
PHYSICAL REVIEW A VOLUME 46, NUMBER 3 1 AUGUST 1992

Resonant above-threshold ionization of atomic hydrogen
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An all-order multiphoton resonant theory for above-threshold ionization is presented within the resol-
vent formalism. An analytical expression displaying all the contributions to the electron yield is dis-
cussed. The theory is applied to the calculation of photoelectron energy spectra for ionization of H by
picosecond and subpicosecond pulses of linearly polarized light at 608 nm, with laser intensities in the
range 10"—10' W/cm'. The role of intensity, interaction time, and transition couplings, in the reso-
nantly enhanced electron yield coming from each (nl) intermediate state, is discussed. The modifications
which affect the shape of the spectrum as the laser peak intensity increases are described in great detail.
An inversion of the relative amplitudes of the resonant structures is observed. This effect is attributed to
the relative dimensions of the effective interaction volumes in which the field reaches sufficient intensities
to give rise to the resonances. Our results reproduce the main features of recently measured spectra [H.
Rottke et al. , Phys. Rev. Lett. 64, 404(1990)].

PACS number(s): 32.80.Rm, 32.60.+ i

I. INTRODUCTION

One of the most interesting effects investigated in mul-
tiphoton ionization of atoms by intense laser light is
above-threshold ionization (ATI). This name refers to
the absorption by an atom of more photons than the
minimum number 1V required to reach the ionization lim-
it. This effect has been extensively discussed in the past
decade for intensities of about 10' W/cm and pulse
widths not shorter than a few picoseconds [1]. The
relevant photoelectron energy spectrum consists in equal-
ly spaced peaks whose amplitudes as well as positions de-
pend on intensity. For intense picosecond and subpi-
cosecond pulses recent experiments have shown that
low-energy ATI peaks break up into a series of narrow
lines. The origin of these new structures was ascribed to
resonances induced by the field [2]. Some years ago reso-
nant ionization in Cs was in contrast investigated by fre-
quency tuning [3]. The process was conveniently de-
scribed within the dressed-atom scheme. This model
which was very fruitful to investigate resonantly
enhanced multiphoton ionization (REMPI) [4] can again
be invoked for resonant and nonresonant ATI processes.
We recall that the dressed energies of any atomic state
are obtained by adding (subtracting) the energy of
1,2, . . . , p photons (multiplicities+1, +2, . . . , +p) to the
usual intensity-dependent energy of that state. The plots
of the dressed energies of the atoms as functions of the in-

tensity provide a network of curves representing the
dynamical atomic spectrum. Thus the resonances can be
interpreted in terms of crossings (anticrossings) of any
two energy curves. Such a representation holds for levels
belonging to the discrete and the continuum spectrum.
The only difference is that, in the latter case, the levels
are infinitely degenerated. Within this framework the
various processes can be classified into (i) those which are
due to the crossing (anticrossing) of two discrete levels (ii)
those coming from the crossing of discrete and continu-
um levels (ATI without resonant structures), and (iii)

those resulting from the combination of the two preced
ing ones. The last case characterizes what we have called
resonantly enhanced above-threshold ionization
(REATI). In contrast to REMPI which was obtained by
frequency tuning, REATI appears at fixed photon energy
when the ac Stark shift of any discrete level compensates
the energy gap between that level and one of the initial
dressed states. The consequence is that many resonances
can successively be tuned, at some intensities Iz during
the rising and the falling of the pulse. This explains why
the ATI spectrum acquires resonant structures whose po
sitions are characterized by intensities Iz but which are
not sensitive to the pulse amplitude IM. The counterpart
of this effect is that the beam focusing now plays an im
portant role. Since these intensities I~ cannot be reached
at every point of the focal region, we must determine the
domain where the laser intensity is at least equal to each
resonant one. In other words, one must determine an
effective interaction volume V~ for each resonance. The
interaction space is split into a set of nested volumes
characterized by decreasing values of the intensity Iz
The V~'s and consequently the resonant enhanced yield
grow with IM. In Sec. II the theoretical model for mul
tiresonant ionization of atoms is discussed by making in
tensive use of the resolvent operator G(z). By resorting
to nonperturbative expressions of the shift operator R(z)
previously obtained in the general case, we formulate the
problem of REATI within the framework of a nonpertur-
bative theory. A method for straightforwardly writing
down the matrix elements of G(z) is proposed. This
treatment provides a good opportunity to display all the
resonant and multiresonant channels which contribute to
the ionization process. In the case of laser pulse of
moderate intensity ( ~ 10' W/cm ), a simplified expres-
sion for the probability density is derived from the gen-
eral theory. In Sec. III our results are used to study
REATI for hydrogen. The intensity dependence of the
energy spectrum of the photoelectrons is investigated in
the case of 0.5-psec pulses of linearly polarized light at
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608 nm for intensities up to 10' W/cm . Our results are
in agreement with experimental data in H. The effects
coming from the expansion of the interaction volume on
the production of the expected resonant electrons, and
also of the nonresonant electrons (ATI), are carefully ex-
amined. At low intensity we show that the amplitude of
the peaks which arise from resonances with the F levels
increases with the electron energy E. At higher intensity
we observe, in agreement with experiments, an inversion
in the behavior of the peak heights which now decrease
with energy E. Finally, we report the effect of the pulse
width on electron spectra computed at fixed laser energy.
For pulse durations over the range 0.3-2 psec, the results
display a rapid modification in the shape of the curves
which evolves from the standard ATI towards the typical
resonant spectrum.

U„(t)= . fG„(z)e '"dz .
1

(2.1)

P=l~ &&~I+ y lb, &&b, I+le&&cl, (2.2a)

The computation of this quantity requires the evaluation
of a contour integral in the complex plane. This can be
done within the subspace (8) by calculating the residues
corresponding to the principal poles, i.e., the poles which
provide the major contribution to G(z). For transitions
from the ground state la & to any final state lc & we shall
assume that M states can provide resonances (for brevity,
the multiplicities will not be explicitly written but can be
restored if necessary). The projectors P and Q onto and
outside the (M+2)-dimensional subspace ((') are defined
as

II. BASIC MULTIRKSONANT
IONIZATION PROBABILITY

and

Q=l P, — (2.2b)

Advances in laser technology have made possible the
generation of ultraintense fields via subpicosecond pulses.
The structures of atoms embedded in such radiation fields
undergo strong distortions. Under these circumstances,
the lowest-order perturbation theory (LOPT} cannot lead
to correct transition amplitudes. Nonperturbative ap-
proaches for solving the Schrodinger equation of the
atom in an intense field have recently been proposed [5].
Some years ago we have shown how the standard pertur-
bation series could be exactly surnrned in order to express
the ionization probability in the form of rapidly converg-
ing continued fractions [6]. Theoretically, these fractions
may be computed up to any degree of accuracy. In the
present work, the expressions required for computations
are written down in bringing out the role played by the
most prominent terms. By the time the laser is switched
on, atomic levels of well-defined multiplicities can be
shifted into resonance. Within the previous energy repre-
sentation, this situation can be viewed as being a crossing
(anticrossing) of levels belonging to different multiplici-
ties. For example, in a given ionization channel, the
ground state la &, the discrete state lb & „,and the con-
tinuum lc &~ of multiplicities m, n, and q, respectively,
can be energetically degenerated. The energy difference
E,b =E,—Eb occurring in the expressions of the matrix
elements is so small that no satisfactory convergence can
be reached in numerical calculations. This difhculty is
overcome by defining the subspace (6) which is spanned
by all the degenerate resonant states. Then a new expres-
sion of the ionization probability is set up in the basis of
all the remaining eigenfunctions. In doing so, REATI
processes require the calculation of continued fractions
whose convergence is rapidly obtained after few itera-
tions.

with the obvious relations P =P and Q =Q, the restric-
tion G(z) of G(z)=1/(z H) to th—e subspace (8) is

G(z)= 1

z —Ho —R(z)

where

(2.3)

G(z)=PG(z)P,

R(z)=PR(z)P,

(2.4a)

(2.4b)

and H0 is the unperturbed Hamiltonian of the system
atom plus field. In Eq. (2.4b} R(z) can be expressed in
the form of a power series of the interaction V as

R(z)= V+ V V+ V V V+
z —H0 z —H z —H0 0

(2.5)

R&;,s(z }=( V roBF&+ V rrjA Ã0)(z Ho), —

R (N+S)
( )

—
[ V+—

( A
—)N+S+1

+ V
——

( A
—)(N+S —1)](

(2.6a)

(2.6b)

In Eqs. (2.6) ro, ~&, and rz are the following continued
fractions of A =QV and B=QV+:

To work within a nonperturbative scheme, the series of
Eq. (2.5) must be summed. This summation has been
done in previous accounts [6]. We only recall the general
operator expressions thus obtained. One distinguishes
the diagonal and the nondiagonal expressions of R (z ) ac-
counting for no net photon absorption and for the ab-
sorption of X+S photons, respectively. The number of
photons required for ionization is N, while S photons are
absorbed in the continuum. One has

A. Theoretical framework

Within the resolvent formalism, the probability ampli-
tude for producing an electron in the continuum (c) at
time t reads

1
+0

z Ho —A roB—
1

Z —H0 —8F~A

(2.7a)

(2.7b)
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z —H() —A w()B B—r(2) A
(2.7c)

and V and V+ are the absorption and the emission
operators of a photon, respectively ( V= V++ V ). Ac-
cording to Eqs. (2.3) and (2.7), one has to invert the ma-
trix [z Ho——R(z)] whose size is large when (( ) is a
many-dimensional space. As a consequence, the expres-
sion of any matrix element of G(z) is prohibitively com-
plicated.

W(M —1)( ) W(M —2)( )

+ W(M —2)( )
~bM-) &&bM-)~

W(M —2)
( )

M —1 M —
1

z —Eb
M —1

X W(M —2)( ) (2.8b)

W("(z)=R(.)+R(.)

XW (z)

lb, ) &b, I

R(z) .
z Eb ——Rb b (z)

(2.8c)

(2.8d)

w'"'(z) = w'"-"(z)+ w'"-"( )
z E ——W'" "(z)

bk bk b~

B. Cascade equations

W(M)( )
—W(M —1)( )+ W(M —1)( )

z E —W—( "(z)
bM bM bM

X W' (z) (2.8a)

The above-mentioned difficulty can be tackled by
resorting to the following method which enables one to
write any matrix elements of G(z) in a systematic and
compact form. We define a set of M operators
W"'(z), W' '(z), . . . , W' '(z) acting on the (M+2)-
dimensional subspace (8) and related to each other by
the following system of M cascade equations:

Gij(z)= 1

z —E —W'. '(z) '
J JJ

(2.9)

while the nondiagonal matrix element taken over any two
states ~i ) and

~j ) is

For convenience the subscripts labeling the resonant
states and the superscripts denoting the operators W(z)
have been written according to decreasing orders. In fact
all these operators (~(bk ) and W'"'(z); k=1,2, . . . , M)
can be considered in any order. The only requirement is
that each of them must occur once. It may be shown that
the matrix elements of G(z) can be simply expressed in
terms of W' '(z). The diagonal matrix element with
respect to any state

~j ) of ( 8) is given by

W(M)(z)
IJ

v
[z E W ( M )

(z ) ][z E W ( M )
(z ) ] W ( M )

( z ) W ( M )
( z )

(2.10}

The result of Eq. (2.10) will not be demonstrated here but
it can be checked by straightforward algebra. The ex-
pression of Eq. (2.10}is a generalization to (M+2) levels
of the formula encountered in two-level problems. Thus
any nondiagonal matrix element of G(z) can be obtained
by substituting W' '(z) for R(z) in a two-level-like for-
mula. For any transition ( ~i )~ ~j ) ) it must be noted
that the operator W' '(z) is expressed as a function of
couplings between all states belonging to (v) except ~i )
and ~j). In the following, we should refer to the sub-

space 6; which is spanned by these M coupled states.
The evaluation of the contour integral on the right-

hand side of Eq. (2.1) requires the computation of the
contributions coming from the (M+2) poles implicitly
enclosed in the expression of G,"(z). In practice, the
values of these (M+2) poles are obtained by determining
the roots of the algebraic equation

gy functions

K' "(z)= [x', '(z)x',"(z) x' "(z)),
where X( )(z) =z E R(z) —and —Xq (z) =z Eq-
—W~~'(z). In doing so, all the poles coming from Eq.
(2.11) are treated on an equal footing. By considering Eq.
(2.11) instead of the energy denominator of Eq. (2.10) we
rebuild the determinant arising from the computation of
[z Ho —R(z)] '. —Since all possible resonances have

been extracted from R ~(z), Eq. (2.11) is a polynomial of
degree (M +2) in z, whose coefficients are slowly varying
functions of z. The numerical computation of the poles is
greatly simplified by making use of this remark. The
numerator of Eq. (2.10) combines with KM™ 11(z) to give
the matrix element

Z' "(z)[X,' '(z)X,' '(z) —W,', '(z)W,'.
,M'(z)]=0.

a„-(z)=I(.' -"(z)W,',. '(z), (2.12)

(2.11)

Equation (2.11) is obtained by multiplying both numera-
tor and denominator of Eq. (2.10) by the product of ener-

from which all the channels contributing to the transition
~i )~ ~j ) can be defined. By expressing A;"(z) in terms
of R (z ), Eq. (2.12) may be arranged in the following com-
pact form:
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M M M —1

JV, (z)=R;.(z) g X' '(z) —0' '(z) + g R;„(z)R„(z) g X' '(z) —0™1)(z)
q=1 k=1 q=1

(qWk)

+ g [R,„(z)Rk (z)R (z)]
perm( k,p )

M —2

g X,"'(z)—0„', -"(z)
q=1

(qWk, p)

+ + g [R,i(z)R i2(z) RM 1 M(z)RM) (z)],
perm(1, 2, 3, . . . , M)

(2.13)

where the symbol g „(kz,}
indicates that one must sum over all the permutations of any set of states

[k,p, . . . , s ] belonging to 4',". The functions 0"(z) are finite sums of the diagonal element of R (z}-operator products

coupling the resonant states of ( 8;j ). For example, one has

0(M)(z)—
M —2

[R „(z)R„(z)] g Xk '+
perm] m, n )

(kAm, n)
perm[m, n, p, )

M —3

[R „(z)R„(z)R (z)] g Xk '+
k=1

kAn, m, p

permian, m, p, . . . , s)
[R „(z)R„&(z) R~, (z)R, (z)], (2.14)

and also 0"'=0. From Eq. (2.14) we can deduce that
0' '(z) is a higher-order correction to the nonresonant
transition term R,"(z). In the satne way Ok "(z) will

be a correction for the matrix element R;k(z)Rkj(z) and
so on. Although some terms in 0"(z}are resonant, the
order of the relevant matrix elements is so high that
0"(z) can be neglected for light fields at moderate inten-
sity ( (10' W/cm ). For more intense radiations these
terms may be calculated without further difBculties.

C. Discussion

(iv) The last term in eq. (2.13) represents all the chan-
nels coupling the states ~i ) and

~j) via all the resonant
states of ( 8,"}.The remarks in (iii) apply to this case.

In addition we shall note that for a given M, the num-
ber of terms in Eq. (2.13} remains finite, while it grows
with M.

Once the poles are known by solving Eq. (2.11), G; (z)
is obtained from

JV; (z)
G; (z)= (2.15)

(z —z;)X, (z)X (z) X (z)(z —z )

Now that we have obtained a useful expression for the
matrix elements JV&(z} we would like to discuss the
meaning of the terms contained herein. The right-hand
side of Eq. (2.13) explicitly exhibits all the contributions
coming from the (M+2) resonant states of (8).

(i) The first term R;j(z) gives the contributions to G;j(z)
coming from all the nonresonant channels coupling the
states ~i ) and

~j ) (ATI process).
(ii) The second term R k(z)Rkj(z) represents the chan-

nels which only include one resonant state of (8;j). Note
that each resonant level ~k ) crosses ~i ) and

~j), at time
tk, for a laser intensity Itt (tk ).

(iii) The third term R,k(z}Rk~(z)R~~(z) appears when
the transition ~i ) —&

~j ) takes place via two resonant
states. Usually the resonances occur at two different
times tk and t with the relevant intensities Ijt(tk) and

Ijt (tz ), respectively. These terms will be of the same or-
der of magnitude as those considered in (ii), if the parities
of ~k) and ~p) do not differ by more than one unit. Oth-
erwise, their contributions will be of higher order, as de-
duced from the expression of R(z) in Eq. (2.6). It may
happen that time tk is approximately equal to tp. Then
we will have to deal with a double-resonant term which
can bring about an important increase of the contribution
to G;j(z).

and the calculation can be achieved up to any degree of
accuracy. We note that R (z) is a rapidly convergent con-
tinued fraction which is computed in a finite basis of
eigenfunctions of the Hamiltonian Ho excluding those of
the subspace (8). The precision reached in the evalua-
tion of R (z) may be easily controlled by varying the num-
ber of states in the basis, and by carrying out more itera-
tions in the computation of the continued fraction. In
many realistic cases, the evaluation of JVj(z) reduces to
the calculation of some prominent terms in Eq. (2.13),
which are selected by simple physical consideration.

The previous treatment can be readily applied to the
interaction of two discrete states ~a ) and ~b ), with a
state ~c(a,E)), belonging to the set of energy states
~c(a,E, )), . . . , ~c(a,E„)), generated by the discretiza-
tion of the continuum characterized by the quantum
number n. If a careful investigation of the perturbed en-

ergy spectrum reveals that the state ~b } may be shifted
into resonance at intensity Iz(tb), the main contribution
to the transition amplitude U„(a,E, t&) will be obviously
given by the resonant term R,&(z)R&, (z) of Eq. (2.13).
The corrections coming from the nonresonant channels
R„(z) are very small and it may be expected that those
arising from the terms Q~R,i,RtsRz, could be neglected
Indeed the contributions of these last channels are of
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higher order since they involve more absorptions than
the minimum number required for the resonant transition
(a~c). Moreover, we note that the level (b) does not
cross the level (s) at intensity Iz (t& ). It is clear that this

l

off-resonance situation minimizes the contributions com-
ing from R,bRbzRz, . For the case under consideration,
the present discussion leads to the following expression
for the transition amplitude:

R,b(z, )Rb, (z, ) ig. r r—, ( R,&(zb )Rb, (zb );@~,
(E,„—iI, )(E„tI—„) (Eb, —iI b, )(Eg, i—I b, )

R,b(z, )Rb, (z,),E, r,
(E„iI—„)(E, i I—,„)

(2.16)

In Eq. (2.16) the complex energy z =E +b, iI —of the
jth pole is expressed in terms of the dynamic Stark shift
(b, i I —). We have used the notations

for the energy of the main poles and

z, —z =E; —ir;
for energy differences.

The multiresonant character of the interaction may as-
sume several aspects: (i) Resonances can appear in
several distinct channels ~a ) ~~c(a,E)), and (ii) in a
given channel ~a ) ~~c(a,E) ) several states can be suc-
cessively shifted into resonance at appropriate times.

In both cases, ionization may be described with the
help of expressions like that of Eq. (2.16). The transition
amplitude U (a, E, t) is expressed in terms of the two
fractions F,b=(E,b iI,b—) ' and F„=(E„iI„—)
The former leads to the conventional resonance curve
coming from the level crossing of two discrete states ~a )
and b ). At the position of the maximum, the intensity
I~(tb) is determined by the relation E,s =0. The ampli-
tude of F,b is a rapidly varying function of the intensity
around Iz(tb). This variation is somewhat moderated by
the presence of F„. In fact, inspection of Eq. (2.16) indi-
cates that the dressed energy level [E,+b, +(N + 1)co],
involved by an (N + 1)-photon ionization process (N
photon resonant), lies in the continuum spectrum inside
an energy range 0 having the width 21"„.For each ener-

gy value taken within 0, it corresponds to a value of the
function F„which acts as a weighting factor for the tran-
sition amplitude. This explains why the behavior of the
probability is not only governed by the resonant factor
F,b,but also depends on the weighting function F„. In
Eq. (2.16) the function F„ is typical of the probability of
emitting an electron at intensity Iz (t ) within the energy
range Q.

III. IONIZATION OF ATOMIC HYDROGEN
AT 608 nm

The method we have described in Sec. II has been
readily applied to discussion of above-threshold ioniza-
tion of atomic hydrogen. We have computed the energy
spectrum of photoelectrons produced by sharp Gaussian

pulses of linearly polarized light at 608 nm. The pulse
duration is around d =0.5 psec and the laser peak inten-
sity IM within the range ( —10' —10' W/cm~). For these
250 optical cycle pulses, the laser bandwidth is about 4
meV. This value is very small compared to both laser fre-
quency and energy gaps separating any resonant state
from the next one. For this reason, the electron spectrum
does not seem to be affected by the laser bandwidth
which will be neglected in the calculations.

The experimental results obtained in xenon [2,7,8] and
hydrogen [9] indicate that these spectra may be reason-
ably interpreted by assuming that the whole manifold of
states, as well as the continuum limit, would be shifted
with the same intensity dependence. This tendency is
confirmed by the angular distributions of photoelectrons
which reveal that for intensities as high as 10' W/cm,
the ionization potential of the atom increases by an
amount approximately equal to the quiver energy [10].
This remark suggests that the electron spectrum may be
simply computed by using the second-order perturbative
values of the complex shift given in Table I [11]. In do-
ing so, we assume that the continued fractions which ex-
press Rd;,s(z) [Eq. (2.6(a)], can be truncated after one
division only. Within this approximation we neglect the
contributions of many couplings with far-off dressed en-

ergy states and we restrict the ways the photons are ab-
sorbed and emitted; but the remaining terms in the per-
turbative expansion of U„(E,t) are indeed infinite in
number. We should see that, except for the 4P state, the
values of the shifts and broadenings reported in Table I
have allowed us to assign well-defined states to the new
structures observed in the electron spectra. Note that by
performing Floquet calculations of the quasienergies of
various sublevels of atomic hydrogen, Dorr, Potvliege,
and Shakeshaft [12] have investigated the modification of
the spectrum due to the laser field. From the results pub-
lished at 616 nrn, it appears that, among the resonant
states we consider, only the 4P and the 4F states have
shifts which appreciably deviate from the linear intensity
behavior we use. The comparison done in Fig. 2 between
the experimental data and the theoretical electron spec-
trum computed by using the second-order term of the
perturbative expansion of the shift [Eq. (2.5)] gives a sa-
tisfactory account of the approximation used. Our re-
sults are not surprising since the Iz(t) values for the F
series spread within the moderate intensity range
[(3—5)X10' W/cm ].
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TABLE I. Intensity values Iz (W/cm ) required to produce electrons at the energies Ez (eV) by N-

photon-ionization processes involving resonances on the nl energy level. a„l and P„, are the values of
the level shifts and the level widths divided by intensity, respectively. The numbers in brackets are
powers of 10.

6P
6F
5P
4P
5F
4F
6G
5G

2.842
3.042
3.107
3.176
3.556
4.515
8.79
9.29

E

1.71
1.64
1.62
1.59
1.46
1.12
1.65
1.47

attl

1.33 [—15]
1.24 [ —15]
1.41 [—15]
1.73 [ —15]
1.23 [ —15]
1.21 [ —15]
1.26 [—15]
1.26 [ —15]

6.85 [—17]
1.08 [ —17]
1.19 [ —16]
2.37 [—16]
1.73 [ —17]
2.75 [ —17]
1.79 [ —18]
2.02 [ —18]

A. Graphic representation

A useful representation of the mechanism producing
the photoelectron spectra is depicted in Fig. 1. The real
part of the energy of the dressed ground states (Ep+pro)
has been drawn as a function of intensity. The discre-
tized continuum states ~a, E) of energy E are plotted
parallel to the continuum limit defined by I/Ipoi
(Ip=14.038X10' W/cm ). As the laser intensity in-
creases on the rising edge of the pulse, the atom ionizes
by absorption of seven photons at intensities I, &I7
(I7 =1.91X10' Wicm ), eight photons at intensities in
the range I& &Iz &Is (Is =7.68X10' W/cm ), and nine
photons when Is &I3 &I9 (I9 =1.34X10' W/cm ). In
Fig. 1(a) one observes that electrons of energy E, can be
produced at intensity I] by seven-order processes or at
intensity I2 by eight-order processes, etc. These electrons
are found in the first ATI peak. Electrons of energies
E2 E] +co E3 =E, +2', . . . are also created. The
former, which lie in the second peak, are generated at in-
tensity I] by eight-order processes and at intensity I2 by
nine-order processes, etc. In the same way electrons of
energy E3 feed the third ATI peak. The situation has
been described in a previous paper [13]where it has been
shown that the experimental results were in good agree-
ment with the theoretical predictions.

In the case under consideration some discrete states
~k } are successively shifted into resonance when the in-
tensity reaches characteristics values Ia'"'(t) which cancel
the energy detuning.

Eo El, +(p —1)to+—(ao ak )I„'"'=0, — (3.1)

where the a 's denote the rates 6 /I and Ep represents
the ground-state energy. Since the (P~D ) couplings are
smaller than those corresponding to (F~G) and
(G~H ) transitions [14], we shall restrict the discussion
to the effects produced by the resonances involving the
states of the F and 6 series. When the light pulse sweeps
the intensity Iz' ' of Table I, the 6F, 5F, and 4F levels (odd
parity) are successively shifted into resonance with the
dressed ground state of energy (Eo+7rp). At higher in-
tensities, the 66 and 56 levels will in turn come into reso-
nance with the state of energy (Eo+8rp}. The curve
crossings of these dressed atomic levels can be seen in

Fig. 1(b). The atom ionizes for one more photon absorp-
tion and the free electron acquires the kinetic energy

Ek =Ep +pro+(tzp 1/Ipro )Itt (3.2)

D'"'(E, t ) =
~

U'"' (E, t)
~ (3.3)

where the evolution operator U'"z p(E, t) is given by Eq.
(2.14). Since the width of the ground state I'o is smaller
than I'b and I „the largest contribution to U'"z p(E, t)
comes from the first term in the right-hand side of Eq.
(2.14). Thus the probability density reduces to

(k)
R z k(Eo)Rko(Eo}

(E'„+r', )(E'„+I,') (3.4)

This simplified expression indicates that the peak ampli-
tude increases with the intensity-dependent matrix ele-
ments R (Eo), but exponentially diminishes for increas-
ing values of the damping term I o as well as the time t.
Thus it may be expected that the electron enhancement
will be more favorable for the F peaks than for the 6
peaks. Note that, in the case of weak laser field, Eq. (3.4)
leads to the well-known expression of the lowest-order

in the continuum spectrum (p=8, 9). As for the ATI
peaks in Fig. 1(a), we should note that a part of the elec-
tron populations at energies E4, E5, and E6 may be gen-
erated from higher-order processes. Since the electron
energy is tied to the resonant intensity Iz ' according to
Eq. (3.2), the position of the peak is independent of the
pulse characteristics. Our results in Table I show that
the 4F peak, at 1.12 eV, is well separated from the 5F
peak at 1.46 eV, and from the 6F peak, at 1.64 eV. The
last two peaks are blended with the 56 and the 66 peaks,
respectively. At higher intensities we shall note that the
a s will become intensity dependent. The real part of the
energies E will no longer be represented by straight lines
but by distorted curves. However, in the modified graph-
ic representation, the discussion can be done in a way
very similar to the above-mentioned one. Now it be-
comes interesting to compare the relative amplitudes of
the peaks emerging in the spectrum. The probability
density of finding an electron in the ath continuum, at
time t, with an energy lying within (E dE) and—
(E+dE) can be written as
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FIG. 1. (a) Diagram of the energies of a dressed atom as a function of intensity in the region where crossings give rise to ATI pro-
cesses (arbitrary units). Slanted lines represent the continuum levels of energy 0, E&, E&, and E3, respectively. Horizontal lines are
the energies of the ground state dressed by seven, eight, and nine photons. I„I2, and I3 are the intensities at which electrons of ener-
gies E&, E2 =E~+co, and E, =E&+2' can be produced in the first, the second, and the third ATI peaks. Solid black circles denote
the level crossings where the electrons are created. I7, I8, and I9 are the threshold intensities for the seventh-, eighth-, and ninth-
order process, respectively. (b) Same as 1(a). The energy levels 4F, 5F, 5G, 6F, and 6G have been plotted parallel to the continuum
limit (arbitrary scale) (the 5F and 6F states mingle with the 5G and 6G, respectively). I4F, I5F, and I5G, I6F, and I,G are the intensities
giving rise to resonant structures around energies E4, E&, and E6, respectively. The crossings of the resonant states are represented
by open circles.
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ionization rate. Finally, the electron population generat-
ed, at time t, in the k-resonant peak is

N'"'(r) =No(r )I g D'"'(E, t )dE,
0

Xexp[ —0.693(t to)—/r ], (3.6)

where IM is the maximum intensity at the focus,
R =0.053r pm, and Z =3.6z mm for a focus diameter of
53 pm. R and Z are the usual dimensionless cylindrical
coordinates and 2~ represents the pulse width at half
maximum. Because of the spatiotemporal structure of
the laser pulse, the number of electrons n, (E,r, z, t) at en-

ergy E must be calculated in each of the elementary cells
within the interaction volume [15]. Since the resonance
involving ~k) occurs at a well-defined intensity Iz' '(t),
the electron population n, (Ek ) obtained after summation
over space and time, only comes from the atoms within
an effective volume Vk. This volume is determined by
bringing together all the cells crossed by Ia'"'(t). Obvi-
ously the Vk's decrease as the relevant intensities I„' ' in-
crease. The volumes satisfy the condition
V6+ & V&z & V4+ & V6G & VSG in such a way that VSG is a
part of V6G which is a part of V4~ and so on.

Note that (i) at time t, the number of atoms no(z, r, t)
varies from one cell to another; (ii) the efFective focal
volume Vk increases with the laser peak intensity IM, and
(iii) the electron populations n, (E„)are accurately com-
puted from the elementary cells. The Vk's are only used
to make the discussion easier. The electrons emitted at
the highest intensities would be generated near the focus
or along the z axis. In contrast, the electrons producing
the standard nonresonant ATI peaks would be created in
the whole interaction volume surrounding all the Vk's.

where No(t) is the number of atoms in the ground state.
One aspect of calculations for ATI processes is that a
theoretical estimate of the electron populations depends
on the parameters of the beam focusing lens. In the fol-
lowing we investigate the effects of the general realistic
pulse shape

exp[ —R 2/(1+Zz) ]
(1+Z )

1.0—
I

l
I I f f

(
/ I $ I

i l I I

0.5—

putations show that only a few electrons are produced
through the channels via G-resonant states which are in-
troduced by nine-photon ionization processes. Note that
the depletion due to resonant F states also reduces the
possibilities of producing electrons from the 6G and 5G
eight-photon resonances with occur at higher intensities.
Thus from our calculations the three peaks in Fig. 2
reproduce the effect of resonances with the 4F, 5F, and
6F levels, respectively. On the low-energy side, around
0.41 eV, we observe the presence of a little hump due to a
relatively small amount of nonresonant electrons generat-
ed in the first ATI peak by seven-photon-ionization pro-
cess. As expected from the increase of the ionization po-
tential, this peak is shifted towards lower energies from
the theoretical unshifted position at 0.676 eV. The
second ATI peak is of smaller amplitude and thus does
not modify the results at IM &(10' W/cm .

The data in Fig. 2 can be directly compared to the pho-
toelectron energy spectrum measured by Rottke et al.
(dashed line). We see that our theoretical peaks are
slightly shifted towards the lower-energy side by less than
4% from the experimental positions. However, the
disagreement is so small that it does not appear to be
significant. Thus from the results of Fig. 2 we can
reasonably consider that the position and the amplitude
of the F peaks are in good agreement with those mea-
sured by Rottke et al. [18]. It seems that our computed
6F peak is a little higher than it should be. The theoreti-
cal widths are narrower than the experimental ones by
about 20%%uo. These results also are in reasonable agree-
ment since the measurements are affected by the broaden-
ing due to the instrumental resolution of the analyzer.

B. Results and discussions

The electron spectrum obtained with a laser peak in-
tensity of 10' W/cm and a 0.5-psec pulse duration is
shown in Fig. 2 (solid line). The curve represents the rate
N,&(E) of the number of electrons n, (E) created (at the
end of the pulse) with an energy lying within E dE and—
E+dE, normalized with respect to the number of elec-
trons n,,(E4+) at the maximum amplitude of the 4F peak.
This normalization wi11 be kept in the following. The cal-
culations lead to three resonant structures with decreas-
ing amplitudes as the electron energy increases. The 4F
peak, at E= 1.12 eV, is the most prominent one (the
width is 0.1 eV). Theoretically, the next two peaks are
produced by the mixing of electrons coming from eight-
and nine-photon resonant processes. However, the com-

0.5 1.0

E Iev)
1.5 2.0

FIG. 2. Electron population N, &(E) vs photoelectron energy
E for ionization of H by 0.5-psec Gaussian pulse with peak in-
tensity 10' W/cm and wavelength A, =608 nm (solid line). The
first ATI peak is around 0.41 eV. The position, the normalized
amplitude, and the width of the resonant structures are, respec-
tively, 1.12 eV, 1, and 0.1 eV for the 4F peak; 1.46 eV, 0.6, and
0.08 eV for the 5F peak; 1.64 eV, 0.5, and 0.07 eV for the 6F
peak. N,&(E) has been normalized with respect to the number
of electrons at the energy 1.12 eV (maximum of the 4F peak).
The dashed line represents the profile of the higher-energy part
of the experimental spectrum. We thank D. Feldmann for kind-
ly providing us detailed spectra.
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Furthermore the photoelectron spectrum we have com-
puted for the resonances involving the F states is con-
sistent with that calculated by Dorr, Potvliege, and
Shakeshaft [12]. Note that the results obtained from Flo-
quet calculations by Potvliege, Shakeshaft, and Dorr [16]
are slightly shifted towards higher energies.

Another interesting aspect of the ionization process
may be approached in calculating the electron rate
N„(E) as a function of intensity I~, for fixed pulse dura-
tion d =0.5 psec. In this case the laser energy varies with
the peak intensity IM. Perusal of Fig. 3 shows that the
electron spectrum is significantly modified as the intensi-
ty increases. At low intensity [IM &I„(t„)]the reso-
nances cannot occur and the electrons are only created
around 0.41 eV, in the first ATI peak, by seven-photon-
ionization process [Fig. 3(a)]. At higher intensities, the
ATI peak does not move further, confirming that the
shift is saturated. Although the genuine number of elec-
trons becomes larger and larger, the relative amplitude of
the ATI peak progressively decreases as the physical con-
ditions for resonance are fulfilled. This effect can be seen
in Figs. 3(b) —3(d) where the 6F, 5F, and 4F peaks succes-
sively appear as the laser intensity goes through the reso-
nant values Iz '. At intensity IM =5X10' W/cm, Fig.
3(d) shows that the amplitudes of the peaks increase with
electron energy. This ordering of the peak amplitudes is
observed although the transition matrix elements and the
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1 ! ! !
(

I !
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! ! ! !
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FIG. 3. Evolution of the energy spectrum of the photoelec-
tron created by 0.5-psec Gaussian pulses with peak intensity IM.
N, ~(E) is the same as in Fig. 2. (a) IM=2. 5X10' W/cm is not
sufficient to shift any state into resonance. The saturated first
ATI peak is around 0.41 eV. (b) At I~=3.2X10' W/cm, the
resonant 6F peak emerges. (c) At I~ =4.0X 10"W/cm', the 5F
and 6F peaks emerge. (d) At IM=5.0X10' W/cm, the 4F
peak appears. (e} At I~=7.0X10' W/cm the three peaks
have the same amplitude. (f) At IM= 10' W/cm, same as Fig.
2.

When the intensity IM is slightly greater than I~ the first
electrons are created in V4+, but many others have al-
ready been emitted from V5+ and some more electrons
have been produced in Vs~. In spite of the relation (3.7),
the electron distribution in the spectrum mainly depends
on the number of atoms Vino(r, z, t) in each volume
which themselves obey the condition

V6F ++ VSF ++ V4F (3.8)

At higher intensities far from the saturation conditions,
the volumes Vz expand and the constraints prescribed by
the inequalities (3.8) are not so restrictive. Then the rela-
tion (3.7) between the ionization probabilities prevails. It
may be remarked that the 4F and 5F peaks grow up to
reach the same amplitude as that of the 6F peak [Fig.
3(e)]; later the 4F peak becomes the dominant one [Fig.
3(f)] while the 5F peak appears to be greater than the 6F
peak. The comparison between Figs. 3(d) and 3(f) allows
us to observe this inversion in the relative peak amplitude
which comes from the evolution of the Vz volumes with
intensity IM. The behavior of the peak amplitudes we
have described for the 4F, 5F, and 6F levels, also is true
for higher levels of the F series. At low intensities elec-
trons are generated inside many resonant structures of
weak amplitudes which emerge in the high-energy side of
the spectrum. But the increase of the laser intensity
blends these first electrons to those successively created
by stronger resonances. The electrons produced by these
new resonances spread out in larger energy ranges and
overlap the primary structures which progressively disap-
pear in the background of the spectrum. Note that such
an inversion has been observed in an ATI experiment on
Xe by Agostini et al. [7].

Near saturation, the presence of many resonances will
cause the depletion of the ground-state atoms in the Vz
volume. At the smallest intensities Iz ' on the rising
edge of this pulse, the populations n(Ek, ) will be pro-
duced to the prejudice of those n, (Ek) created at IR"'.
Thus one can expect that the first hint of saturation will

appear in the k-resonant peak. This effect would show it-
self by attenuating the relative amplitude of the reso-
nance [17].

In most experiments the laser energy is held constant
while the pulse width is adjustable within a given range.
This provides the possibility of observing photoelectron
spectra for different pulse durations. Thus, at fixed laser
energy of 0.53 mJ, we have computed the enhanced yield
profiles for several values of the pulse width. These
definite conditions are sufficient to determine the peak in-

tensity IM of the Gaussian pulse expressed in Eq. (3.6).
The shape of the spectra (Fig. 4) is very similar to that
shown in Fig. 3. At 5 psec (IM =10' W/cm2), the first

ATI peak is at the position 0.47 eV with a width of 0.14
eV [Fig. 4(a)]. This peak is shifted towards slightly lower
energy (0.41 eV) at 2 psec (I~=2. 5 X 10'3 W/cm ) [Fig.

resonant intensities Iz(tz ) of the 6F, 5F, and 4F peaks
are of increasing magnitudes. In every case, the ioniza-
tion probabilities verify the following relation:

(3.7)
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4(b)] and the width is increased (0.16 eV). In Fig. 4(b), I~
lying inside the intensity range corresponding to the
eight-photon-ionization process, the shift and the
broadening of the ATI peak created by seven-photon ab-
sorption are saturated. However, the population in the
peak continues to increase with the intensity IM and con-
sequently with the relevant interaction volume. In agree-
ment with an experiment [2], the results in Figs. 4(a) and
4(b) show the effect of the intensity-dependent laser width
on the ionization probability. To be detected, the
broadening must be measured in nonsaturated ATI spec-
tra before peak suppression. For pulse durations within
the time interval (1.7 to 1 psec) the resonant structures
successively appear [Figs. 4(c) and 4(d)]. The peak inver-
sion occurs at about 0.6 psec [Fig. 4(e)] and at shorter
pulse widths one gets the typical resonance features de-
picted in Figs. 2 and 4(f). By comparing these two last
spectra one notes that the peak amplitudes do not

E (ev)

FIG. 4. Evolution of the photoelectron energy spectra pro-
duced by light pulses of constant energy (0.53 mJ), as a function
of the pulse duration. (The peak intensity I~ is adjusted to get
pulse of width d.) Several values of d have been selected. (a)
d =5 psec, I~ =10' W/cm; the first ATI peak appears around
0.47 eV (width equals 0.14 eV). (b) d=2 psec, I~=2.5X10"
W/cm; at the position 0.41 eV the first ATI peak is saturated
(width equals 0.16 eV). (c) d=1.3 psec, I~=3.8X10' W/cm .
(d) d =1 psec, IM =5 X 10' W/cm . (e) d =0.6 psec,
I~=8.3X10' W/cm . (f) d=0. 3 psec, I~=1.7X10' W/cm;
one observes that the shape of the curve is very similar to that
in Fig. 2.

IV. CONCLUSION

The aim of the paper was to present a quantitative
analysis of resonances which can arise in the photoelec-
tron energy spectrum obtained from above-threshold ion-
ization experiments. Within the resolvent formalism,
general expressions have been set up for the resonant
probability density. We have demonstrated that
simplified formulas, appropriate to investigate the reso-
nant ionization of H at 608 nm, could be derived from
our all-order ab initio theory. These analytical expres-
sions have allowed us to discuss the role played by inten-
sity, laser width, transition coupling, damping term, and
time in the distribution of the electrons in the spectrum.
To make a correct evaluation of the electron population
n, (E), it has been necessary to examine carefully, inside
the interaction volume, the spatial location of the atoms
which may be ionized at each intensity Iz. Then we have
been led to define a set of nested effective volumes Vz
which are responsible for the noticeable evolution of the
resonant structures in the yield-intensity profiles (Fig. 3).
We have observed an interesting behavior of the spectra
which can be understood in the following way. When the
first electrons are created in the 4F peak, the 5F peak is
already populated and the number of electrons in the 6F
peak is still greater than that in the 5F peak. As the reso-
nant ionization probabilities PI(nF) increase when n de-
creases, the amplitudes of the peaks equalize for the in-
tensity Isr around 7X 10' W/cm and, at higher intensi-
ty, the 6F peak decreases more rapidly than the 5F peak
and still much more quickly than the 4F peak. Then the
shape of the spectrum is not appreciably modified when
the intensity increases. Note that the typical spectra in
Figs. 2 and 4(f) are in good agreement with those which
have been measured in H. In addition, the intensity-
dependent evolution of our spectra reproduces what is
observed in experiment in Xe. The method we have used
is also appropriate for comparing the nonresonant popu-
lations in the ATI peaks to the resonant ones located in
the structures. The very large interaction volume gives
rise to many nonresonant electrons which generate the
background of the spectrum. These electrons contribute
to the depletion of the atoms in the effective volumes Vz
which lead to saturation. Since we have not taken ac-
count of the resonant structures related to the third, the
fourth, etc. ATI peaks which also take part in the de-
pletion of the ground-state atoms, we cannot estimate the
distortion of the structures due to saturation and the
variation of the electron yield as a function of pulse dura-
tion.

[1]P. Agostini, F. Fabre, Ci. Mainfray, G. Petite, and N. K.
Rahman, Phys. Rev. Lett. 42, 1127 (1979); P. Kruit, J.
Kimman, and M. Van der Wiel, J. Phys. B 14, L597
(1981); P. Agostini, M. Clement, F. Fabre, and G. Petite,
ibid. 14, L491 (1981);G. Petite, F. Fabre, P. Agostini, M.

Crance, and M. Aymar, Phys. Rev. A 29, 2677 (1984); Y.
Gontier, M. Poirier, and M. Trahin, J. Phys. B 13, 1381
(1980); Y. Gontier and M. Trahin, ibid. 13, 4383 (1980);Z.
Deng and J. H. Eberly, J. Opt. Soc. Am. B 2, 486 (1985);
G. Petite, P. Agostini, and H. G. Muller, J. Phys. B 21,



1498 Y. GONTIER AND M. TRAHIN 46

4097 (1988); numerous references can be found in the men-
tioned papers.

[2] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S.
Darack, D. Schumacher, and M. E. Geusic, Phys. Rev.
Lett. 59, 1092 (1987).

[3] J. Morellec, D. Normand, and G. Petite, Phys. Rev. A 14,
300 (1976).

[4] Y. Gontier, N. K. Rahman, and M. Trahin, Phys. Rev.
Lett. 34, 779 (1975); Phys. Rev. A 37, 4694 (1988).

[5] Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev.
A 14, 1101 (1976); S. N. Dixit and P. Lambropoulos, ibid.
19, 1576 (1979); M. Gavrila and J. Z. Kaminski, Phys.
Rev. Lett. 52, 613 (1984); K. C. Kulander, Phys. Rev. A
36, 2726 (1987); J. Javanainen, J. H. Eberly, and Q. Su,
ibid. 38, 3430 (1988); M. Dorr, R. M. Potvliege, and R.
Shakeshaft, J. Opt. Soc. Am. B 7, 433 (1990).

[6] Y. Gontier, N. K. Rahman, and M. Trahin, Phys. Rev. A
14, 2109 (1976).

[7] P. Agostini, A. Antonetti, P. Breger, M. Crance, A.
Migus, H. G. Muller, and G. Petite, J. Phys. B 22, 1971
(1989).

[8] H. Rottke, B. Wolff, M. Tapernon, K. H. Welge, and D.
Feldmann, Z. Phys. D 15, 133 {1990).

[9] H. Rottke, B. Wolff, M. Brickwedde, D. Feldmann, and
K. H. Welge, Phys. Rev. Lett. 64, 404 (1990).

[10]H. Rottke, B. Wolff, M. Tapernon, D. Feldmann, and K.
H. Welge, in Fundamentals of Laser Interactions II, edited

by F. Ehlotzky, Lectures in Theoretical Physics Vol. 339
(Springer-Verlag, Berlin, 1989), pp. 25 —36.

[11]P. Agostini, P. Breger, A. L'Huillier, H. G. Muller, and G.
Petite, Phys. Rev. Lett. 63, 2208 (1989).

[12] M. Dorr, R. M. Potvliege, and R. Shakeshaft, Phys. Rev.
A 41, 558 (1990).

[13]Y. Gontier and M. Trahin, J. Phys. B 22, 2531 (1989).
[14]Y. Gontier and M. Trahin, J. Opt. Soc. Am. B 7, 463

(1990).
[15]T. J. McIlrath, R. R. Freeman, W. E. Cooke, and L. D.

Van %'oerkom, Phys. Rev. A 40, 2770 (1989).
[16]R. M. Potvliege, R. Shakeshaft, and M. Dorr, in Abstracts

of the International Conference on Multiphoton Processes
ICOMI' V, edited by G. Mainfray and P. Agostini (Centre
d'Etudes de Saclay, Gif sur Yvette, France, 1990), p. 157.

[17]L. D. Van Woerkom, R. R. Freeman, W. E. Cooke, and T.
J. McIlrath, J. Mod. Opt. 36, 817 (1989).

[18]H. Rottke, B. Wollf, D. Feldmann, and K. H. Welge

{private communication).


