —' ' "dt'
4r+ (z)e0kc 0 0

(B18)

Therefore, the moments of F+(z, t) are simply related to the moments of f+(z, t) and f+(z, t), which we have already
calculated earlier in this appendix. Note that since mixed moments of type (f+f ) and (f+f ), etc. , vanish, mixed
moments of type (F+F ) and (F+F ) are also zero

(F+(z, t)F (z', t)) =(F+(z, t)F (z', t')) = =0 .

The only nonzero moments of F+ and F are the following

(F+ (z, t)F+ (z', t) ) = 1 p, Q

16r+ z r+ z'

(B19)

X f dt, f dt2I(f+(z, t —t, )f+(z', t' t2))e '—e
0 0

—(y —i 5)i& —(y+i h, )t& i [8+(z, t) —0+(z', t')]
Xe 'e 'e + ' + ' j.

The use of Eqs. (B12) and (B13)and the relation

f —y( t —t'+ 2t2 )+i b( t —t')

0
2dt e ' ift&t'

f —y( t' —i +2r I )+ ib( t —t')
Idt e ' ift(t'

yields the following result:

e
—y I

r —r'I + t S(i —r')

2p
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(F+ (z, t)F+ (z', t ') -= fi(
i
)

—y[t —t'i

16r+ (z}Ay roke
—i a(t t—)

—'i[() +(z, t) 0—+(zt ,)]'ii)(t —t')+i[()+(z, t) ()+—(z( ,)]'
(B20)

The derivation of the only other nonzero moment, viz. ,
(F (z, t)F (z', t')), is similar and is, in fact, given by
Eq. (B20) in which all + subscripts are replaced by —.
Note that for t =t', we have the following expressions,
which we shall need:

yt„
coth

to obtain

(F+(z, r)F+(z', t)) =
'2

no pQ 5(z —z')
16r z+ (z) A y woke

X[D t(z)+D t (z)) (B21a) APPENDIX D

and

"o pQ
2

(F (z, t)F (z', t)) = 5(z —z')
16r (z) A y eokc

1. Boundary conditions on r~(z) and 8~(z, t)

i 8+(z, t)
On writing e+(z, t)=r+(z)e — '

it follows from the
boundary condition (3.6a) at the perfect mirror z = I that

X[Dz t(z)+D ( (z)] . (B21b) r+ (l) =r (I),

8 (+l, t)=8 (I, t) 2kl +m—'mod2n .
(D 1)

APPENDIX C

Relation between P,„, and P&

From the Lorentzian atomic envelope for the power
spectrum, it is clear that if P& is the output power from
the central quasimode, the output power from the pth
quasimode is

The relations between r+ and 8+ are more complicated at
the partially transmitting mirror z =0. We assume that
above threshold the amplitudes of the e+ fields are large,
so that the vacuum field e'+"' contributes a very small
phase shift ee(t) to the circulating coherent field. Thus, if
we let

r+(0)=rr (0)+e„

p(p)
1

y'.
2Pi

r'+p'
nl

and

8+(O, t)=8 (O, t)+m+e()(t)mod2n, . (D2)

Thus,

P „,=
00 00

1p(p) p
P — 00 P — 00 1+p 2 277

2

then from Eq. (3.6b) we obtain

n

But
so that for ie„i, iE()[ « 1, we get, up to the lowest order in

e, and e&,

1 1
=pocoth(npo ),

1+p /po

—i 0 (O, t)
r (0+}iE -=()e„+—e + —'

e +"((O), t) .
n

(D3)

which may be established by a contour integration, so
that

PtR
Pout =P1 cothOUt. 1 2

Since we have assumed ytR ))1 in this paper, we may
use the fact that for y tR )) 1

Taking the imaginary part of Eq. (D3) gives us the
desired ez

(tin), („„), , —i) (o, t) („„)t e (o, i),
2(r+ 0)

(D4)
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2. Variance of ez(t)

In the vacuum state, from Eq. (D4),
-2

(e',(t) & =+
4n r+(0)

Note that

APPENDIX E

1. Establishing result (5.$)

X [ ( e '""'(0,t)e(""'t (0, t) &

+ (e(vac))(p t) (vac)(0 t) & ]

so that by use of Eqs. (B8) and (B9), we get

)rtQ '
(",(t) &

=
16eoAIn r+(0)

(D5)

f Im[a, (z)]dz = ——Re(ao) f»+ [r' (z)+»' (z)]/I,

,=(dr+ (z)
(from Eq. (4. 12a)

y z=o r+(z)

which like Eq. (B9) is valid only for the vacuum field
transmitted into a single quasimode.

r+ (I)= ——1n
y r+(0)

1
1n—,

2f r

from which Eq. (5.8) follows. To perform the last step of the above derivation, we used Eqs. (3.22a) and (3.22b).

2. Evaluation of integrals I and J
With the help of Eqs. (4.17) and (4.18), I may be recast solely in terms of r+ (z) as

,=t dr+ (z)[1/r+ (z)+»+ (z)/C ]I=
z=0 dr+ (z)/dz

r+ (I)

f, du(1/u +1/C )(I, +u+C /u)
2Re ao I, r'+(o)

1 + C + s +2+ s + u+ (I) 2 I I
2Re(ao)I, f" (o) u' u' u C' C'

1

2 Re(ao)I,
C 1

r+ (0)
1 1+I,

r+ (I) r+ (0)

r+ (I) I,
+21n + [r+(I) r+(0)]—

»2+ (l) r+ (0) C

+,[r + (I ) r+ (0)—]
2C

(El)

We now use Eqs. (4.21) to rewrite Eq. (El) entirely in terms of C, whose explicitly expression is given by Eq. (4.22)

Is 1 1I= —r +———r +21n—
2 Re(ao)I, 2 r i C

in which C is determined by Eq. (4.22) and related to r+ (0) via Eq. (4.21b).

We may evaluate J similarly with the help of Eqs. (4.17) and (4.18)

1 r+ (l) C2 r+ (I) C2J= du +u du +—+
2 Re(ao}I, r' (o) u 2 Re(ao)I, r' (o) u u

(E2)

1 C 1

2 Re(ao)I, 2 r4+ (0)
c

1

4+(&)

r+(l)
+2 1n

r+ (0)

+ [r+ (I) r+ (0)]-
2C

With the aid of Eqs. (4.21}and (4.22) we finally obtain

1 1 1 1J= 2 ln —+— -2
—r

2 Re(ao)I, r 2 r ~
(E3)
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