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Quantum-nondemolition-measurement scheme using a Kerr medium
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In this paper, we present a theoretical study of the quantum-nondemolition properties of a scheme
that uses a Kerr medium in a double-ended cavity with both the signal and the probe inputs being
coherent fields incident from the two sides. We find that with a suitable choice of parameters this system
satisfies almost perfectly the criteria for quantum-nondemolition measurements.

PACS number(s): 42.50.Lc, 03.65.Bz

I. INTRODUCTION

The aim of a quantum-nondemolition- (QND) mea-
surement scheme is to measure the value of a signal ob-
servable as accurately as possible while adding minimum
possible noise to it and hence not significantly degrading
it during the measurement. In addition, one may also re-
quire the scheme to be useful as a state preparation de-
vice for the output signal. These criteria are expressed
quantitatively in terms of a set of correlation coefficients
and a related conditional variance. A number of possible
QND-measurement schemes in optics have been pro-
posed where one employs a probe beam of light to mea-
sure the properties of a signal beam [1—6]. Some of these
schemes have been realized experimentally, for example,
four-wave mixing [7] in optical fibers and a scheme in-
volving nonlinear mixing in a y' ' medium [8]. A recent
experiment has demonstrated a QND measurement using
three-level atoms [9].

Consider making a good QND measurement of the am-
plitude quadrature of the input signal field by measuring
the amplitude quadrature of the output probe field. In a
general scheme, the amplitude quadrature of the signal
field interacts strongly with that of the probe field, pro-
ducing a strong correlation between them and thus the
information on the signal quadrature gets imprinted on
the probe quadrature. Thus by measuring the amplitude
quadrature of the output probe field, one can find the
value of the input signal quadrature. In order that there
is no appreciable degradation of the signal (i.e., there is
an addition of minimum possible noise or uncertainty to
the signal output quadrature) during the measurement, a
lot of noise or uncertainty will be added to the conjugate
variable, i.e., the phase quadrature of the signal output,
in order to satisfy the Heinsenberg s uncertainty princi-
ple.

The measurement correlation coefficient gives the pre-
cision with which the input signal amplitude quadrature
can be measured. The back-action evasion correlation
coefficient gives the ability of the scheme to avoid degra-
dation of the signal. The ability of the scheme as a state
preparation device is given by a conditional variance.
For our system these quantities are defined later. For the
ideal case, each of the above two correlation coefficients
should be unity and the conditional variance should be

zero.
An ideal QND-measurement scheme does not exist.

Therefore, the interest naturally lies in devising practical
schemes whose performance approaches that of the ideal
one as closely as possible. In this paper, we study a
QND-measurement scheme that uses a Kerr medium,
with a third-order nonlinear susceptibility, in a double-
ended cavity with both the signal and the probe inputs
being coherent-field incident from the two sides. This
system has been shown to exhibit bistable behavior [10].
For a single-ended cavity Collett and Walls [11] have
shown that good squeezing is possible in the vicinity of
the bistable turning points. The double-ended cavity has
been analyzed by Collett and Walls [12] who investigated
its properties as a nonlinear beam splitter. They showed
that it is possible to superpose squeezed vacuum fluctua-
tions onto coherent light thereby producing a bright
squeezed light beam. One might expect that by suitably
choosing the input phases and other parameters the
squeezing exhibited by this device could be made use of
for the purpose of a good QND measurement.

II. THE SYSTEM

Our system is shown in Fig. 1. It consists of a double-
ended cavity with a Kerr medium having a third-order
nonlinear susceptibility g. The signal is an amplitude
quadrature, X+'", of a coherent input field from the left
with a boson annihilation operator aL;„.The probe is
also an amplitude quadrature, X+'", also of the coherent
input field from the right and with a boson annihilation
operator az;„. The corresponding output amplitude
quadratures for the signal and the probe are X+'"' and
X+'"' with the annihilation operators aL,„,and a&,„„re-
spectively. If a is the intracavity annihilation operator for
a single mode, the Hamiltonian of the system can be writ-
ten [10]as

H =%co a a+A/a~ a

where co, is the frequency of the cavity mode. This sys-
tem shows a bistable behavior as shown by Drummond
and Walls [10] who gave a full quantum analysis. Its fre-
quency spectrum has been calculated by Collett and
Walls [11]who have shown that perfect squeezing occurs
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yz and y~ being the cavity damping rates at the left-
hand and the right-hand mirrors, respectively. In the
frame rotating with the frequency co, of the coherent sig-
nal and the probe inputs, Eq. (2) can be written as

FIG. 1. A double-ended cavity with a Kerr medium as a
quantum-nondemolition-measurement device. Amplitude quad-
ratures of the coherent input fields from the left- and the right-
hand sides serve as the signal and the probe, respectively.

where 6 =cu, —
co& is the detuning. The equation of

motion for the classical mean value a= (a ) of the intra-
cavity mode is given by

a ~ ~ 2i5—a 2i—ylaI a —ya —V'2y;„a;„.
at the critical point at the resonance frequency. The
spectrum has a single peak or two peaks depending upon
the range of parameters. %e wish to study this system as
a QND measurement scheme.

III. CALCULATIONS OF THE OUTPUT
QUADRATURES

In the steady state, a is given by

a = —(V'2yL aL;„+V'2yz an't;„)/[y+i (5+e)],
where

(6a)

(6b)

In order to evaluate the effectiveness of this scheme as
a QND device we need to calculate the correlations be-
tween the signal input and the probe output and also the
correlation between the signal input and output. It is,
therefore, necessary for us to obtain expressions relating
the signal and probe outputs to their inputs. For this we
proceed as follows.

Using the input-output formulation of Collett and Gar-
diner [13,14], we can write the equation of motion of a as

dQ
(i/A)[a, H—y, ] ya V 2y;„a;„

If we call the phases of a, aL;„,and az;„as0, Oz;„,and
0~;„,respectively, and define gz and g~ as

gL =V'2yi lai .I/(ylal»

9R V 23 R IaR'. I/(ylal)

Eq. (6) leads to the following relations:

qz cos(8 —0tt;„)= —1 —
gL cos(8 —0t;„),

rite sin(0 —0~;„)=(5+@)/y —
gL sin(0 —0L;„).

ico, a—2iya a —ya —V 2—y;„a;„,
where y=yz+y~ and

V 2y;„a;„=V 2yt at;„+V 2y R a~;„,

(2)

(3)

By defining the fluctuations around the semiclassical
mean values by the fiuctuation operators «(t) defined by
a(t) =a+ha(t) and linearizing Eq. (4), we can write the
equations of motion for b,a(t) and ha (t) together as

ha(t) —y —i(5+2@) if exp(2—i8) ha(t)
ba (t) i@exp( 2i8) ——y+i(5+2@) &at(t)

Taking the Fourier transfortn of Eq. (9) we obtain

b,a;„(t)
b,a;„(t) (9)

b,a(co)

ba (co)

V'2y,
„

&(co)

—y+i (co+5+ 2@) ie exp(2i8) ~ in(a')

ieexp( —2i0) ——y+i(co 5 2e)——ga,„(~)

where the Fourier components are defined as

ha(co)= f ba(t) exp(icot)dt,
1

&2~

« t(~ ) = —f ba "( t) exp(i cot )dt,1

A(a)) =(y icy) +(5+@)(5—+3@) .

(11a)

(11b)

(12)

The boundary condition at the left-hand mirror is

at, gnat V 2yl, a +aL in (13)

Using this for the steady-state semiclassical mean values
in the form

aL, , g= V 2yL, a+aL (14)

we get the following expressions for the phase difference
(0—0L,„,) and the magnitude of output amplitude

IaL,„,I
in terms of the corresponding input quantities:
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and

cos(8 —
OL ...) = [V'2yL I~I+ I~L;.I

c»(8—OL;.)]/I~L ...I,
sin(8 —OL,„t)= [aL;„/sin(8 —OL;„)//aL,„t/,

ILL ..tI'= I~L;.I'+2yL lal'+2V'2yL I~I I~L;.I c»(8—OL;. )

=(y ~a~ /2yL )[riL+4(yL&y) +4(yL/y)riL cos(8 —OL;„)],

(isa)

(15b)

(15c)

where we have used Eq. (7). Using the boundary condition at the mirror on the right-hand side, we can get similar rela-
tions with R replacing L everywhere, for example,

lccR ..I'=(y'eccl'/2yR )[riR +4(y R /y )'+4(y R /y )riR c»(8—
OR .)] .

Now by using the boundary condition, Eq. (13), for the fiuctuation parts of the operators, i.e.,

ittLa,
„

(tco) =+2y L bta (co)+ t5,aL;„(co),

we get the following expressions for baL out(co):

baL,„,(co) =A, '(co) [ [(y —&'co)(yR —
yL ico)+—2i yL(5+2')+(5+e)(5+3')]haL;„(co)

+2i ey L exp(2i 8)it aL,„(co) 2V—
yL y„[y i (co—+5+2m) ]ha»n(co)

+2t ~V yL yR exp(2iO)haR, n(co) },
which also leads to

haLo„t(co)=A, '(co)[ 2i—eyL exp( 2iO)btaL—;„(co)

+ [(y i co)(—yR
—

yL ico ) —2i y L
—(5+2m)+ (5+e)(5+3e) ]ittaLt;„(co)

2ie'tt/yLyR e—xp( 2&'8)haR;„(co)——2+yLyR [y i (co 5—2e)—]ha—R;„(co)} .

(15(1)

(17)

(18)

We define the amplitude quadrature ~+'"'(co) and
the phase quadrature AX '"'(co) for the output from the
left as

cov„(A, B)= J dw'[( A (w), B(w') ) + (B(w'), A ( w) ) ]/2,

(21)

bX+'"'(co ) =AaL o„t(co) exp( i OL o„—t )

+ iItaL, „t(co)exp(i OL,«)
and

AX '"'(co)= i [haL—,„t(co)exp( i OL,„,)—
(19a)

and the variance var ( A ) of A is defined as

var (A)= Idw'[( A(w), A(w'))+ ( A(w'), A(w)) ]/2 .

(22)

haL o„t(co) exp(i OI—,„,)], (19b)

IV. CHOICE OF PHASES AND EVALUATION
OF CORRELATION COEFFICIENTS

Now we shall define the quantities needed for verifying
the criteria for the QND measurement. The measure-
ment correlation coefficient C (~+I,~+'"' ), is
defined as

(~L in ~R out
)

2

C2(gXL i ~Rnout
)

~ + ' +
var (bX+'")var (~+'"')

(2O)

where the covariance cov ( A, B) of A and B is defined as

and similarly for the output from the right and the two
inputs, with suitable superscripts and subscripts. We give
the expressions for bX+'"'(co) and ~+'"'(co) in Appen-
dix A.

The value of the measurement correlation coefficient
gives the precision with which the signal input amplitude
quadrature can be determined by measuring the probe
output amplitude quadrature. For an ideal device, this
should be equal to unity.

The back-action evasion correlation coefficient
C2(gXLin ~Lout

) is defined as

(it XL in ~L out
)

2

C2(it XL in it XL out
)

tu + ' +
var (~+'")var (bX+'"')

The back-action evasion correlation coefficient gives the
ability of the device to avoid the degradation of the sig-
nal. If this is equal to unity, no noise or uncertainty is in-
troduced to the signal during the process of measure-
ment.

Now the correlation coefficient C (b,X+'"', iItX+ "') is
defined as
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(~L out
Lt XR out

)
2

C2(g Lout gXR out }-
var (b,X '"') var (t5, '"')

OR;o
—OL;u=m. /2, 2iL =1, and 21R =(5+e)/y .

(24) Under these conditions Eqs. (15c) and (15d) lead to

(27)

In the linear approximation, the conditional variance
V (hX+'"'/bX+'"') is related to the correlation
coefficient C (b,X+'"',hX+'"') by

V ( it XL out /~R out }N + +

Ial /laL, „,I
=V'2yL /(y —2yL ),

lal/laR ...I
=V'2yR/[(fi+e)2+(2yR)']'"

Now we define the dimensionless quantities

(2&)

(gXL out )[1 C2(gXL out
Lt XR out )]

9—t9L;„=~, 9—L9~;„=~/2, (26)

which, together with Eq. (8), leads also to

This conditional variance describes the effectiveness of
the scheme as a state preparation device. For the ideal
case this is equal to zero. In this case we know exactly
the amplitude quadrature of the output signal on measur-
ing the amplitude quadrature of the probe output.

We find that the best choice of the phase relations is
the following:

and

yL /y=g, 6/y=d, e/y=e, and co/y=w,
(29}

1(w)=A(ltd)/y =(1 iw—) +(d +e)(d +3e),

l=l(0)+1+(d+e)(d+3e) . (30)

In Appendix 8 we give the expressions for b,X+'"'(w)
and bX+'"'( w) in terms of these dimensionless quantities
and under the phase relations given in Eq. (26).

Using Eqs. (21) and (22), the covariances and the vari-
ances occurring in Eqs. (20), (23), and (24) are calculated
and given in Appendix B. Using Eqs. (20), (84), (87), and
(89), we obtain the following expression for the measure-
ment correlation function:

C„(b,X+'",b,X+'"')=4g(1—g)[(1+1—2g) +4(1—g) w ]

X [4(1—g)[(1—g)w +2(1—g}w +gl(l —4g+2)+(1 —2g) ]

+(d +e) [(w —I) —4w (2g —4g+1)+4(1—g)(1 —2g)(l+ 1 —2g)]]

Using Eqs. (23), (85), (BS), and (89) the back-action evasion coefficient is

C (AX
' LgXLo t) (1 2g w ) +4(1 g)2 2 2 2

(1 —2 —w ) +4(1—g)(l —1)+4g(d+e)
On making use of Eqs. (24), (25), and (86)—(88), we find for the conditional variance

V (bX+'"'/bX+'"')=([(1 —2 —w ) +4(1—g)(l —1)+4g(d+e) ]

X {4(1—g)[(1—g)w +2(l —g)w +gl(1 —4g+2)+(1 —2g) ]

+(d +e) [(w —1) —4w (2g —4g+1)+4(1—g)(1 —2g)(1+ 1 —2g)]]
—16g(1—g)e (d +e) (w 1+4g —2) )

X([(l—w ) +4w ][4(l —g)[(1—g)w +2(1 —g)w +gl(l —4g+2)+(l —2g) ]

+(d+e) [(w —I) —4w (2g —4g+1)

+4(1—g)(1 —2g)(l +1—2g)]] )

(31)

(32)

(33)

A discussion of the properties of these correlation func-
tions is given in the following section.

V. RESULTS AND DISCUSSION

From Eqs. (31) and (32), we see that for w =0,
(d+e) ((1, (d+e)(d+3e) or 1)&1, the measurement
correlation coefficient and the back-action evasion
coefficient approach unity and the conditional variance in
Eq. (33) approaches zero. Thus, for parameters satisfying

these conditions in addition to those imposed in Sec. IV,
the device described here would serve as a perfect
QND measurement scheme. Figure 2 shows the varia-
tion of the measurement correlation coefficient
C (hX+'",~+'"' ) versus the frequency for two values
ofg=0. 7 and 0.9 and for e=100.0 d= —99.9. Figure 3
gives the variation of the back-action evasion correlation
coefficient C (b,X+'",hX+'"') versus frequency and Fig.
4 shows the variation of the conditional variance
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FIG. 2. Variation of the measurement correlation coefficient
vs frequency for e = 100.0, d = —99.9, and g =0.7,0.9.

FIG. 4. Variation of the conditional variance vs frequency
for e = 100.0, d = —99.9, and g =0.7,0.9.

V (~ '"'/~" '"') versus frequency for the same pa-w + +
rameters. For w =0, all these quantities approach almost
their ideal values for the QND measurement. For the
larger values of g these quantities have larger width
which would facilitate the measurement. These quanti-
ties all show slowly varying behavior with respect to the
parameters for g ~0.6. For g =0.5 an instability in the
system causes rapid variation in the correlation
coefficients. This is shown in Figs. 5 —7 where we have
shown the variation of the correlation coefficients and
conditional variance for w =0 versus the input phase
difference divided by n, i.e., (HR;„—HL;„)/m for
e =100.0, d= —99.9, and h =qL =1.0. These were ob-
tained numerically from their expressions derived by
making use of Eqs. (Al) and (A2) for w =0 from which
(8—Hz;„)was eliminated in favor of (8—HL;„)by making
use of Eqs. (8a) and (8b) and then finding (Hz;„—HL;„)in
terms of (8—HL;„)from Eqs. (6) and (7).

From Eqs. (6), (7), and (29), we can express ~aL;„~ and
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chosen values of d and e given above and for g =0.9, the
above ratio is 9% and for g =0.5, it is only 1%.Thus for
the device to be a good QND-measurement scheme the
optimum phase difference between the two inputs should
be 0~;„—Oi;„=sr/2 and the ratio of the two intensities

VI. CONCLUSIONS
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FIG. 7. Variation of the conditional variance vs (input phase
difference)/m for e = 100.0, d = —99.9, h =

gL = 1.0, and

g =0.7,0.9.

%e have shown that the device consisting of a double-
ended cavity with a Kerr medium having a third-order
nonlinearity in the susceptibility offers a very good
scheme for the QND measurement. The signal and the
probe are, respectively, the amplitude quadratures of the
inputs to the left- and right-hand cavity mirrors. Good
QND-measurement correlations are predicted for a phase
difference between the two inputs of m /2, and with a ra-
tio of probe input intensity to signal input intensity in the
range of 5 —10%. These parameters would seem to be
quite accessible to current experimental techniques.

aL, ;„I'=e y'/(4gg ),

~an't;„~ =ey (d+e) /4y(1 —g) .
(34}

I ~~;.I'/I ~L, ;„I'=g(d+e)'/(I —g), (35)

which gives the ratio of the two input intensities. For the

For small values of the third-order nonlinear susceptibili-
ty, the two input intensities have to be large. From Eqs.
(34) and (35), we also get
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APPENDIX A

Using the definitions in Eq. (19) and Eqs. (17) and (18), we get the following expression for ~+'"'(co):

~L out(
A, (co ) i al,„,

=+2yz [ [(ygL /2yL )+ cos(0 —OL;„)][(y i co)(y —2yL —i co)+ (5—+ )(e5+ 3 )]e

+2yL (5+e) sin(0 —OI;„)—gl ey sin2(0 —OL;„)]~+'"(co)
—+2yL [(5+e)[gl y+2yI cos(0 —OL;„)]—[(y ico)(y ——2yI iso)+(5—+e)(5+3e)]sin(0 —OL;„)

+2i)Leysin (0—01;„)]~'"(co)

—+2y~ [(y i~)[2yl cos(0 —0&,„)+gl. y cos(0it; 01.; )]

(5+e)[2yl sin(0 —Oz;„)—r)1 y sin(0&;„—OL;„)]+2gl ye sin(0 —OI;„)cos(0 —Oz;„)]~+'"(co)

+V'2yii [(y ice)[gLy —sin(Oi, ;„—01.;„)—2yL sin(0 —Oz;„)]
—(5+e)[2yl cos(0 —0„;„)+i)Lycos(Os;„—01,„)]
—[2q~ ye sin(0 —OL;„)sin(0 —0„;„)] ] hX '"(co), (A1)

where we have also used Eqs. (15a) and (15b} to eliminate (0—0~,„,) in favor of (0—OL;„)and ~aL,„,~
is given by Eq.

(15c).Now interchanging L and R (L ~R ) in Eq. (Al), we also get the following expression for hX+'"'..
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gXR out(
lt(co)

/ a„.„,f

= —+2yI [(y —iso)[2yR cos(8 —81.;„)+gzycos(8+;„—OL, ;„}]
—(5+e)[2y~ sin(8 —OI;„}+gzysin(8~;„—81;„)]+2gzyesin(8—Oz;„)cos(8 —OI;„)j~+'"(co)

V—'2yL [(y i—~)[+g~y»n(8~;„—8&;„)+2y,»n(8 —OL;„)]

+(5+e)[2ya «s(8 —
OL, ;„)+gay«s(Os;p —81.;g)]+2gxye»n(8 —81;g)»n(8 —Og;g)j~ '"(ai)

+9 2yz I [(ygz /2yit )+ cos(8 —8~;„)][(y i—~)(y —2ya icy—)+(5+e)(5+3e)]

+2y~ (5+e) sin(8 —Oz;„)—ri„eysin2(8 —8~;„)j ~+'"(co)
—+2yz I (5+ e)[riz y +2y z cos(8 —Oz;„)]—[(y i co)—(y —2yz i co)+—(5+ e )(5+3e) ] sin(8 —Oz;„)

+2q, ey sin'(8 —Ox,„)j bX" '"(~),

where ~az,„t~is given by Eq. (15d).

(A2)

APPENDIX B

In this appendix we give the expressions for bX+'"t (w) and ~+'"'(w} under the choice of the best boundary condi-
tions given in Eq. (26). Also we give the expressions for the covariances and variances which we need for the calcula-
tions of the correlation coefficients and the conditional variance of interest.

By using Eqs. (26)-(30},Eqs. (Al) and (A2) reduce to

~+'"'(w) = [1(w)] '[[1—2g —w —2(1 g)iw ]E—X+'"(w) —2g(d +e)~ '"(w)

—2+g(1 —g)(d+e)bX+'"(w}+2Vg(1 —g}(1—iw)bX '"(w) j (Bl)

and

~~+ "'(w)=[1(w)[(d+e) +4(1—g) ]'~
j [2&g(1—g)[1+1—2g —2(1 —g)iw]bX+'"(w)

+2&g (1—g)[(1—2g)(d +e)+iw(d +e)]AX '"(w)

+ (d +e)( 2giw —w+1+4g ——6g +2)~+'"( w)

+2(1—g)( 2giw ——w +2g —1)bX '"(w) j . (B2)

For calculating the variances and the covariances, defined in Eqs. (21) and (22), which occur in the definitions of the
correlation coefficients, we shall use the following relations which hold for the coherent input:

'"(w), my'"(w')) =5(w+w'), (EL'' '"(w), bX '"(w') }=i5(w+w'),

(bX '"(w), ~+'"(w')) = i5(w+—w') .
(B3)

Similar relations hold for the input from the right and we shall assume that there are no correlations between the two
inputs. Using these relations and Eqs. (Bl) and (B2) and for the best choice of the phase relations given in Eq. (26), we
obtain the following expressions for the covariances and the variances needed for the calculations of the correlation
coefficients of interest:

4g( —g)[( +1—2g)'+ ( —g)' ']
[(1—w ) +4w ][(d +e) +4(1—g) ]

2 2 2 2(~L t~ ~XL oUt)~2 (1 —2g —w ) +4(1—g) w

(1 2)2+4 2

16g(l —g)e (d +e) (w —1+4g —2)
[(1—w ) +4w ] [(d+e) +4(1—g) ]

var (~+ "')= [4(1—g)[(1—g)w +2(1—g)w +gl(1 —4g+2)+(1 —g) ]

+(d+e) [(w —1) —4w (2g —4g+1)+4(1—g)(1 —2g)(1 +1—2g)] j

X [[(1—w )+4w ][(d+e) +4(1—g) ]j

(B4)

(B&)

(B6)

(B7)
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and

(l —2 —w ) +4(1—g)(l —1)+4g (d +e)
var b,X+'"' =

(1—w ) +4w

var (~ '")=1 .

(B8)
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