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An enhancement of the index of refraction accompanied by vanishing absorption is shown to be possi-
ble in an ensemble of phase-coherent atoms ("phaseonium"). A survey of various possible schemes in

which coherence is established by certain coherent or incoherent methods is given, and the main results
are compared and contrasted. In particular, the influence of processes such as Doppler broadening that
degrade coherence is discussed.
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I. INTRODUCTION
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The index of refraction of a gaseous medium at =1
Torr can reach values as high as 10 or 100 at frequencies
near an optical resonance. The price that must be paid
for such high dispersion is usually an accompanying high
absorption.

However, recently it has been pointed out one way to
achieve an ultrahigh index of refraction near an atomic
resonance while canceling the absorption. The underly-
ing principles are atomic coherence and quantum in-

terference. These effects are known to cancel absorption
at certain frequencies near an atomic resonance, which
has led to the observation of nonabsorbing resonances
[1,2] and the prediction of lasing without inversion [3—7].
Such a phase-coherent atomic ensemble ("phaseonium")
provides us with what is essentially a new state of matter.

In a phaseonium gas without population in the excited
level, the absorption cancellation always coincides with
vanishing refractivity. However, providing a small frac-
tion of atoms in the excited state, absorption vanishes
slightly off resonance, where the real part of the suscepti-
bility has a substantial value. This gives rise to the possi-
bility of high refractivity in a nonabsorbing medium

[8—10].
The purpose of the present paper is to give a survey of

the various schemes in which atomic coherence and in-

terference effects lead to complete absorption cancella-
tion and an ultrahigh index of refraction. The introduced
schemes are compared and contrasted and, in particular,
the influence of coherence degrading processes such as

Doppler broadening and collisions is studied in all cases.
The linear response of an atomic system on an electric

field E is governed by the complex polarization

or more directly by the real (g') and imaginary (y" ) part
of the susceptibility. The relation between the complex
susceptibility and the refractive index of the medium is
outlined in the Appendix. For an effective two-level
medium we have the well-known textbook results [11]:
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where 6 is the detuning of the test field with respect to
the optical transition, and y is the decay rate of the atom-
ic coherence. Here, and in the remainder of the paper, p
is the dipole matrix element of the optical transition, X is
the number of atoms per unit volume, and g' and y" are
the susceptibilities in frequency space. As can be seen
immediately from these equations, a high refractive index
is always accompanied either by large absorption or by
large gain. In Fig. 1, y' and g" are displayed for a gas of
two-level atoms with a number density of 1 atom per cm .
For the case of a 1 Torr gas (N =10' /cm ) the max-
imum value of g' is therefore approximately 50. Howev-
er, since g" has at the same frequency the same value, an
incident light beam would be absorbed in a small fraction
of the wavelength. On the other hand, far off resonance,
where the gas becomes transparent, a typical value for
the real part of the susceptibility is of order 10 in gases
of 1 Torr pressure.

The situation is completely different, however, if mul-
tilevel schemes are considered in which atomic coherence
is established or quantum interference effects occur: Let
us first consider the case of three-level schemes with a
pair of closely lying lower or upper levels as shown in

Fig. 2. Coherence in this case is established between the
doublet states by some external means. Assuming
dipole-allowed transitions between the single level and
the two closely spaced lower or upper levels [Fig. 2(a) or
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vanishing refractive index with a large slope [3,4,9].
However, by providing a relatively small population in
the excited state, not only the derivative but also the in-
dex of refraction itself can be large at frequencies where
ImP =0 [8—10].

The origin of this behavior is quantum interference.
This can be seen most easily if we consider the total prob-
ability of emitting or absorbing a photon, for instance, for
the case shown in Fig. 2(a). Given an initial state

lg(0) ) =a(0) Ia )+b(0)lb )+b'(0) I&'&,

the probability of emission is the sum of the transition
probabilities to b and b', that is

a, =[ ~ ~

] [&.bl'la(0)I'+Q. b I'la(0)I'j

jul 2p (0) (5a)

FIG. 1. Real (line) and imaginary (dashed) parts of the linear
susceptibility of a gas of two-level atoms with a density of 1

atom per cm .

2(b)], the linear susceptibility of the system reads, e.g. , in
the case of a lower-level pair:

P pN p'N
b' (3)

Here, the nondiagonal matrix elements p,& and p,& are
determined not only by the population differences, as in
the two-level case, but, in addition, by new terms p&& and

p& & which express the coherence between the two close
levels
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In contrast to the two-level case, these extra terms may

cancel the absorption terms proportional to lower-level
populations. Hence this low-frequency coherence may
lead to nonabsorbing resonances or lasing without inver-
sion [5]. In the case of zero population in the upper level
at the point of vanishing absorption, this may lead to a

The probability of absorption of an atom in the lower
states b and b' to the upper level a is the modulus
squared of the sum of the transition amplitudes:

P„,= [ j j Q.,b(0)+p., b'(0) I'j

j I/ I [Pbb( )+Pb'b'( )+Pbb'( )+Pb'b(
(5b)

where we have taken the casep, b =p,b. =p, and [
is an uninteresting prefactor which contains the intensity
of the radiation field. The last two terms in Eq. (Sb) are
the interference contributions to this total probability.
They need not be positive and in fact may cancel the Arst
two terms for a certain frequency.

From the point of view of quantum interferences, it is
near at hand to extend the consideration to other
schemes in which similar interference effects occur: If
the lower or upper level of a single dipole-allowed transi-
tion is strongly coupled to another level, as indicated in
Fig. 3, absorption and/or emission may occur via
different pathways, either directly or via the auxiliary lev-
el c. The contributions from the different pathways to
the total absorption or emission probability then lead to
similar interference terms, as in Eq. (5b). Both types of
interference effects may lead to transparent materials
with a high index of refraction and wi11 be discussed in
this paper.

In order to outline the principle mechanisms that lead
to a high-index material, we discuss in Sec. II, in detail, a
three-level system with a lower-leve1 doublet in which
coherence is established by preparing the atoms in a

stron
coupl

a a

b'

(a)
b b

rong
upling

FIG. 2. In contrast to a two-level system, the linear-optical
properties of a three-level system with two closely spaced (a)
lower or (b) upper levels are strongly influenced by the coher-
ence between the level doublet.

FIG. 3. A strong coupling of the upper or lower level of a
single optical transition to an auxiliary level c via an intense
driving field creates interferences between different absorption
and/or emission pathways.
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coherent superposition via pulse excitation [8].
There are several ways of creating coherence or quan-

tum interference in atomic systems. The most common
technique is to use coherent fields driving two levels ei-
ther directly or via a Raman-type transition to another
auxiliary level. The features of dift'erent coherently
driven systems are compared and contrasted in Sec. III.
In addition to these coherent techniques, coherence or in-

terference can also be established by incoherent methods,
which we discuss in Sec. IV. In Sec. V we propose
several atomic schemes for a practical implementation of
the index-enhancement efFect. The influence of several
coherence degrading processes, such as Doppler broaden-

ing, are discussed in some numerical examples for all the
schemes investigated.

II. INDEX ENHANCEMENT IN A MEDIUM
WITH INITIAL ATOMIC COHERENCE

5 s„,/

Laser
AOM

sample

Ri V

test putse
Laser

3's g, /

FIG. 4. A possible experimental setup to establish atomic

coherence via pulse excitation in Na. A strong linear polarized

pump pulse is split into three parts with slightly different fre-

quencies by an acousto-optical modulator (AOM). Two polariz-

ers generate circular polarization in order to pump the

hm =+1 transitions as indicated on the right side of the figure.

The time delay of the two pump pulses is chosen to adjust the

right phase P in Eq. (9).

To illustrate the basic mechanism by which coherence
influences the refractive index and absorption, we consid-
er a simple model in which gas atoms are initially
prepared in a coherent superposition of the two lower
levels b and O'. This can be accomplished, for example,
by coherent pulse excitation, as described in Fig. 4.

For such coherent preparation, the initial condition on
the density matrix for the ith atom is

p„0 0
i ~ 0 0

P ~ Pb'b' Pb'b

0 00 Pbb Pbb

The atoms are injected at a rate r, so that the time evolu-
tion for the macroscopic density matrix, introduced in
Ref. 11, is then determined by

l l
Pab' ( ~ab'+ Yab')Pab' gf (Pb'b' Paa ) I Pbb'E
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For a first-order analysis in the laser field E, we insert the
zeroth-order valises ofp„,pb „,p», and p»,

0
(0) Paa

Paa
Xa

(a=a, b, b'), (8a)

0 I
Pbb «Pbb ybPbb g

(l PabE c c ) ~

where in the conventional notation, y,&=(y +y~)/2
+p pQ, and we have introduced a rotating frame Here
6 &=co &

—v, where the test field has a frequency v and a
slowly varying amplitude E.

Next we let the system go to steady state, in which
case,
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into above Eqs. (7a) and (7b). Finally, we substitute these
into Eq. (3) and obtain
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where Vis the interaction volume. The phase P is defined

by

/b'/bpb b /b'I pb'b Ie'

2 2 1/2Yb'b+ ~b'b (1 b'b+~b'b )

and, for simplicity, we have taken/t'=/t.
From Eqs. (9a) and (9b), we can see that it is possible to

make the absorption (y") vanish, while maintaining a
large refractive index (g'). We define h=(b, ,b+5,b. )/2
and adjust ~& & by means of a dc magnetic field, so that
cob.& =yb b, and consider the physically reasonable case

yb =yb. . Finally, we prepare the levels b' and b
coherently, so that /=5'/4 and p»=pb, b=lpb. bI. The
resulting polarization is plotted in Fig. 5 [12]. It can be
seen that a high index of refraction can be obtained with
zero absorption.

Next we consider the case in which all of the above
conditions are met but now, in addition, y, =yb
=yb =y. Then, when 6-=1.1y and a few percent of the
atoms are in the a state, the absorption vanishes, while
the dispersive part of the susceptibility is of order

1/bN,
10 A'e y

(10)

where N, =rp„/Vy is the a-state atomic density. Equa-
tion (10) may be written in terms of the radiative decay
rate y„=/t v /6M@Dc as

3A, 'Vr

104' y

10-16
r

Thus we realize that a large index of refraction is
achievable in a transparent medium. If we consider, for
instance, the case of N, =10" cm (a gas of 1 mtorr
pressure at room temperature with 1% of the atoms in

the excited state has the same density of excited atoms)
and assume purely radiative decay (y„=y), we have
y' =7 X 10 for A, = 1 pm at a point of complete
transparency. This is by three orders of magnitude larger
than the value achievable in usual transparent gases of
this pressure. By increasing the density of atoms, much
larger values of y' are possible. Note, however, that then
the gas has to be cooled in order to keep collisional
broadening small so that y -y, .

In the following two sections we discuss methods to
generate coherence via coherent microwave and Raman
fields and by incoherent means. Instead of injecting
atoms prepared in an initial coherent state, in the follow-
ing sections the coherence or interferences are main-
tained by coherent or incoherent fields applied simultane-
ously with the test field for which the index of refraction
is modified.

III. HIGH INDEX OF REFRACTION
IN COHERENTLY DRIVEN SCHEMES

The most common technique used to establish a
steady-state atomic coherence or interference of path-
ways, which can lead to transparent high index materials,
is the application of strong coherent driving fields. Ex-
amples such as microwave driving of the level doublet or
Raman driving of these levels via an additional auxiliary
level have been discussed in the study of lasing without
inversion [3—7]. In this section we demonstrate that
these schemes provide transparent materials with very
high refractivity. Since the analysis is straightforward,
we restrict ourselves, however, to presenting and discuss-
ing the main results.

A simple way of establishing the lower-level coherence
in the A quantum-beam configuration in a different way
from that discussed in the preceding section is the appli-
cation of a microwave field in two-photon resonance of
the lower-level doublet as indicated in Fig. 6. For the
present, however, we exclude this scheme from the dis-
cussion because it cannot be treated within a simple
steady-state analysis of the density-matrix equations. To
calculate the linear-optical properties of this scheme, uni-
tary transformation techniques may be applied [5].

/ ~( i

-5.0 5.0

FIG. 5. Real (line) and imaginary t,dashed) parts of the sus-
ceptibility as a function of the detuning 5 for the case of inject-
ed atomic coherence. We have assumed purely radiative decay.
One percent of the atoms are initially in the excited state and

r.=0-1zb-

FIG. 6. A strong microwave field in two-photon resonance
with the two lower levels of a A-quantum beat scheme produces
coherence between these levels.
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A. Raman-driven scheme

Instead of creating the coherence between the two
closely spaced levels via a direct coherent two-photon
transition, we now present a different possibility in which
an applied coherent field couples the two lower levels via
an additional auxiliary level. According to Fig. 7, the
lower-level doublet b-b' couples to the auxiliary level c
and thus to itself via a coherent field with Rabi frequency
Qz for the b-c and QR for the b'-c transition. Both tran-
sitions a-b and a-b' are assumed to be dipole allowed and
to interact with the test field E. Defining the dipole-
matrix elements of the two transitions as p and p', the
density-matrix equations read in a rotating frame

b'

FIG. 7. Level scheme for the Raman-driven case. The two
dipole-allowed transitions a-b and a-b' are coupled to a single
mode test field E. Both lower levels are driven to a fourth auxi-
liary level via a strong Raman field with Rabi frequency Qz.

p = —(y+y'+y )p +rpbb+p'p b, b+i E*p b+ E*P b c.c.
fi

(12a)

Pb'b' (Yb+ )Pb'b'+ybPbb+y'p. .+y,'P„+( Epb' ++Rpb' (12b)

Pbb (yb+ )Pbb YbPb'b'+ YPoo + Y P ( EPb RPb (12c)

P„=—(y, +y', )P„+y,P„+i (QR P,b +QRP, b
—c.c. ), (12d)

Pab' (3 ab'+(~ab')Pab'+( E(Paa Pb'b') Epbb'++Rpac (12e)

p.b= (y.b
—~ b)P b+( gE(Po Pbb) g

Epb'b+f1RP (12f}

Pb'b I. Y b'b+((~ab ~ab') ~pb'b+ Pb'a E Pab+ f) Rpb'c f1R Pcb (12g)

Pcb' (y cb'+ ~R )Pcb'+ f1R (Pcc Pb'b') f1Rpbb'+ EPca (12h)

Pcb ( y cb + ~ ~R )Pcb + +R (Pcc Pbb ) +RPb'b + Epca (12i)

I

p., = —fy., +i(~.b —~R )]p., (&Ep—b, + Epb; QRp, b O'R*p,—b— (12j)

Here we have introduced the detunings of the test field with respect to the two affected transitions as 6,b =m, b
—v

and 5,b =co,b. —v. The detunings of the Raman field with respect to the two Raman transitions are hz =co,b —vz and

Az =co,b
—vz. Moreover, pump processes are included, since for the purpose of high refractivity at a point of vanish-

ing absorption some population in the upper lasing level is necessary. As a consequence of the complicated four-level
structure, the general result for the linear susceptibility cannot be given here in a simple compact form. The Raman
scheme, however, has so far turned out to be the most favorable case for experimental implementation. For this reason
we consider it worthwhile to present the complex susceptibility of this scheme in its full generality:

lg
N i (1+y)p (0) (0) ~ (0) R R (0) (0) (o)

Paa Pbb I Pb'b j
( 1+ + )1 Z, 1

L Paa Pb'b' I Pbb'l

I
(0) + ~ (0) + ( + )/ ~ (0) (0) (0)

(1+x + )1 z L Pbc / Pb'c j (1+~ + )f 9 (Paa Pb'b') Apbb'~

8
(

(0) (0)) ~ (0) R (0)+ ~ (0)
)Z Z 1 9 P Pbb l Pb'bl (1+ + )1 Z

Qpb l Pb'
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with the following abbreviations:

and

I, =y, +iA, , I, =y, +id,
I b =yb +I~/ I b =yb +&~/

~b'b rb b+'~(~ b ~ b') ~ y +~(~ b

The zeroth-order solutions p & in Eq. (13) are

Pbb

(o)—
Pb'b'

A1B2+ A2B1

Z
A2C1+ A1C

Z

(14a)

(14b)

0 B1 2 2 1

(14c)

( 1 +x )(p(0) p(0)) y ( P /P* )(p( ) p( )
)

I,b(1+x, +y, )

( 1 +y )(pl ) p( )
) x ( I /I )(p(o) p(o) )

Pb'c i+R I, (1+x;+y; )

( ), , I/I, )(p'„' —p' ')+(1/I,'.)(p,', ' —p~~~)(o) (0)

I b b(1+x, +y, )

(14d)

(14e)

(14f)

with the parameters used above defined as

Z =B1C2—A1B2D2 A2C1D1 B2C1

—A1C2D1 —A 2B1D2,

A1=1+a+a*—b —b*, D1=1+
r'

+f+P

A2 = 1+c+c*—d —d*, D2 = 1+ r
r'+r +r.

r'/y,+ +b +$Q1+(r'+r. )/r

rb r r+r. /r, r
y,

' 1+(y+y, )/y'

& r +r. /r, r
y, 1+(y'+y, )/y

r /y,'

b+ rc
r,' 1+(r+r. )/r'

and

In Fig. 8 the real and imaginary parts of the suscepti-
bility are depicted as a function of the detuning
b =(5,b+b, b )/2 of the field with respect to the midfre-

quency of the two optical transitions. The possibility of a
large refractive index at a point with vanishing imaginary
part of the polarization becomes evident here.

In the case when the Raman and the test field have the
same propagation direction, the corresponding transi-
tions experience a Doppler shift in the same direction.
As a consequence the Raman-driven scheme is less sensi-

t

x)0 "6

'I.5—

'I. O I-

0.5—

0:
-0.5',-

-'I.0;
-1.5 '-

I~~ I'(1+x&) I~& I'(1+y, )c=
r, r, (1+x,+y&)

' y'I *b,(1+x,+y, )

-20 -10 'j0 20

X1=, y1=r,*,,r, ,, '
In', I'

r„rb,,

b= 1~1 b'b X1+1Ib bd=
r, (i+xi+y~) y', (1+x,+y, )

'

FIG. 8. Real (line) and imaginary (dashed) parts of the linear
susceptibility for the Raman scheme. The level spacing between
the two close lower levels is equal to y =y' ~ The Rabi frequen-
cy Qz is 3y and the pump and decay rates r=r=0. 2y.
y, =y,

' =y, y, = 10 ' y. The decay rate between the lower lev-
els is assumed to be small (yb =yb = 10 ' y).



1474 FLEISCHHAUER, KEITEL, SCULLY, SU, ULRICH, AND ZHU 46

tive to Doppler broadening. Figure 9 displays the
influence of an atomic velocity distribution on the real
and imaginary parts of the susceptibility for a test-field

frequency which is twice as high as the Raman frequency.
For a Doppler width of 20@, where y is the radiative de-

cay rate of the test-field transition, the achievable value of
g' diminishes only by a factor of —,

' compared to the

Doppler-free case.
A11 systems discussed in the following sections provide

a high refractive index accompanied by perfect trans-

parency only for a very narrow frequency region. Fur-
thermore, in all schemes for certain frequencies, the sys-

tem shows gain because of the upper-level population. It
is worth noting, however, that in the Raman scheme we

can even have a large refractive index with high tran-
sparency of the medium in a broad spectral region, as is

clear from Fig. 10. The separation of the two absorption
peaks increases thereby with the splitting between the
two lower levels b and b' and the Rabi frequency Qz of
the Raman field. Their heights, and therefore the max-
imum value of y, diminish with increasing peak separa-
tion. Moreover, although a few percent of the atoms are
in the upper lasing level, in this particular case, there is

no gain for any frequency value. In this parameter re-

gime the system is more sensitive to Doppler broadening

/tQ
17

-8-

-20 -10 10 20

than in the previous case (cf. Fig. 1 1 j. For appropriately
large Qz, however, this influence can be rendered small.

B. Upper-level microwave scheme

FIG. 10. y' (line) and g" (dashed} as function of 6 for the
Raman scheme for cob b =y, r =r=0.017y, and Qz =5y. The
other parameters are same as in Fig. 8. %'hereas in the other
schemes a high refractive index accompanied by small or even
vanishing absorption is possible only for a small frequency re-

gion, here we can have a broad band effect. Moreover it is evi-

dent that there is no frequency region in which the system
shows gain.

1.0

Here we consider the case depicted in Fig. 12. Two
levels a and b are coupled via an allowed dipole transition
to the test field E. The upper level is also coupled to a
third level c via a strong microwave field of Raby fre-
quency 0„. This coupling gives rise to interference of

-0.5
-1.0
-'j.5

x10 "7

8

0-16

'l. 5

0

-0.5 . f
lj

I(
/I

I /I
/

1 I

Y~
/

/
/

/
/ /

/
/

I I,
I /

I
/

I

I I
/

/

I

I
/I /

-1.5

-20
I

-10 10 20

Q /
I

1

t aIJ
1

I
/

C

FIG. 9. Influence of Doppler broadening on the real (upper
curves) and imaginary (lower curves) parts of y for the case of
parallel propagating Raman and test field. The Raman field fre-
quency here is assumed to be half the test-field frequency. Be-
cause the test as well as the Raman fields experience a Doppler
shift in the same direction, this scheme is much less sensitive to
Doppler broadening than the following schemes. The values of
the Dopplerwidth are (a) 0, (b) 5y, (c) 10y, and (d) 20y. All oth-
er parameters are same as in Fig. 8.

-10 10 20

FIG. 11. Influence of Doppler broadening on g' (upper
curves) and y" in the Raman scheme for the parameters chosen
in Fig. 10.
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different possible pathways of absorption in the same or-
der in the test field. To achieve a high refractive index,
we need some population in the upper level of the optical
transition. Hence we include (indirect) pump mecha-
nisms as depicted in Fig. 12. The complete set of
density-matrix equations for this scheme then reads in a
rotating frame:

p = (y—+r„)p..+«pbb+y~„
T

1 Pbg +QPPcg C. C.

pbb
= —(r +r, )pbb+yp„+y, p„

(15a)
FIG. 12. Level scheme for the upper-level microwave

scheme. The transition from a to b is of optical frequency and
couples to the test field E. Level a is coupled to a third level c
via a strong microwave field of Rabi frequency 0„.

. pE pE*+ l
~ Pba g Pab (15b)

p (y +y )p +r pbb+r p +i(Q p Q~ )

(15c)

(15d)

(15e)

(150

The quantities 6 and A„denote the detuning of the test
and the microwave field with respect to the correspond-
ing transitions (b, =co,b v, h„—=co„—v„), and y &

are
the decay rates of the coherences p &. Solving for the
steady state to first order in the test field E leads to the
following general solution for the real and imaginary
parts of the polarization:

Ng' 1

eofiDD* M
—( ~Q&~

—b, —hb„+y, by, b ) (b, +b,„)[(y r r, )(y, +y„—+K—„)+y,(r„+r,+K„))

——K„"[r(y„+y, r„)+—r, (y„r„—y)]-
CO

+ [gy,„+(&+&„)y, ][y,„[(y r r, )(y,—+y„+—K„)+y,(r„+r,+K„)]

+ ,'K„[r(y„+—y, r„)+r,—(y„r„—y)]]— (16a)

, M (IQ„I —~ &&„+y.bl b)[1 b—[(y r «, )(y, +y, +K„—)+—y, (r~+r, +K„)]
~,eDD* M

+ ,'Kq[r(y„+y—, r„)+r,(y„r„—y)—]J—
+

I ~ycb+(~+~„)y.b] (&+&„)[(y—r r, )(y, +y„+—K„)+y,(r„+r,+K„)]

1——K„"yC. [r(y„+y, r„)+r,(y„—r„—y)]— (16b)

D=(~Q„~~—5 —Ah„+,y,by)b

+i [hy, b + ( 6+h„)y,b ],
M =(y, +y„+K„)(y+r, + r )

+(r„+K„)(y,+r, +r)+r, (y —y, ),

(17)

(18)

Here X stands for the total number of atoms per volume
in the sample and, furthermore, we have defined

and

2y,.lQ„I'":+r,'. (19)

To obtain physical insight into these solutions, we make
some reasonable simplifying assumptions. Since the c-a
transition is of microwave frequency and the c-b transi-
tion is dipole forbidden, the corresponding decay rates y„
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and y, can be considered small compared to y. We as-
sume resonance of the driving microwave field, set
r„=r =0, and choose r, =y. In this case Eqs. (16) sim-

plify to the expressions

1015

1.5

1.0—

&o~ MDD

p'x y'&„
&p& 2MDD*

3y K„
4

" —y, (y+E„)b,

4 2
6+ y

(20a)

(20b)

05-

-05
-1.0
-1.5

e d

M —y +3yK (22)

In Fig. 13 the real and imaginary parts of the susceptibili-
ty, according to Eqs. (20), are displayed as a function of
the detuning A. Here we have assumed y to be purely ra-
diative, i.e., y=p v /6MEoc It .immediately becomes
obvious from the figure that there is a test-field frequency
that experiences both vanishing absorption and a high
real part of the susceptibility. The separation of the two
absorption peaks increases with increasing Rabi frequen-
cy Q„[cf. Eq. (21)j. At the same time, the maximum
value of y' at the point of vanishing absorption decreases.

The decay rates y„and y„between the two upper lev-
els strongly increase in the presence of collisions and
hence the established coherence is very sensitive to such
collisions. The inhuence of Doppler broadening is
displayed in Fig. 14. Since the microwave transition is of
much smaller frequency than the optical test-field transi-
tion, the effect of Doppler broadening is mainly an
averaging of the curve in Fig. 13 over a Gaussian distri-
bution of A. The sharp spectral structure is hence quick-
ly washed out if the system becomes inhomogeneously
broadened. This effect decreases with increasing Rabi
frequency.

where only the leading terms have been kept, and the
denominators DD * and M read in this simplified version:

'2

+
4 2 4

x10

1.5
1.0;
05-

- a
/

/s~ e~ I

/

I
I

-1.5—

-8 -4 0 8

FIG. 14. Influence of Doppler broadening on g' (upper
curves) and y" (lower curves) for the upper-level microwave
scheme. Here the Dopplerwidth are (a) 0, (b) 1y, (c) 2y, (d) 5y,
and (e) 10y. All other parameters are same as in Fig. 13.

C. Lower-level microwave scheme

The case opposite to the previous one is depicted in

Fig. 15, where the lower level of the optical transition un-

der investigation is coupled to a third level c via a strong
microwave field. Since some population is necessary in

the upper lasing level in order to get a high refractive in-
dex with no absorption, we must introduce pump pro-
cesses. The corresponding equations of motion including
the pump and decay processes then read in the appropri-
ate rotating frame:

(y+ y. )moo+ rVbb+ r.n-
10-6

1.5
1.0—

0.5—

fiE /iE"
Pba

@
Pab (23a)

-1.5-
I

-2 0

b./p

FIG. 13. Real (line) and imaginary (dashed) parts of the
linear susceptibility for the upper-level microwave scheme.
Here microwave resonance and vanishing r and r„are assumed
and y„ is neglected. %e have O,„=r,=y and y, =0.1y.

FIG. 15. Level scheme for the lower-level microwave

scheme. The transition from a to b is of optical frequency and

couples to the test field E. Level b is coupled to a third level c
via a strong microwave field of Rabi frequency 0„.
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pbb ( r +y&)pbb +yp«+ reap
r

+ i Pb 0+~b C. C. (23b)

.pE*
Pb,

= (i—b,„+y b, )Pb, +i Q„(Pbb
—P„) —i P„,

P„=—[i(6+b „)+y „]P„+iQ~, b i —
Pb, .pE.

(23e)

(23f)

P« = —(r, + r )P«+y, P«+ y~bb + l (QyP~b I Pb~ ) I

(23c)

P.b = (i~—+y.b)P.b+~
&

(P.. Pbb—)+i&„P.,

As before, 6 and A„are the detunings of the test and the
microwave fields with respect to the corresponding tran-
sitions. Solving for the steady state to first order in the
test field E leads to the following general solution for the
real and imaginary parts of the polarization:

&&„+y,by„ ) (b+b„)[(r—y —y, )(r, +r„+K„)+r,(y„+y, +K„)]

—K&
" [y(r„+r, —y„)+y, (r„—y„r)]-
bc

+ [gy„+(g+Q„)y,b][y„[(r—y —y, )(r, +r„+K„)+r,(y„+y, +K„)]

+ ,'K„[y(r„+r—,—y„)+y,(r„—y„r)]]— (24a)

N 1
(~Q„~ 5 bh—„+—y,by„ ) fy„[(r—y —y, )(r, +r„+K„)+r,(y„+y, +K„)]

eofiDD *

+ ,'K„[y(r„+r,—y„)+y,(r„—y„r—)]j—

+[by„+(b+b,„)y,b] (b+b,„)[(r—y —y, )(r, +r„+K„)+r,(y„+y,+K„)]

K„"[y(r—„+r, y„)+y—,(r„y„r)—]-
abc

(24b)

Here we have used the definitions

D =( ~n„~ 5 hh„+—y,„—y„)
+i [5 „y+(b, +5„) ,y]b, (25)

p'N y'
&o& MDD*

M=(r, +r„+K„)(r+y, +y )+(y„+K„)(r,+y, +y)
(28b)

+y, (r r, ), —

2yb, In„l'
KP g2+y2

(26)

(27)

„q0-16

As before, we proceed by restricting this result to the
case of microwave resonance 6 =0 and no pumping onP
the allowed optical transition, i.e., r=r„=0. Further-
more, we neglect the microwave decay y„and the decay

y, of the dipole-forbidden transition a-c, and choose
r, =y. In this case,

x 0

-8-

-4

I
I
I
I
I

I

\
\

I
I
I
I
I
I
I

p'N b.y'.A MDD. 4 2
P g2+ 2

+—y —E„—y
3 1

(28a)

&le
FIG. 16. Real (line) and imaginary (dashed) parts of the

linear susceptibility for the lower-level microwave scheme.
Here microwave resonance and vanishing r and r„are assumed
and y„and y, are neglected. We have Q„=r,=y.
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0

0

x1Q
8-

FIG. 18. The radiative decay of two closely spaced upper lev-
els a and a' of the same J and m J quantum numbers to common
levels b and c generates quantum interference and coherence be-
tween the two upper levels.

Q I
I i

'I

I

by'

egr

I

I
I
I
i I

I
I

I

I

liI

-e
I-

-e -4 0 4 8

6/y
FIG. 17. Influence of Doppler broadening on y' (upper

curves) and y" (lower curves) in the lower-level microwave
scheme. The Dopplerwidth are (a) 0, (b) ly, (c) 2y, (d) 5y, and
(e) 10y. All other parameters are same as in Fig. 16.

where DD' and M again take the simple form given in
Eqs. (21) and (22). In Fig. 16, y' and y" are depicted for
this special case. Again, there is a point with no absorp-
tion or emission, but with a large value of the real part of
the susceptibility. According to Eqs. (24), (25), the sepa-
ration of the two absorption maxima increases with
growing microwave field strength.

In the case discussed here, the coherence between b
and c is less sensitive to collisions, since the correspond-
ing wave functions are located close to the atomic nu-
cleus. However, Doppler broadening strongly diminishes
the maximum value of g' at the point of vanishing ab-
sorption, as visible from Fig. 17, for the same reason as
mentioned in Sec. III B. Here again Doppler broadening
becomes less important if the Rabi frequency of the driv-
ing microwave field increases.

IV. HIGH INDEX OF REFRACTION
PRODUCED BY INCOHERENT PROCESSES

In this section we show that atomic coherence or in-
terference of pathways can be established even by in-
coherent processes. For example, the radiative decay of
two closely spaced levels a and a' to common levels may
lead to atomic coherence if the selection rules are such
that the corresponding transitions from a and a' couple
to the same vacuum modes with the same strength [3].
In order to realize this interference effect there must be
the restrictive requirement that two closely spaced levels
have the same J and m J quantum numbers. In analogy to
the coupling of spontaneous emission, the interference of
incoherent pump processes can lead to atomic coherence
as well [10]. In this section we demonstrate that coherent
processes like these can produce media with high disper-
sion without absorption or gain. We restrict ourselves to
presenting and discussing the main results.

A. Interference of radiative decay processes

Let us consider the level configuration sketched in Fig.
18. Two closely lying levels a and a' decay radiatively to
two lower levels b and c. We assume that the quantum
numbers of both levels are such that the transitions from
a and a' interact with the same vacuum modes. Includ-
ing (indirect) pump mechanisms, the equations of motion
of the density matrix read in a rotating frame:

p = (y+y )p ,'[(rr')'"—+(r,r,')'"](p..+p. .)+rpbb+r, p„'(~pb— (29a)

I

p ' ' (r'+r,')p. . ,'[(rr')—'"—+(r,r,')'"](p..+p. .)+r'pbb+r, 'p„ i
Z

«pb (29b)

(29c)

I

P ' ['~ '+ —.('Y+r +r +'Y )lP ' —[('Yr ) +(r r ) ](P +P ' ') i +Pb '+' + P b (29d)

P b I
i ~ b+ ,'(r+r+'+y, )]-p.b ,' I

(yr')'"—+—(y,y,')'"]p.'b i (Pbb P o )+i P.. (29e)

I

P 'b [i~.b+ ,'(r'+r+'+r-, ')lp. b ,'I(rr')'"+(—y,—y',)'"] .b i (Pbb P ' ')+' P..fi
(29f)
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As before, A,b and 6, b are the detunings of the test field E with respect to the two optical transitions, and we have in-
troduced pump processes in order to maintain some upper-level population. Here we especially call attention to the
(yy')'~ terms, which are due to the quantum interference of the decay processes. A derivation of these terms is given
in Refs. [3] and [13]. Solving for steady state to first order in the test 6eld, we obtain the following general expressions
for the real and imaginary parts of the susceptibility:

N —[(1+K )(y+ y, )+4r] ——(1—K )(y+y, )
eofiD *D

(1+K )(y+y, )y„
X y(1+K ) 1—

2(co„+y„)
(1+K )(y+y, )y„r (1+K )(y+y, )co„

2p'+
(~2 +y2 ) 2(co„+yg, )

b, +r —+—(1+K )(y+y, )

(1+K )(y+y, )y„
X —(1—K) 1— +2k

(1+K )(y+y, )y„—6(1+K ) 1—
2(co„.+y„.)

(1+K )(y+y, )y„.
+26

2(co„+y„)
(1+K )(y+y, )y„,

2(co„.+y„)

X —(1 —K )
—1—CO

2 T

—A(1+K2)+ 1—
T

2

4
b+r + —(1+—K )(y+y, )

2

N —[(1 +K)(y+y, )+4r] —(1——K )(y+y, )
eoRD *D 2 ' 4

(1+K )(y+y, )y„
(~2 +y2 )

(1+K )(y+y, )y„,
(co„+y„)

(p)
'Paa (30a)

(1+K )(y+y, )y„.
X y(1+K ) 1 —

2 2
2r—

2(co„.+y„)
(1+K )(y+y, )y„r (1+K )(y+y, )N„ (o)

'Paa (30b)

D D=
2

'2

4
b, +r + —( y+y)—(1+ K)

2

+ [4r +(1+K—)(y+ y, ) ]

The denominator term D*D takes the form lt and lt' are the dipole matrix elements for the a-b and
a' btransitions an-d lt, and p,' are the corresponding di-
pole matrix e1ements for the transitions to c. To better il-
lustrate the physical processes described by these com-
plex formulas, we assume r =y/2, r, =y, l2, and K= 1.
Then Eqs. (30) simplify to

and

(1 —K )(y+y, )

2

(31a)

Nb 2

(3y+y, )y, + ——2h +—y
epAD *D

2
aa (p)

ru„+(y+y, )
(32a)

1+—+ +I 1

'

y,
r rK C

(y+y, )y„(1+K )

2(co +y g )
x 1—

(3lb)
with K =p' lp =p,' lp, and r' =r, r,' =r, . The parameters

li2N
&o~*D

2b, (2y+2y, )

COaa' 3 2 ~~c

2
aa' [p)

co,', +(y+y, )' (32b)
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FIG. 19. Real (line) and imaginary (dashed) parts of the

linear susceptibility for the case of interfering radiative decays.
co~~ =2/, f~ =1'=p.

1.0

0.5

~ b~'

&Cl

~grlP P ) t
l~ lg

with

D*D =
22

—b, +2y +yy, +b, (3y+y, )

and

4(y+y, )

co„+(y+y, )

Figure 19 displays the real and imaginary parts of the
susceptibility as functions of the detuning b, =(h,b
+b, b)/2. Again, frequencies of perfect transparency
and a high index of refraction exist.

Interference of radiative decays occurs only if the tran-
sitions from a and a' share the same vacuum modes.
Hence, the spacing between the two levels is limited to
approximately 2y, and therefore the spectral shape of
g'(b, ) and y"(b, ) is narrow. As a consequence, already a
small Doppler broadening washes out the characteristic
behavior of the curves, as demonstrated in Fig. 20.

B. Interference of incoherent pump
processes —upper-level doublet

An essential disadvantage of the previous scheme is
that its practical implementation requires an atomic sys-
tem with two levels spaced so closely that they are within
twice the natural linewidth, and which also have the
same J and mJ quantum numbers. An effect similar to
the interference of radiative decay processes can be
achieved, however, by interference of incoherent pump
processes, which does not imply such restrictive condi-
tions [10].

In the case of interfering radiative decays, both affected
transitions need to couple in the same way to the same
vacuum modes, which have arbitrary polarizations.
Hence, the two upper levels must have the same J and II
quantum numbers. In the scheme discussed here, which
makes use of linearly polarized pump light, the interfer-
ence can be produced even between magnetic sublevels.
Moreover, in contrast to the previous case, the level spac-

ing need only be smaller than the spectral width of the
pump field.

Let us consider the level scheme sketched in Fig. 21.
An upper-level doublet a and a' is pumped to a level c
simultaneously by an incoherent field. When the decay
and pump processes are included, the equations of
motion for the density-matrix elements in an appropriate
rotating frame are

p~, (rq+rq+3 ~+yc+yb )pcc+"cpaa

+r,'p. ..+(r, r,')' (p, ,+p„), (33a)

I

I
IY zYb

!

FIG. 21. Interference effects between two upper levels a and
a' occur if both levels are driven to a level c with a strong in-
coherent pump field.

("
FIG. 20. Influence of Doppler broadening on y' (upper

curves) and y" (lower curves) for the case of interference of ra-
diative decays. The corresponding width is (a) 0, (b) 1y, (c) 2y,
(d) 5y, and (e) 10y. All other parameters are same as in Fig. 19.
Because of the narrow spectral structure of y(h), already a
small inhomogeneous broadening washes out the coherence
efFect.
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p„=—(y+r, )p„+rpbb+(r, +y, )p„

,'—(r,—r,')' (p...+p„). —i pb,
—c.e. , (33b)

p ' ' (y +r )p ' '+r pbb+(r +y )p

1
p,b

= — id.b+ (—r +r +y+r, ) p.bab a

~ )n -8E +8E
(rI: c } pg b '(pbb paa } i

g paa'

(33f)
1

Pa b
= — ib b+ —(r'+r+y'+r, '} p, b2

IE
,'(r,—r,'—)' (p...+p„) . i— p„, —c.c.

pbb
= —(r +r')pbb+ 3 p o + 3 Pa' '+ y bP

1p„,= — ice„+ ,(r, +r,'—+y+y') p„2

)(r,r,')—'~'—(p„+p, , —2p„)

.p'E' .pE+~
~ Pab '

~ Pba'~

(33c)

(33d)

(33e)
I

IE

(33g)
Here we have introduced the detunings 6,b and 6,.b of
the test-field frequency with respect to the two transitions
under investigation. The (r, r,')'~ terms in Eqs. (33) are
similar to the (yy')'~ terms in the case of interfering ra-
diative decays and originate from the interference of the
pump processes. A derivation of these terms is given in
Ref. [10]. As can be seen from Eq. (33c), the upper-level
coherence is proportional to the sum of the upper-level
population minus twice the population in the auxiliary
level c. In order to have large coherence, the decay rate
from level c should be large. Hence we assume a large
decay rate from level c to the lower level, y& ~~. Fur-
ther making the reasonable simplifying assumptions
p=p', y, =y'„r'=r, and r,'=r„we obtain for the real
and imaginary parts of the polarization

~2~P(0)g
2 r2+ry+ —(y —co„)+b

go%MD D 4
(co„,+y +2yr, +rr, ) —[co„+(y+r, ) ]r

~„,r, (2r +y+ r, ) (34a)

~2~P(0)

eofiMD *D (2r+y) r2+ —y2+ yr, +—r(y+r, ) —b, + co„+2—h (2r+y+r, )

( c02„,+y +2yr, + rr, ) —[co„+( y +r, ) ]r

—co„,r, r +—y + yr, +r(y+r, ) —b,—+—co„
1 2 1 z (34b)

where we have used the definitions

D'D=[r + 4y + ) yr, +r(y—+r, ) b+ „'co„]— —

+6 (2r+y+r, )

M=co„.+(y+r, )
(35}

'j.o-

05-

and A=(A, b+6, b)/2. For the ease discussed here, the
zeroth-order population in the two upper levels a and a'
are equal and have the value

r, +y rc1—
r (y+r, ) +co„

+2 (36)

I I I I I

-8 0

In Fig. 22 the real and imaginary parts of the suscepti-
bility are displayed as a function of the test-field detuning

Obviously, the coherence between the upper levels

FIG. 22. Real {line) and imaginary {dashed) parts of the
linear susceptibility for the case of interference via incoherent
pump processes {upper-level scheme). The corresponding pa-
rarneter values are co„=Sy,r, =0.Sy, r = 1.45@.
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e

FIG. 24. In contrast to the case discussed in Sec. IV A, in-

coherent pump processes can cause interferences and hence may
create coherence between a lower-level doublet b and b'.

broadening affects only the optical transition, since the
pump-field spectrum is assumed broad. As a conse-
quence, Doppler broadening averages the spectral struc-
ture displayed in Fig. 22 and rapidly diminishes the
achievable value of y' (see Fig. 23).

-1.0
I I I

0 a e

C. Interference of incoherent pump

processes —lower-level doublet

a/~
FIG. 23. Inhuence of Doppler broadening on g' (upper

curves) and y" (lower curves) for the case of interference of
pump processes. The corresponding width is (a) 0, (b) 1y, (c)
2y, (d) 5y, and (e) 10y. All other parameters are same as in Fig.
22.

generated by the interference of the two pump processes
can lead to frequency values for which the imaginary part
vanishes, while the real part of the susceptibility still has
a substantia1 value.

Since the coherence here is established between upper
levels, the refractive index at a point of vanishing absorp-
tion is sensitive to collisions. Moreover, Doppler

I

In contrast to the interference due to radiative decays,
the pump processes can be used to create lower-level
coherence. We now investigate such a situation.

We consider here an ensemble of atoms with the level
configuration sketched in Fig. 24. Two closely lying
lower levels b and b', with magnetic quantum numbers
m =1 and —1, are pumped by a linearly polarized in-
coherent field to a level c with I =0. Both transitions in-
teract with the same pump mode, establishing coherence
between b and b' Includ. ing the (indirect) pump process-
es to the upper lasing level a and the decay processes as
indicated in Fig. 24, we obtain the equations of motion of
the density matrix in an appropriate rotating frame:

P (",+», +y, +'Y, )P„+»,Ptb+r, 'pb b +(r, r,')' (pb, b+pbb, ),
. fiE* fi'E'

Y P + Pbb+ pb'b'+ p b+ p b C. C.

(37a)

(37b)

Pbb (r+r, )Pbb+yp„+r, p„—
2

(r r') (pb, b+pbb, ) —&'

p b c c (37c)

(" +" )Pb'b'+y P +"p (r, r, ) (pb b+pbb ) & p, b c.c. — (37d)

. fiE* fi'E
Pbb' bb' (" g+» )pbb~(r~l~ ) (pbb+pb b

—2p )
—j p b,

—
p (37e)

1/2 fiE ..fi E'"+"+y+y' P b , (" "') P—'—— P» P..) , Pbb, —— (37f)l, &y2 fi'E fiEP.b = ~.b +—( '+,'+y+y') p,„—(r, r,') p.„i (p, , ——p)—— (37g)

,b and 6,b are the detunings of the test field E with respect to the dipole-allowed transitions a-b and a-b'. Making the
«asonable assumptions thatfi =fi', r,' = r„y =y', y, =y,', and r'= r, we obtain for the real and imaginary parts of the
susceptibility
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f

goWMD *D
2 y +ry+ ( r c—ob b)+b, 1 ——[(r, +y, )[cobb+(r +r, ) ] r—, (r+r, )Ir.

r y (r +r ) cob'br, y, (Zy+ r +r, } (38a)

~2~ (0)
il

eofiMD D
(2y+r) y + r+—rr, +—y(r+r, ) —5 + c—o»b +26 (2y+r+r, )

1 ——[(r, +y, )[co»b+(r +r, ) ] y,—(r +r, ) j r, y,—(r +r, )
r

co—bbr, y, y + r+—rr, +—y(r+r, ) b, + c—ob.b—2 & 2 (38b)

where we have used the definitions

D'D =[y + 4r + ,'rr, +y—(r+r, ) —6 + ,'cob —b] +b (2y+r +r, )

M=[cob b+(r+r, ) ](r, +y, ) r, (r+r, )—,
(39)

r, [(r, +r) +cub b r, (r+—r, )]
P(bOb) 2+ —+

(r, +y, )[(r, +r) +cob b ) r, (r+—r, )
(40)

and have introduced the detuning b, =(b,,b +6,,b. )/2 of the test field with respect to the midfrequency of the two transi-
tions under investigation. The zeroth-order population p'bb'=p'b b of the lower levels is then

' —1

In Fig. 25 we display the real and imaginary parts of
the polarization as a function of h. Note that again some
pumping to the upper level a is necessary in order to have
a high refractive index and vanishing absorption. The
occurrence of frequency values with vanishing absorption
and high refractive index is evident.

The lower-level doublet structure considered here is, of
course, more robust against collisional broadening. How-
ever, because of the same reasons as in the previous case,
the system is again sensitive to Doppler broadening, as
displayed in Fig. 26.

V. PRACTICAL IMPLEMENTATION
OF INDEX ENHANCEMENT

In this section we want to propose some real atomic
systems in which quantum coherence and interference

x10-"6

may lead to an ultra-high index of refraction at a point of
zero absorption. A favorable atom for a practical realiza-
tion of the Raman scheme is samarium, ~hose level
scheme is indicated in Fig. 27. Because of its zero nu-
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FIG. 25. Real (line) and imaginary (dashed) parts of the
linear susceptibility for the case of interference via incoherent
pump processes (lower-level scheme). The corresponding pa-
rameter values are co„=5y, r, =0.5y, r = 1.45y.

FIG. 26. Influence of Doppler broadening on g' (upper
curves) and g" (lower curves) for the case of interference of
pump processes. The corresponding width is (a) 0, (b) 1y, (c)
2y, (d) 5y, and (e) 10y. All other parameters are same as in Fig.
25.
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J=O

J=O

indicated by double lines and an index enhancement is es-
tablished on the 794-nm test-field transition. The neces-
sary pump processes are indicated too.

556nm 571nm

VI. INDEX ENHANCEMENT VIA A MIXTURE
OF DIFFERENT TWO-LEVEL ATOMS VERSUS

INDEX ENHANCEMENT IN COHERENT ATOMS

3=2
4f66s~

J=O

1
) '~) o

FIG. 27. Atomic-level scheme of samarium.

5PV2

lk~

'6S va

1.3p, m

5Pfa
II

794 nm

7SVa

6pi/a Q

F~2
5p'/2

420 nrn

clear spin, there is no hyperfine splitting and the m J =+1
magnetic sublevels of the J=1 manifold of the even

ground state may serve as lower levels of the Raman
scheme. An applied magnetic field yields the required
level splitting. A strong driving field indicated in Fig. 27

by the double line propagating almost parallel to the
magnetic field creates atomic coherence between the two
sublevels. To avoid a strong optical pumping into the
m J =0 ground state by the driving field, it should have a
small field component parallel to the magnetic field. This
can be realized by providing a small angle between the
propagation direction of the field and the magnetic field.
An additional pump process from the mJ=O ground
state to the upper level of the 556-nm test-field transition
then leads to an ultrahigh index of refraction at a point of
zero absorption.

Other favorable atomic schemes are alkaline atoms like
sodium or rubidium. In Fig. 28, a possible realization of
(a) the upper-level microwave scheme and (b) the Raman
scheme in rubidium are indicated. The driving fields are

We have shown that atomic coherence in multilevel
atomic systems can lead to a transparent medium with an
ultralarge index of refraction. Perhaps a simpler way to
achieve a high index of refraction without using atomic
coherence is an incoherent superposition of two-level
atoms with slightly different transition frequencies. An
example for such a system is depicted in Fig. 29. One
kind of atom with the transition frequency co, is in its
ground state and another kind of atom with a slightly
different transition frequency cuz is in its excited state due
to some pumping mechanism. For some frequency
v, co, (v(co&, a probe field can experience zero absorp-
tion and a high index of refraction.

The calculation of the (exact) susceptibility for this
scheme is given in Appendix A. The two two-level model
obviously has the advantage of not requiring atomic
coherence, which might be difficult to achieve for some of
the schemes discussed. On the other hand, this model
has some essential disadvantages compared to the
coherent schemes, which would seem to make its practi-
cal implementation very difficult. Here we give a brief
discussion of some of the problems associated with the
two two-level model.

In the two two-level model the absorption (y") is pro-
portional to AN, BN~, wher—e A and B are some (posi-
tive) coefficients given in Eq. (A2b) and Ni and Nz are
the number densities of the two atomic species. For
AN, =BNz, we have zero absorption. However, spatial
fluctuations in N, or Nz will lead to fluctuations in g".
That is to say, the field in some regions will experience
amplification, while in other regions it will be absorbed.
Consequently, the field will develop large spatial intensity
fluctuations.

In order to avoid these fluctuations, the two kind of
atoms need to be mixed evenly and we cannot use atomic
beams. For atomic cells, however, the Doppler effect
must be taken into account. Because of the narrow struc-
ture of the susceptibility spectrum (of the order of a few

natural linewidths), the hig¹index effect will be washed

out completely by Doppler broadening.
In the case of three-level systems, where atomic coher-

F=g
5sig2

i ~=1

Fi25sv~~
QF~1

794 nm

E

a=

(b)

9

b

FIG. 28. Atomic-level scheme of rubidium. Realizations of
(a) the upper-level microwave and (b) the Raman scheme are in-

dicated.
FIG. 29. Incoherent superposition of two two-level schemes

with slightly different transition frequencies.
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ence is present, the cancellation of absorption is insensi-
tive to spatial fluctuations of the atomic density. Hence
we can use atomic beams to avoid Doppler broadening.
Moreover, there are certain schemes, such as the
Raman-driven scheme, which are highly insensitive to
Doppler broadening.

Furthermore, in order to mix the two kinds of two-
level atoms evenly, we need collisions. However, the
transition of the two species are very close so that col-
lisions will tend to produce a rapid population exchange
between the two kinds of atoms. The time between two
successive collisions is of the order of 10 sec at 1 Torr
and room temperature, which is of the same order as the
radiative decay rate from the upper to the lower level of
the optical transition. For an index of refraction of the
order of 10, a much higher atomic density is necessary,
which implies a much higher pressure unless the system
is cooled. However, at low temperatures the fluctuations
in N, and Nz will become large leading to large fluctua-
tions in y".

Finally, we note that in the two-level case, population
inversion in one of the atomic species is required. In the
phaseonium high-index material, of course, this is not the
case. For these reasons a practical realization of a trans-
parent high-index medium on the basis of an incoherent
mixture of two-level atoms seems to be problematic.

VII. SUMMARY AND DISCUSSION

In the present paper we investigated various atomic
systems that we consider as most appropriate to provide
a high index of refraction while the absorption is small
or, in principle, even vanishes. The underlying principles
are quantum interference effects in a phaseonium gas. In
a three-level system with dipole-allowed transitions from
a single level to a pair of closely spaced levels, atomic
coherence between the level pair causes interference
terms in the total absorption and emission probability.
Similar interference efFects can occur if the lower or
upper level of a single dipole-allowed transition is strong-
ly coupled to another level, so that different absorption
and/or emission pathways exist which may interfere.

Without population in the upper level(s) of the test-
field transition, the coherence and interference effects
lead to a large dip in the absorption spectrum, so that ab-
sorption can be canceled for particular values of the test-
field frequency. At the same time the real part of the sus-
ceptibility vanishes. If, however, there is some popula-
tion in the upper level, points of vanishing absorption and
large real part of the susceptibility exists in the spectrum.

It is worth noting that y' may have a positive or nega-
tive sign and hence n =1+y' may become negative also.
However, as explained in detail in Appendix 8, the roots
of this quadratic complex equation must be defined in
such a way that the real part of the complex refractive in-
dex (n =n'+ in") is always positive.

At the beginning of our paper we introduced the sim-
plest realization of a phaseonium gas, the case of injected
atomic coherence. In Sec. II we discussed the establish-
ment of atomic coherence via strong coherent fields ap-
plied simultaneously with the test field to the atomic sys-

tern. We derived expressions for the real and imaginary
part of the linear susceptibility for the cases of a
microwave-driven upper- and lower-level doublet and a
Rarnan-driven pair of lower states, and discussed the
influence of coherence-diminishing processes such as
Doppler broadening.

Comparing the two microwave schemes, the upper-
level one turned out to be more favorable with respect to
the maximum achievable value of the refractive index be-
cause of the fact that the off-diagonal decay rate of the
forbidden transition c-a does not involve the strong decay
rate of an allowed optical transition. On the other hand,
in the lower-level scheme the coherence is less diminished
by collisions. With regard to Doppler broadening, the
achievable refractive index decreases strongly in both mi-
crowave cases except for very large values of the Rabi
frequency 0„,in which case, however, y' is already small
without Doppler broadening.

Among the schemes, we analyze the one most resistant
to Doppler broadening and collisional effects is the Ra-
man scheme. If the driving Raman field and the test field
have the same propagation direction, both transitions ex-
perience a Doppler shift in the same direction. As a
consequence the Raman scheme is less sensitive to
Doppler broadening. The coherence produced between
the lower levels is relatively insensitive to collisions. In
contrast to the lower-level microwave case coherence
does not require a difference in the zeroth-order popula-
tions of the two lower levels in the Raman scheme, an ad-
vantage for possible experimental implementation. The
Raman scheme provides two other interesting features.
In all other schemes high dispersion and vanishing ab-
sorption is achievable only for a definite test-field fre-
quency. Moreover there is always a frequency region
where the system shows gain. In the Raman scheme,
however, nearly vanishing absorption and a high refrac-
tivity can be achieved over a broad spectral region.
Furthermore, this is possible without having gain at any
frequency.

In addition to the coherently driven schemes discussed
in Sec. III, there are cases in which coherence or interfer-
ence effects can be obtained by incoherent means. An in-
teresting case from the theoretical point of view is the in-
terference of radiative decays from two closely spaced
levels with the same J and mJ quantum numbers to com-
mon ground levels. A practical realization of this decay
interference, however, seems to be almost impossible in
atomic systems. In addition, because of the narrow struc-
tures in the susceptibility spectrum, small Doppler
broadening destroys the interference effects. The condi-
tions for interference in radiative decays are so restrictive
because the spontaneous transitions from the two upper
levels need to share the same vacuum modes, which can
have arbitrary polarizations.

These conditions become, however, unnecessary if the
interference effect is created by an incoherent pump field
of well-defined polarization. In this case, magnetic sub-
levels, for instance, may serve as the two levels and their
spacing is limited only by the width of the pump field
spectrum. In contrast to the interference between radia-
tive decays, here we can generate upper- and lower-level
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coherence by means of an incoherent driving field. The
lower-level case is more advantageous with respect to col-
lisions. However, both schemes are fairly sensitive to
Doppler broadening, since the pump field is unaffected by
the velocity distribution.

We would like to emphasize that we have considered in
this paper only the linear response of the medium on the
test field. Therefore the effect of the test field on the
medium has been neglected —in contrast to the effect of
the strong driving field. This is valid only for small test-
field intensities. In particular, the Rabi frequency of the
test-field transition has to be small compared to the radia-
tive decay rate y of this transition and small compared to
the Rabi frequency of the driving field. Since for some
applications of the hig¹index material larger test-field
strengths are necessary, the nonlinear properties of the
different schemes need to be investigated. This is planned
to be the subject of a future publication [14].
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(A3a)

I „+I,
G =2I „+I 1+ (A3b)

r,.+r„a =r,.r.,+r,.r„,+r„r., i+
R

(A3c)

~O= , (~.-b ~.b»
2(—co,b+co~ b ) v,

(A3d)

(A3e)

The linear response of an atomic system on an electric
field E has been expressed by the complex susceptibility

where I
&

is the longitudinal decay rate from level a to
level P; R is the pump rate from g to e; y & is the
transversal decay rate between a and P; and lbl is the
intensity of the probe field. Note that N& /N& is usually
only a few percent.

APPENDIX 8: RELATION BETWEEN n AND y

X +&X (81)
APPENDIX A: ULTRA-HIGH INDEX

OF REFRACTION
IN TWO TWO-LEVEL SCHEMES

P =N~,p b+N2/b. 2p b (A 1)

where/t, &2 are the dipole matrix moments of the corre-
sponding optical transitions, and p,& and p, .b are the off-

diagonal matrix elements of the atomic density matrix for
the corresponding transitions. The off-diagonal elements

p,b and p, b can be easily obtained from the steady-state
solution of the equation of motion. We find for the sus-
ceptibility, g=y'+iy":

Let us consider two kinds of two-level atoms as shown
in Fig. 29. A probe field couples the transition a-b and
a'-b' which have slightly different transition frequencies
co, and co2. Without the probe field, the first kind of
atoms are most populated in a due to some pumping
mechanism from level g to a via e, and the atoms of the
second kind are in the ground state b'. We assume num-
ber densities N, and N2 for the first and second kind of
atoms.

The total polarization of the mixture is given by

According to Eqs. (1), y governs the relation between the
test field E and the linear polarization P,

P(z, t)=e f dr[ad'(r)+ig"(r)]E(z, t —r),
which appears as the driving term in the wave equation
for the electric field:

8E
aZ2

$2E $2P
e2

=Po (83)

2 CO
k — n =0,2

C2

where

(8&)

n (co)=1+y(co) . (86)

The wave propagation in a linear medium can be de-
scribed most conveniently in terms of the (complex) index
of refraction n Makin. g a plane-wave ansatz for Eq. (83),

E E et(+Iz —cut)
0 (84)

with Re(k) ~0 (the two different signs correspond to
propagation in the positive or negative z direction), one
obtains from (82) and (83) the dispersion relation

with

N', (6—coo)p, /eo

[y,b+(b, —coo) ]+y,bGQ, @ /D

N~2( coo+ 5, ) /eo

[r!b+(~+~o) ]+2r bl/2&l'I. b

N I r.A/&o

[y,b+(6 —coo) ]+y,„GQ,@ /D

N&2r. b «o2

[y b(+~ +coo])+2r,'b l/~2@1 I, b

(A2a)

(A2b)

As usual we set

I+X=
I I+pie",

n =(l I+pl)' e'
(B8a)

(88b)

k= (87)
C

In order to have Re(k) ~0 we have to choose the ap-
propriate solution of the complex quadratic equation
(86). The square root maps two Riemann sheets of the
complex y plane on a single sheet. The branch cut is
chosen along the negative y axis as indicated in Fig. 30,
and the appropriate solution of Eq. (86) can be expressed
in terms of polar coordinates as
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II
n

A'

in the positive z direction in a vacuum incident to the
boundary of the medium at z =0 will be reflected. Inside
the medium there is an evanescent exponentially decreas-
ing field.

The solution of Eq. (B6) with the negative sign corre-
sponds to

C' C conk=—
C

(B9)

FIG. 30. The choice of a physically appropriate solution of
Eq. (B6) corresponds to the definition of the branch cut in the
two-sheet complex y plane starting at g = —1 along the negative
g' axis. The points A, B, and C are mapped onto the points A',
B', and C'. 1/2[(1+x)'+x"]'"+1+x'

2
(B10a)

instead of (B7). Here, however, we use the common nota-
tion given in Eq. (B6). Using Cartesian coordinates, Eqs.
(B8) can be written in the forms

where 8=0 corresponds to the positive y' axis. Note that
points on the branch cut in the complex y plane are
mapped on the positive n" axis. This choice can be most
easily understood considering a medium in the half space
z & 0 with y' —1 and y"=0. A plane wave propagating

I:(1+x)'+x"]'"—I —x'
2

with sgn(X")=1 for X"=0.

' 1/2

sgn(X" ), (B10b)
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