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Phase properties and atomic coherent trapping in the system of a three-level atom interacting
with a bimodal field
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We have studied the time evolution of the phase operators of the radiation field in the system contain-

ing a V-type three-level atom interacting with the bimodal field by means of the phase formalism given

by Pegg and Barnett [J. Mod. Opt. 36, 7 (1989);Phys. Rev. A 39, 1665 (1989)]. That the atomic coherent
trapping will happen in an appropriate initial state of the system has also been verified.

PACS number(s): 42.50.—p, 03.70.+k, 03.65.—w

I. INTRODUCTION

The Jaynes-Cummings (JC) model [1]and its extension

[2,3) have received considerable interest over recent
years. This interest stems from the fact that these models
can be exactly solvable in the rotating-wave approxima-
tion and yield nonclassical results such as the collapses
and revivals of the atomic inversion [4], the squeezing of
the field [5] and the atomic dipole [6), and the sub-
Poissonian photon-counting statistics [7]. Recent ad-

vances in experiments using micromasers have led to the
observation of sotne of these effects [8].

One of the most fundamental features of quantum
mechanics is the linear superposition principle. The
correlated-emission laser [9] and the laser without atomic
inversion [10] are examples of phenomena resulting from
this principle. Recently, some authors have discussed the
relations among the amount of squeezing of the field [11],
the atomic dipole [12], and the different superposition
state preparations of an atom in the atom-field coupling
system, respectively. Zaheer and Zubairy et al. [13,14]
have shown that a two-level atom coupled to a single-
mode field, initially prepared in a coherent superposition
of its two states, is possible to obtain coherent trapping
for a particular choice. Slosser and co-workers [15] have
studied the evolution of a single-mode field driven by a
current of two-level atoms, each interacting with the
mode for a time ~, showing that under certain trapping
conditions it evolves towards a new class of pure states.
So it is necessary to study in depth the property of the
field-atom coupling system.

As we know, the phase property of the radiation field is
very important [16]. Recently, Pegg and Barnett [17,18]
introduced a formalism based on a Hermitian phase
operator that has properties coincident with those nor-
mally associated with phase. Also, Pegg and Barnett [19]
rectified three minor errors in their previous paper [18]
following a suggestion by Ma and Rhodes [20]. Some au-
thors investigated the phase properties of the radiation
field in the JC model [21,22] and the nonlinear JC model
[23,24]. However, they all assumed that the two-level

atom is initially in one of its two states and did not pay
attention to the inAuence of the initial atomic superposi-
tion state on the phase properties of the radiation field.

In the present paper, we focus our attention on the
effect of the initial atomic superposition state prepara-
tions on the phase property of the radiation field. First,
we give the time-dependent state of the system containing
a V-type three-level atom interacting with the bimodal
field. Then, the Pegg-Barnett phase formalism is em-

ployed to calculate the phase probability distribution, the
mean value, and the variance of the phase operators by
means of an analytical method. In Sec. IV, we analyze
the role of the initial atomic superposition state and veri-

fy that the atomic coherent trapping will happen for a
particular choice. Finally, we present a conclusion.

II. TIME EVOLUTION OF THE STATE VECTOR
OF THE SYSTEM

Ho= g co;lt &(t i+via iai+v~a2a~ (&=1),
i =a, b, c

V=g, a, ~a &(c~ g+, a~c)(a~

+gz z~ab )(c+g2at ~~c )(b~ .

(2)

(3)

Here a, and a, (i =1,2) are, respectively, the creation
and annihilation operators for the field of frequency v,-.

~i ) (i =a, b, c) is the eigenstate of the atom with eigenfre-
quency m;, and g;is the corresponding coupling constant.
We assume the coupling constants to be real throughout
the paper.

In the interaction picture, the state vector of this
atom-field coupling system at time t can be described by

The scheme of the V-type three-level atomic system, as
shown in Fig. 1, consists of two allowed transitions
~a )~~c ) and ~b )~~c ). Each interaction has a different
mode of the field. In the rotating-wave approximation,
its Hamiltonian is described by

H =Ho+ V,

where
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FIG. 1. Energy diagram of a three-level atom in the V-type

configuration interacting with two quantized cavity modes.

I]pt(t})= g (C, „„Ia, n, ,nz)+C], „„Ib, n], nz)

X Ib, n„n, —1)

By using the initial condition [Eq. (9}], we obtain the
solution of Eq. (6) as

C, (t)= —A]g] gn]
n) ng

+c,„„Ic,n„n, &) . (4)

i (6/2+I3)t
X

b, /2+ f3

i (6/2 —P)t

b, /2 —P

Substituting Eq. (4) into the Schrodinger equation in the
interaction picture,

Ie'(t) &=~'(t)l~ (t}&
dt

we obtain

] „=—ig]V n] exp(ib, t)C, „

a+cos nl

Cb{t) = —A ]gz+nz
i(h/2+P)t l i(5/2 —P)t

t]],/2+P b /2 —P

+sin —exp( i g)F„— (10)

]
= igz Qn z

—exp(id t)C, „

C, „„= i(g] +—n] C, „

+gzV nzc, „„,)exp( —i5t),

where 5=m, —~, —v&
=rgb

—m, —~2.
lf the atom is initially in the state IV„(0}),

Iq', (0) & =cos —Ia)+sin —exp( —ip))b),
I

(6)

C, (t) = —A] exp i ———P

—exp i ——+P t
2

Here we have used the symbols C, (t), Cb(t), and C, (t) to
replace the symbols C,„,„(t), C~„„,(t), and

C, „„(t),respectively, and A ] and p obey

a
A] g] }/ n]cos —F„

which means that the atom is in the coherent superposi-
tion state of its eigenkets I

a ) and
I
b ), and the field is in

the superposition of the photon number states at time
t=0

a+sin —exp( —ig)F

P=(b, /4+g ]n]+gznz)'

(2P), (11)

n), n2

where g„„IF„„ I
=1, then the state vector of the to-

tal system at t =0 can be described as

where P is associated with the frequency of the atomic
Rabi oscillation. Substituting Eq. (10) into Eq. (4), we
can obtain the state vector of the system at time t in the
interaction picture. Then transferring it to the
Schrodinger picture, we have

I]P(t)) = g (C, (t)exP[ —i[(n, —1)v]+nzvz+co, ]t] Ia, n, —1,nz)
nl, n2

+C](t)exp[ i [n]v]+(nz —1)vz+rilb]t] Ib, n], nz —1)+C {t)exp[—i [n]v]+nzvz+Eo ]t ] Ic, n], nz) ) .

(12}
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Starting from Eq. (12), we can discuss the time evolution
of the phase operators of the bimodal field, and analyze
the influence of the different a,P on the properties of the
system.

III. TIME EVOLUTION OF THE
PHASE OPERATORS IN THE ATOM-FIELD

COUPLING SYSTEM
and

l'p(t) ) = g [(a,e,e l'p(t)) la, e, e )
ml, m2

+(b,e, e l+(t)) lb, e

+ &c,e, e le(t) & lc, e, e &];

(18)

S

le ) =(s+1) ' g exp(ine )ln )
n=0

(13)

To study the phase properties of the atom-field cou-
pling system we use the Hermitian phase formalism in-
troduced by Pegg and Barnett [17,18]. The phase opera-
tor of the one-mode field operates on an (s+1)-
dimensional subspace 4 spanned by the number states
l0), l

1 ), . . . , ls ). The value of s can be made to tend to
infinity after all necessary expectation values have been
calculated. A complete orthonormal basis of the (s+ 1)
phase state is defined as

P(e,e, t)= (a,e, e l%(t)&l

+l(b, e. , e. l~(t)) l'

+l&c,e, e l%(t)&l' (19)

represents the phase probability distribution function.
Thus the expectation value of the phase operator is

(C&i@2)= g 0" 0" P(e,e, t) (n, k =0, 1,2) .
ml, m2

(20)

with

0 =00+2~m/(s+1), m =0, 1,2, . . . , s (14)

If the radiation field is initially in the two-mode un-
correlated coherent state, i.e.,

where the value of Op is arbitrary. These states are eigen-
states of the Hermitian phase operator

F„„=exp( n, /2)exp( —nz l—2)a",az/"(/ n, !n 2!,

where

(21)

e,= y e. le. )(e.l.
m=0

(15) a;=Qn;exp(ig;) (i =1,2), (22)

For a two-mode field, the phase states are defined by [18]

le, e ) =[(s,+1)(s,+1)]
Sl $2

X g g exp[i(n, e +n20 ]]ln„n2),
n =On =0

1 2

(16)

where the limits s, ~ ~ and s2~ ~ are taken at a suit-

able point in the calculations. For simplicity, we here
take s, =s2 =s, and the phase Hermitian operator of the
ith mode in the two-mode field can be described as

0 0,0 )(0,0
l

(i =1,2) .
m =0m =0

I 2

(17)

Therefore the state vector l%(t) ) of the atom-field cou-
pling system can be spanned by the phase eigenstates as

and n, is the mean photon number of the field mode i,
and g; is the phase angle of a;. For n„ni »1, then the
photon number of the field can be well approximated by
Gaussian distribution [17,22]

F„„=(4~nin2) exp[i (nikl+n2(2)l

Xexp
(n, n, )' (n—z n2)2—

4n24n1
(23)

Considering the property of the photon number distribu-
tion function, the approximation

n —1,n n, n —1 n, n

(24)

P(n„n2)=P+g f(n, n, )/(2P)—+gz(ni nz)/(2P)—
is reasonable when we sum with respect to n, and n2
[22,25]. Here 13=P(n, , nz). So the phase probability dis-
tribution P (e,e, t) can be approxiinated as

1 2

P(e,e, t) = [2m l(s + 1)] (2n, /vr)'i (2n2/m )'i

g, n, sin (a/2)+g2n2cos (a/2) g, g2V n—, n2sina cosg
X

t
exp[ —2(nizi+nqz2)]

g 1n1+N zn z

g, n, cos (a/2)+gznisin (a/2)+g, g~+n, n2sina cosP
+exp[ —2(n, x, +n2xz)]

2P(P+ b, /2)

g,n, cos (a/2)+gznzsin (a/2)+g, g2+n, nzsina cosf
+exp[ —2(n, y, +n,y, )]

213(P b /2)— (25)
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where

z;=(g; —8 v—;t), x;=[(,—8 v—;t+g, t/. (2p)] (i =1,2}, y,. =[/,. —8 —v,. t —
g,.~t/(2p)]2 . (26)

In the continued limit, i.e., s ~ Do, 0 and 0 are two continued variables. The phase probability density is normal-
1 2

ized according to Refs. [17,22]

f f P(8„8,t) d8, d8 =1, (27)2'
where [(s + 1)/2n ] is the density of the phase states.

Using Eqs. (20) and (25), we obtain the time evolution of the phase operators

(4, ) =g, v, t ——A2g2ht,

(42) =(2 v2t——A2gzht,

(4~() = +(g) v(t—) + A2g )t 2A2g
—)bt(g( v(t),—2 1

4@i

1(42) — +(g2 v2t) + A2g2t 2A2g2—6t((2 v2t),
4n2

2 2 2
1 2 2 giga(4)42) —(g, v, t)($—2 v2t)+ A2 gjt((2 V2t)+g2t(gi v&t)+-

P+ b, /2 2P

(2g)

(29)

(30)

(31)

+ 1

P —b, /2

So the phase fluctuations scan be expressed as

g2g2t2

2P
ft (g2 v2t) g—zt(g&

—v, t )— (32)

(g(y )2=(q)2) —((P )2= +g4t2A (1—A g2)
4n)

(33)

with

4n2
+gzt A2(1 —A26 ), (34)

g fn i cos (a/2)+g2n2sin2(a/2)+g&gzQn
&
nzsina cosg32=

4p (g&n, +gzn2)
(35)

From Eqs. (28}—(34) we can see that the mean values and
the fluctuations of the phase operator [Eqs. (28), (30), and
(33)] for frequency v, contain the constants n2 and g2
about the field mode for frequency v2 because of both of
the field modes interacting with the atom. The case for
the mode with frequency v2 is the same. When b,AO,
from Eqs. (28) and (29) we can easily find

(4, )A —v, (i =1,2) .
d
dt

(36)

IV. ATOMIC COHERENT TRAPPING

This means that the frequencies of the two fields are shift-
ed. If 4=0, the frequency shift is zero, and the changes
of d (4; ) /dt and (b,4; ) according to the mismatch b,

are nonlinear [23].

coherent state of the field in an ideal cavity. They found
that the population inversion is far from exhibiting re-
vivals and remains constant for a certain initial condition,
which is in sharp contrast with the result of Yoo and
Eberly [26], who got that a pure two-level system cannot
exhibit coherent trapping. On the other hand, Yoo and
Eberly in Ref. [26] pointed out that the coherent trapping
did not take place also in the V-type atom-field coupling
system. However, our current calculations give a
different result that seems reasonable. Here, we present
our discussion as follows.

For simplicity, we let g& =g2=g and n& =n2=n, thus
Eqs. (26) and (27) give

1 4t2
& ~@,&'=(&@,&'= + g (1+sina cosy)

4n 8p

Zaheer and Zubairy [13] considered a two-level atom,
initially prepared in a coherent superposition of the
upper and lower levels, interacting with a single-mode

b, (1 s+i ncastro)
8

(37}
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It is clear that the second term of the right-hand side in
Eq. (37) is zero when a=a. /2, g=m. (In fact the implica-
tion of a= —m/2, /=0 is the same as that of a=sr/2,
$=~.) Thus Eq. (37}becomes

(~~, &'=(~~, &'=
4n

(38)

For n ))1, we can regard the photon number distribu-
tion as a Poissonian function with the time development;
we have [22]

type atom as a two-level atom interaction with the bimo-
dal field via a Raman two-photon process [28]; the atomic
coherent trapping occurs in its initial asymmetric excita-
tion. This initial condition is in agreement with the two-
level atomic coherent trapping condition in the JC model
[13]. Thus in this particular choice, the V-type three-
level atom can undergo coherent trapping.

As we know, the system shown in Fig. (1}is the base of
the correlated-emission laser. If we define an operator of
phase difference

&ax, &'=(~x, &'=n, (39) 4=4) —42, (42)

(&lV' &'(&@ &'=(&& &'(&C' &'=-' (40)

so that the number-phase uncertainty products of the
two-mode field are

then the fluctuations of the phase difference satisfy

(ae &'=((e,—e, )'& —&e, —e, &'= 1

2n
(43)

It shows that each mode of the uncorrelated two-mode
field, which is initially in a coherent state, retains coher-
ence with time development.

As we know, the atomic populations in the system con-
taining a V-type atom interacting with the uncorrelated
bimodal coherent field can exhibit the revivals and col-
lapses with the time development when the atom is ini-
tially in one of its three states ~a &, ~b &, ~c & [27]. But if
the atom is initially in the state in which the field can re-
tain its coherence, i.e., a=m/2, 1(=m, we find that the
atomic populations in the Hilbert space spanned by the
field phase states and the atomic states obey

2

P. (r)= f f
=P, (0)= —,',

Ps(r) =Ps(0) = ,', P, (r) =P, (—0)=0 .

(41)

This means that the dynamics of the atom is the same as
that for the initially excited case, and the field retains its
coherence. So we can see that the coherent trapping
occurs in the V-type atom. This result is quite surprising
in view of the general belief that coherent trapping does
not occur in a V-type three-level atom [26].

A possible explanation for such behavior can be as fo1-

lows. When the mean photon number is very large, the
probability of the transition between ~a &~~b & is the
same as that of the transition between ~b &~~ c &, and the
lifetime of the atom in state ~c & is very short; its proba-
bility in state ~c & is nearly zero. So we can regard the V-

It is evident that ( h4 & does not depend on time r, and
is nearly the same as the fluctuations of phase difference
in the correlated-emission laser. So as we can see, the
phase property of the field in the V-type atom when the
atomic coherent trapping occurs is the same as that of
the correlated-emission laser [29].

V. CONCLUSIONS

We have investigated the phase properties of the two
uncorrelated coherent field modes interacting with a V-

type three-level atom, and have shown under certain con-
ditions that the atom-field interaction has not given rise
to the changes of the phase fluctuations; correspondingly,
the phase-number uncertainty products have remained at
a minimum. Our results have also exhibited that the
coherent trapping can occur in this system for a particu-
lar choice of the initial atomic coherence, and in this
case, the phase fluctuations are the same as that of the
correlated-emission laser.
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