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We study the production of total entropy in the situation where light has kinetic effects on atoms or
molecules. The radiation entropy has the standard form of boson entropy, and the matter entropy is the
sum of Boltzmann entropies for excited and nonexcited particles. The matter entropy density is separat-
ed into three parts, corresponding to the total velocity distribution, the distribution over internal states,
and the correlation between the two. Each of these parts can be changed by the interaction with light.
We calculate explicitly the production of both matter and photon entropy in several cases where light is
known to induce macroscopic flows in gases. The production rate of matter entropy is expressed in mac-
roscopic quantities. Some other examples, such as laser cooling, are considered briefly. In all cases, the
increase of photon entropy is found to be several orders of magnitude larger than the decrease of matter

entropy.

PACS number(s): 05.70.Ln, 42.50.Vk, 05.20.Dd

I. INTRODUCTION

Light can create order in matter. Since the advent of
lasers it has become possible to manipulate atoms, mole-
cules, and ions in an accurately controllable way; see, for
instance, [1-3]. One utilizes the laser photon momen-
tum, well defined both in direction and in magnitude, to
control the particle velocities. For example, workers
have recently succeeded in cooling atoms to very low
temperatures in the microkelvin region using so-called
polarization gradient cooling [4,5]. Here, the polariza-
tion of the photons plays an important role as well. Fi-
nally, it has become possible to trap neutral atoms in a
light field. Also single ions in an electromagnetic trap
can be cooled down to a few millikelvins [6,7]. For a
small number of ions crystals can be formed [8]. Hence,
with laser light the accessible volume in phase space of
matter can be diminished dramatically, both by narrow-
ing the velocity spread of the particles and by confining
them to a small spatial volume.

Furthermore, light can induce macroscopic flows of
particles, translational energy, or particle momentum in a
gas at room temperature or higher and with much higher
densities such that particle collisions are important.
These effects are not based on the transfer of photon
momentum, since the particle momentum is much
higher, so that particles exchange much larger amounts
of momentum during velocity-changing collisions. Now
a difference in collisional properties of excited and nonex-
cited particles may lead to the net transport of particle
momentum and energy. Experiments have been done on
several manifestations of these light-induced kinetic
effects (LIKE). Macroscopic flows have been demon-
strated in gases resulting from collisions of the optically
active gas with (i) a foreign buffer gas [9], (ii) the walls of
a cell [10], and (iii) the gas itself [11]. In these cases the
light keeps the gas out of thermal equilibrium, resulting
in light-induced gradients of density, mean velocity, or
translational temperature. The velocity distribution
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function of the gas is no longer a Maxwellian, even in a
stationary state.

Thus light is apparently able to lower the entropy of
matter. Furthermore, light can keep matter in a (station-
ary) state with entropy lower than in thermal equilibri-
um. Moreover, when matter in a closed volume is kept in
a stationary state, but not in thermal equilibrium, there
can be a negative production of matter entropy in the
bulk. This must be compensated for by a flow of entropy
through the wall so that the entropy of the outside world
(the wall) decreases. Because of the second law of ther-
modynamics, the entropy of the photons must increase in
all of these cases. In the just-mentioned examples, the
unidirectional character of the laser photons is crucial, as
is the subsequent spontaneous emission of the photon.
Spontaneously emitted photons are spread over all direc-
tions, and thus have a larger entropy, because the number
of modes occupied by the photons increases. This is the
most important reason why the entropy in the radiation
field increases. Weinstein [12] compared the increase of
photon entropy with the decrease of matter entropy re-
sulting from spontaneous decay of a sample of atoms.

When both matter and photons are near thermal equi-
librium, the entropy exchange during their relaxation to-
wards complete equilibrium is more subtle. Changes in
radiation entropy are brought about by Doppler shifts in
the frequencies of the photons. The presence of a black
boundary rather than a perfectly reflecting wall is crucial
for the process of reaching a state with a single tempera-
ture for matter and photons [13].

Eu and Mao [14] recently developed a kinetic theory
for both photons and particles. In this way they obtain
an “H theorem.” That is, a quantity is found that always
increases during the interactions of particles and photons
except in complete thermal equilibrium. In thermal equi-
librium this quantity corresponds to the sum of the ther-
modynamical entropies of matter and radiation.

In the present paper we first obtain, following the ap-
proach of Eu and Mao with a slight modification, an H
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theorem using the standard expression for nonequilibri-
um entropy for both matter and photons. We also indi-
cate some similarities between the approximations used
to derive this H theorem, on the one hand, and the well-
known Boltzmann H theorem on the other hand.

Section III deals with general aspects of the local pro-
duction of matter entropy, such as the sign and interpre-
tation of various terms. Furthermore, a natural separa-
tion of the matter entropy itself arises, with each part
having a clear interpretation. In Sec. IV we give an ex-
pression for the production of photon entropy resulting
from the scattering of laser photons by matter.

Subsequently we calculate the rate of matter entropy
production under the typical experimental conditions en-
countered in LIKE. The entropy production takes the
standard form of the product of a macroscopic flux and
the gradient of a corresponding macroscopic quantity
[15].

To our knowledge there is only one paper in which an
explicit calculation is given on the entropy production in
a particular laser-cooling experiment [16]. In the present
paper we will be mainly concerned with LIKE in gases.
We give explicit expressions for the change of entropy of
the gas as a function of the laser parameters and particle
properties, and for the resulting change of the radiation
entropy. These two expressions are compared for typical
values of the controllable parameters. The gain of order
in the gas turns out to be, typically, at least six orders of
magnitude smaller than the loss of order in the photon
field, which confirms that these processes are highly ir-
reversible. Finally, we also consider briefly other experi-
ments, such as laser cooling, in which laser photons
transfer part of their order to matter, and estimate the
efficiency of these processes.

II. ENTROPY AND H THEOREMS

The Boltzmann equation for a single-component gas is
a rate equation for the distribution function f (c,r,?) over
velocity ¢ and position r at time ¢. It reads [15,17]

of ‘ , (1)
coll

o —c-Vf+ ar
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the rate of change due to collisions. Here W(c,c,|c,,c3)
is the transition probability density for velocity changes
in an elastic collision

C,C1<>Cy,C3 .

This transition probability density contains 8§ functions
that take care of conservation of momentum and energy.
Because of reversibility of elastic collisions, it satisfies

W(C,Cllcz,c:,):W(Cz,c:;lc’cl) . (3)
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This was, in fact, already used in (2).
The Boltzmann entropy density s is defined by
sp=—k [dc fIn(af), @

with k Boltzmann’s constant and @ an arbitrary constant
such that af is dimensionless. From the quantum-
mechanical density of states, one finds that a is equal to
[15]

a=h’/m3, (5)

where m is the atomic mass. For this value of q, af is the
number of atoms in a unit cell in phase space with dimen-
sion dmcdr=h>.

With the help of the reversibility property (3) and the
obvious symmetry relation

W (cy,cles,c,)=W(c,clcyc;) (6)
one can prove the H theorem [15,17]

dsp

>
at =0

coll

Thus entropy always increases during collisions. Only in
thermal equilibrium does the entropy remain constant.
As is well known, the H theorem leads to the velocity dis-
tribution function of a gas in thermal equilibrium, the
Maxwell distribution. It is given by
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= exp[—m (c—Vv)?/2kT]. (7)

27kT

Wylc)=n

The number density n, the mean velocity v, and the
translational temperature 7T are defined in terms of the
distribution function f,

n=fdcf, nv-——fdccf,

(8)

inkT= [deim(c—v)f .
The Boltzmann equation is an irreversible rate equation
for the particle distribution functions. It is based on two
assumptions. First, the time between two collisions is as-
sumed to be long compared with the duration of a col-
lision, so that only binary collisions have to be con-
sidered. Second, the velocity distributions of the collision
partners are assumed to be uncorrelated before the col-
lision. This “Stosszahlansatz” brings in the irreversibility
of the Boltzmann equation. These assumptions are
justified if the gas is sufficiently dilute. One can then de-
scribe the gas by the one-particle distribution function
flc,r1,t).

The evolution of the internal state of a two-level atom
in a radiation field can also be described by rate equa-
tions, provided that the bandwidth of the field is broad
compared with the homogeneous linewidth of the atom.
Then the optical coherences can be adiabatically elim-
inated and the atoms are described by the velocity distri-
bution functions f, and S, for the two internal states, the
excited state e and the ground state g. The photon field
can be described by a photon distribution function
f+(k,1,1), defined as the number of photons per mode, ir-
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respective of polarization. Since 2(27) 3dk is the densi-
ty of modes with wave vector in dk, the normalization of
f, is given by

202m73 [dk f,(k)=n, , 9)

with n, the number of photons per unit volume. The fac-
tor of 2 is due to the two different modes corresponding
to the two independent possible polarization directions
for each photon.

Next, we introduce a transition probability density
Wic, Icg,k) for the spontaneous emission process

ce~—>cg,k

in which an excited particle with velocity c, decays to the
ground state with velocity c, emitting a photon with
momentum k and arbitrary polarization. It is normalized
so as to give the Einstein coefficient for spontaneous
emission A4,

4=202m) " [dk [de,W(c,le,.k) (10)

independent of c,. The transition probability density
contains a 6 function because of conservation of momen-
tum and a Lorentzian around the Doppler-shifted reso-
nance frequency with a width proportional to 4. Since
the ratio between the rates of stimulated and spontaneous
emission into a given mode is given by the number of
photons in that mode [18], the rate of stimulated emission
is given by

B(c,)=202m) " [dk [dc,W(c,lc,,k)f, (k) , (11)

which now does depend on c, owing to the Doppler
effect. We only have to account for single-photon transi-
tions. This is analogous to the neglect of n-particle col-
lisions with n > 2 in the Boltzmann equation.

The equations describing radiative transitions for the
velocity distribution functions f, and f, of excited- and

[ d(s,, +s,) ’
rad

ey =—k2(2m) 7} [ dk[Inf, —In(1+£,)]

af,
at lrad_k 2 deilnfi
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ground-state atoms and for the photon distribution func-
tion f, can now be given in a form similar to the
Boltzmann equation. When we use the reversibility of
stimulated transitions, we find

af. -
a | =20 [dk [de,wic,le, k)
XUefr=fe(1+ 1],
afy -
= rad=2(2w) 3[dk [de,Wic,le,,k)
X{=fof i Hf I+ ],
(12)
af,
] e e

X[=fofr tf (1]

We now introduce the total entropy density s as the sum

s=s,, +s, , (13)
with
sm=—k 3 [defintaf,), (14)
i=e,g

the matter entropy density, where a is defined in (5), and
with
s,=—k202m) 7 [ dk[f,Inf,—(1+f)In(1+£,)] ,
(15)

the photon entropy density, in the standard form of en-
tropy for a boson system [15]. For the local production
of total entropy during radiative transitions, we obtain

9f;
at rad

i=eg

=k(2m) 7 [dk [de, [de,Wic,le.K)[Inf, +In(1+f,)=Inf, ~Inf, [ f(1+ f, )= fo f,]

where we used that the total number of atoms is locally
conserved. Since the last term is non-negative, the entro-
py density s obeys the H theorem

3s

>
3 >0. (16)

rad

Eu and Mao [14] demonstrated with the help of this H
theorem that the unique state of thermodynamic equilib-
rium is described by the Maxwell velocity distribution
and the Boltzmann population distribution for the parti-

—

cles, and the Planck distribution for the photons. Note,
however, that they treat spontaneous emission as result-
ing from the absorption of a photon with momentum
zero, and thus introduce a discontinuity in f,(k) for
k=0. The form of their evolution equations therefore
differs from ours.

Levich [19] discusses the derivation of kinetic equa-
tions in general, the validity of the assumptions made,
and how irreversibility is introduced. Furthermore, he
gives a kinetic equation, similar to our result, for elec-
trons in interaction with photons in the special case of
isotropic radiation.
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III. MATTER ENTROPY

A. Separation of matter entropy production

In this section we consider the production of matter
entropy in the light-absorbing gas and discuss the contri-
butions to this production from the physical processes
that change the microscopic state of a gas. The distribu-
tion functions f; for i =e,g evolve through stimulated
transitions, spontaneous-emission processes, velocity-
changing collisions, and free flow of the gas particles.
Thus the evolution equations contain the following terms,
respectively:

of; _ | dfi af;
at B at stim at spon
af; afi
* at coll+ [ ot ]free ) 4

The first term is given by the terms in (12) that are pro-
portional to the photon distribution function f, and the
second term is given by the remaining term in (12). The
collision terms are Boltzmann operators analogous to the
Boltzmann expression (2). Finally free flow is described
by

af;

—5; =—C‘Vf,- . (18)

free

Correspondingly the production of matter entropy densi-
ty can be expressed as

9s,, |95, N 9s,,
at B ot stim at spon
0s,, 9s,,
+ | —= —_ . (19)
ot coll ot free

The local production of matter entropy resulting from
stimulated transitions is given by

0s,, _ 9f;

'T an KZ Jdeins W]

=k202m) 2 [dk [de, [de,Wie,|cy,k)
Xfrlfe=fe)
XIn(f,/f) . (20)

stim

This expression is non-negative since stimulated transi-
tions tend to equalize the distribution functions, thereby
maximizing the mixing. For the production of matter en-
tropy due to spontaneous emissions, one analogously
finds

os,,
ot

of;

at

=—k3 [denf,

spon spon

=k202m) 7 [dk [de, [de,Wie,lc,,k)

X foIn(f, /f,) -
@1)

When f,(c,)= f,(c,) for all velocities ¢, and c, that
differ by at most the maximum possible value of #k/m,
this expression is nonpositive. The reason is that spon-
taneous emissions will lead to a smaller fraction of excit-
ed atoms and thereby will decrease the mixing. The con-
tribution of collisions to the production of entropy has
the same form as in a standard two-component gas
[15,17] and is non-negative because of Boltzmann’s
theorem for gas mixtures. Finally, the rate of entropy
production resulting from free flow can be written as

s, _
ot free B

with the entropy flow J, given by
J,=—k 3 [dccfin(af,) . (23)

i=eg

-V, , (22)

The net entropy production due to the free flow of a gas
that is contained in a closed volume V is then equal, up to
its sign, to the net flow of entropy through the boundary
of V. The former can therefore also be interpreted as the
entropy production at the boundary. For this reason, we
will not include the effect of free flow when considering
the total entropy production in the bulk of the gas.

B. Separation of the matter entropy

We have seen that an H theorem can be found for the
interaction between light and matter if we choose (14) as
the matter entropy density. This matter entropy is the
sum of Boltzmann entropies of each internal state sepa-
rately. The distribution functions f; for i =e,g can gen-
erally be written in the form

file)=p;flc)[1+¢;(c)] . (24)

Here f = f, + f, is the total velocity distribution function
and p; is the local fraction of particles in the state i, with
P.tpy;=1. The functions ¢; are a measure for the corre-
lation between the velocity and the internal state of the
particles. The ¢, satisfy, by definition,

[dcre,=0, 3 pig,=0. (25)
i=eg

The entropy density s,, can now be split up into three
parts,

S, =sp—kn 3 p;np;
i=eg

—k 3 [depf(1+4,)In(1+4,) . (26)

i=eg
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The first term on the right-hand side is the Boltzmann en-
tropy density in terms of the total distribution function f.
It can be interpreted as a measure of disorder in the gas
viewed as a whole, i.e., when one does not distinguish be-
tween excited- and ground-state atoms. The second term,
which is the entropy of mixing, is non-negative since the
population fractions are smaller than 1. The third term is
nonpositive, since the function (1+4¢,)In(1+¢,) is larger
than ¢; and the average of f¢@; vanishes because of (25).
On the other hand, the sum of the second and the third
term is non-negative, since it is the velocity average of
—k3,fiIn(f;/f), and f; is not larger than f. Hence s,
is equal to the Boltzmann entropy density sp if and only
if all atoms are in the ground state.

IV. PRODUCTION OF PHOTON ENTROPY

In this section we wish to find an expression for the
production of photon entropy in the case that a laser irra-
diates a gas of two-level atoms. Since photons from the
laser beam are redistributed over a much larger number
of modes in the fluorescence light, the contribution of
laser photons to the total production of photon entropy is
negligible. Thus we have to deal only with spontaneously
emitted photons.

We assume that the radiating atoms are confined to a
closed spatial volume V. The local photon entropy pro-
duction in this volume is determined by the local photon
number density, which cannot be expressed in the local
density of excited atoms alone but by some average over
all excited atoms. Therefore we will not consider the lo-
cal entropy production within the volume ¥, but calcu-
late the entropy of the photons after they have left the
volume V. More precisely, we will calculate the entropy
of photons emitted from V that cross a sphere around V
with a radius R that is much larger than the maximum
linear dimensions d,, of V. This entropy will turn out to
be independent of R. A similar approach was adopted by
Weinstein [12]. Consider the photons emitted during a
time interval dt at some instant of time. A time T later,
these photons are located in a spherical shell of radius
R =cT. The production of photon entropy is equal to the
entropy of the photons in this shell. The physical picture
is that the photons travel freely (without having interac-
tion) after being spontaneously emitted so that their en-
tropy remains constant. Here we use that reabsorption of
fluorescence photons can be neglected under typical ex-
perimental conditions.

We define

I {0,Q,1,t)dodQ drdt

to be the number of photons spontaneously emitted in a
time interval dt, in a volume dr, into a spectral region
dw, and into a solid angle dQ. It is nonvanishing only in
V. The local production rate of photons is determined by
the local excited state density n,, so that I is normalized
according to

Jdo [d0I(0,Q,r5,0=An,(1,1), 27)

with A4 the spontaneous decay rate. Photons emitted in a

time interval dt into the direction d () occupy after a time
R /c a volume dV =R *dQcdt. For the entropy of these
photons we need the number of occupied modes in this
volume dV. This number is proportional to the solid an-
gle S(Q)/R? subtended by the radiating volume ¥ in the
direction of Q as viewed from dV, where S(Q) is defined
as the area of the projection of the volume ¥V onto a plane
perpendicular to Q. (Note that by assumption S <<R?2.)
The number of occupied modes in dV is then given by

2 2
2 a)da)-idea)dw

27} ¢* R? 473c?

which is independent of R. Thus the number of modes
occupied by photons during their free expansion remains
constant and the same holds for their entropy. The num-
ber of photons spontaneously emitted at time ¢ in V per
mode will be denoted by f,(w,(,?), and can now be cal-
culated. When we assume that the intensity is uniform
over a solid angle dQ), f, can be found form the normali-
zation (9),

SdQdt , (28)

3.2
tﬂ-—cf dr I (0,Q,1,1) . (29)
o S(Q) v

This photon density indeed does not have a local form,
since it involves integration of I over the volume V. The
corresponding photon entropy production rate is found
from (15)

as, _ »’S(Q)
=~k [do[da 4o LSS,

filo,Q,t)=

—(14+f,)In(1+£,)] .
(30)

We have already assumed that reabsorption of spontane-
ously emitted photons can be neglected. This implies
f, <<1. Then we can simplify (30) to the form

ds,
- =kfdwfdeVdrI(a),Q,r,z)[1—1nf,(a>,Q,t)] .

(3D

The entropy per photon is therefore equal to k [1—Inf, ],
which is larger than k.

V. PRODUCTION OF MATTER ENTROPY IN LIKE

We now wish to focus our attention on the entropy
production in LIKE, where light induces macroscopic
flows of particles, momentum, or energy in a gas. There-
fore we introduce three assumptions which are justified in
most experiments on the various manifestations of LIKE.
First we assume that the gas is at room temperature, so
that photon momentum is small compared to atomic
momentum, at least for visible and infrared photons.
Second we assume that the total gas density is sufficiently
high, so that collisions take place at a time scale compa-
rable to that of radiative transitions. Then the effects of
resonance radiation pressure can be neglected. Third we
assume that the mean free path I is small compared with
a typical macroscopic distance L over which the gas is
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uniform.

The third assumption implies that the evolution of the
gas due to collisions and radiative transitions is much fas-
ter than the evolution due to free flow of the gas particles.
This can be formally indicated by introducing a parame-
ter € in the microscopic evolution equations in front of
terms that contain a scale factor 7 /L <<1. The role of €
is to distinguish the rapid local processes (collisions and
radiative transitions) from the slow processes (free flow or
transport), and hence it indicates the existence of two
time scales. This enables one to define macroscopic quan-
tities by the requirement that they are conserved on the
rapid time scale {22]. They are thus locally conserved
and can change only due to transport. They consequent-
ly vary only on the slow, macroscopic time scale. The
idea is that the rapid processes drive the system to a local
steady state. Such quasistationary states evolve then only
slowly. The macroscopic state of the gas is determined
completely by these locally conserved quantities.

The evolution equations for the distribution functions
of excited- and ground-state atom are given by

af.
€ ;; =—Af,+B(f,—f)+J,—ecVf,,

of (32)
e—atg—=Afe—B(fg—fe)+Jg—ec'Vfg .

The rate of stimulated emission B (c) was defined in (11)
and is here equal to the rate of stimulated absorption be-
cause the transfer of photon momentum has been neglect-
ed. For the same reason the evolution terms correspond-
ing to radiative transitions have a simplified form as com-
pared to (12); when photon momentum is neglected, W in
(20) and (21) contains a 8 function 8(c, —c, ), which can
be integrated out using (10) and (11). The operators J;
give the rate of change of f; resulting from velocity-
changing collisions with gas particles and correspond to
Boltzmann operators. The effect of free flow is deter-
mined by the spatial gradients of the distribution func-
tions and its order of magnitude is therefore smaller than
the preceding terms by //L. The factor € on the left-
hand side indicate that the distribution functions vary
slowly, which is true after a transient time of a few col-
lisions and a few photon emissions and absorptions.

The parameter € serves as an expansion parameter for
the distribution functions and can be set equal to 1 in the
end. Expansion in € effectively means expansion n 7/L.
For instance, the zeroth-order distribution functions are
the solutions of the O (€°) part of the evolution equations
(32),

—AfJ+B(f{—fO)+I0=0,

(33)
Af—B(fQ—fA+J2=0.
These equations determine f° uniquely for given local
values of the macroscopic quantities.

The macroscopic evolution equations are obtained by
multiplying (32) with the conserved quantities and in-
tegrating over c. These equations contain macroscopic
fluxes that drive the evolution of the macroscopic quanti-
ties and they are defined in terms of the distribution func-

tions. These fluxes are also expanded in ¢, i.e., in the ra-
tio 7/L. Macroscopic fluxes resulting from zeroth-order
distribution functions are, by definition, zeroth-order
fluxes and fluxes proportional to gradients of the macro-
scopic quantities are first-order fluxes.

A. Broadband light

We now wish to express the local production rates of
matter entropy, such as (20) and (21), in terms of gra-
dients of macroscopic quantities and in macroscopic
fluxes. This is possible when both functions f, and f, are
close to a Maxwellian. This is the case when B (c) varies
only slightly over the Maxwellian distribution. Then we
can write for the stimulated transition rate [21]

B(c)=B,+e€B,(c) . (34)

Here B, is independent of the particle velocity ¢ and cor-
responds to the flat part of the laser spectrum. For sim-
plicity we have chosen the same parameter € to indicate
that the velocity-dependent part of the excitation rate B,
is much smaller than B, namely by approximately a fac-
tor I /L. Since the excitation is not velocity selective to
zeroth order, the zeroth-order solutions f? of (33) are
Maxwellians

FAc)=pWyc), (35)

where the fractions of excited and ground-state atoms are
given to zeroth order by
B,

0—1— 0—__ Y A
P=1=P= g (36)

Under normal experimental conditions reabsorption of
spontaneously emitted photons can be neglected, so that
the excitation rate is determined directly by the laser in-
tensity.

1. Single-component gas

First we consider the production of matter entropy due
to spontaneous emissions in a single-component gas.
This entropy is produced on the rapid time scale and the
spontaneous entropy production is of zeroth order in €.
We find

05 ,, Se
| =kdA [dcf,In=% . 37
at spon f fg

This is just the simplified version of (21). Now we apply
the separation (24) and expand up to first order in €. Ob-
viously ¢; vanishes to zeroth order, so that W,¢ in-
tegrates to zero up to first order. This leads to the equa-
tion

=k An,In2% | (38)

ot ]smm Pg

{ as,,
which is correct up to first order, provided that the popu-
lation fractions p; are calculated up to first order.

The entropy production due to stimulated transitions is
also rapid and of zeroth order in €, and is given by
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Os,,

ot

=kfch(fe—fg)ln£, (39)
stim f g
which is just the simplified version of (20). Now we sub-
stitute one of the Egs. (32) to rewrite B(f, —f,) and ex-
pand up to first order, while using that the zeroth-order
terms J ' or J*' vanish because the zeroth-order distri-
butions are Maxwellian. Using that p, and p, add up to

one, we derive

os,, 9
—_— —_— + .
Y v-V

P.
=—kAn,In— —kn EY

stim pg

2 pilnp; .

i=eg

(40)

The variations of p; with time and position are deter-
mined by the temporal and spatial variations of the light
intensity which are assumed to be slow.

The production rates of entropy (38) due to spontane-
ous emission and (40) due to stimulated transitions cancel
on the rapid time scale. This is due to the fact that the
internal state of the atom reaches a local steady state on
the rapid time scale. The production of entropy due to

|

>

9 . I
P VT + T.Vv

9s,,

coll at ] rad

—k
at "

up to and including second order in €. The first term
here corresponds to the first term in (26). Thus it gives
the production of the Boltzmann entropy density sz and
it has the standard form of entropy production in a pure
gas without a radiation field present [15]. The heat
flux q and the pressure anisotropy Il in (43) are defined in
terms of the total distribution function f = f, + f, by

q= [deim(c—viAc—v)f ,

- o (44)

II=fa’c[m(c—~v)(c——v)—§m(c——v)2 1f,
with T the three-dimensional unit tensor. In broadband
light these fluxes are of first order in € since the zeroth-
order Maxwellian part of the distribution functions gives
a vanishing contribution. The first term in (43) is of
second order in €. The second term is just the contribu-
tion (41) of radiative transitions to the entropy produc-
tion and corresponds to the second term in (26). It is of
first order in €. The third term describes effects of the
velocity-selective part of the excitation B, and of the gra-
dients of n, v, and T. Only these processes can modify
the form of the partial distribution functions relative to
the total distribution function, and hence can lead to non-
vanishing (first-order) partial relative velocities V; for
i =e,g, defined by

nV;= [de(c—v)f; . 45)

ar v-V

——
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radiative transitions occurs therefore only on the slow
time scale and we find from the sum of (38) and (40)

0Os,,
ot

d
_+ .
ar v-V

=—kn
rad

> pinp; . 41)

i=eg,

The entropy production due to the combined effect of all
rapid processes, radiative transitions, and collisions can
be given up to second order in € as a product of first-order
fluxes and (first-order) gradients of the corresponding
macroscopic quantities. We use a standard technique
from gas kinetics to obtain this expression [17]. One re-
places the time derivative of the distribution functions
due to the rapid processes by its first-order expression, as
obtained from the O (¢€) part of (32),

af; af;
at ot

ii-+c-V

—€ at

rad

(piWo) (42)

coll

since the zeroth-order part (33) vanishes. When one uses
the macroscopic evolution equations for n, v, and T
[17,20] to eliminate the time derivative of the Maxwellian
W, one finds after some algebra

n;v;
S plnp,—kn 3 —Vp;, (43)

i=eg i=e,g 1

This the third term in (43) corresponds to the third part
of the entropy in (26) and it is of second order in €.

Equation (43) can be compared with the standard ex-
pression for the entropy production in a binary gas mix-
ture in the absence of a radiation field [15], in the special
case that the two components have identical masses. The
expressions have the same form, except for the second
line in (43), which is missing in the standard expression.
The reason is that in standard gas kinetics the partial
densities can vary only slowly through transport, whereas
in a light field they are determined by the rapid radiative
transitions.

2. Vapor in buffer gas

In a binary gas mixture both components contribute to
the production of entropy. We are especially interested
in the optical active component (a) of the gas. Therefore
we assume the other component, the buffer gas (b), to be
in complete thermal equilibrium with a uniform density,
a vanishing mean velocity, and a uniform temperature.
This is possible when the buffer gas is much more abun-
dant than the active component. It acts as a reservoir of
momentum and energy. The entropy production in the
bulk is then entirely due to flows and gradients in the ac-
tive gas (a) and is given by
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0s,, 0s,,, ]
at coll ot rad
=—kV,-Vn,—kn i+VH-V > p;lnp;
ot i=eg
n;V;
—kn, S ——L.vp, . (46)
i=eg Pi

These expressions are obtained by applying the same
techniques as in Sec. V A 1 and are valid up to second or-
der in €. Here n, is the density of the active gas and V,
its mean velocity relative to the buffer gas. The partial
relative velocities V; for i =e,g are defined relative to the
velocity of the active gas V.

The difference between (43) and (46) is the first term,
which now contains the gradient of the density n, and
the velocity V,, but not the gradients of temperature and
velocity. The reason is that now the density n, of the di-
lute component is the only macroscopic quantity which
uniquely determines the local stationary state and there-
fore V, is the only macroscopic flux [23].

B. Narrowband light

Laser light does not have a flat spectrum, on the con-
trary, it usually is nearly monochromatic. When the
homogeneous linewidth is small compared with the
Doppler width, the laser will burn a hole in the velocity
distribution function of the ground state and will create a
peak in the excited state. The distribution functions will
deviate appreciably from a Maxwellian and the results
(43) and (46) do not apply. Since narrow-band light will
induce larger fluxes than broadband light, we will ex-
clusively consider the production of entropy due to these
narrow structures. Furthermore, the interesting feature
of kinetic effects of light is not so much hole burning, but
rather the possibility of modifying the total distribution
function (leading to macroscopic fluxes). Therefore we
will calculate the local production of Boltzmann entropy
sg when considering explicit examples in Sec. VI. One
finds just the standard expressions, valid up to and in-
cluding second order in €,

os Os i
—= 25— | Lyr+ By 47)
at coll at rad T T
for a single-component gas and
ds ds
2 —2 | =—kV,-Vn, (48)
ot coll at rad

for a vapor in a buffer gas. They are valid when the total
distribution function is close to the Maxwellian W,. This
condition is fulfilled, even in narrow-band light, when the
number of excited atoms is relatively small or when the
gas-kinetic difference between excited- and ground-state
atoms is small, since then light-induced changes in the to-
tal distribution function will also remain small. When
photon momentum is neglected, the rates of change (47)
and (48) of s are in fact entirely due to collisions.

C. Illustrations

In a gas in a closed volume without external (radiation)
fields present, the entropy productions (43) and (46)
reduce to (47) and (48) and must always be positive be-
cause of the second law of thermodynamics. In standard
gas dynamics, the heat flux and pressure anisotropy in a
single-component gas are given by [17]

q=—AVT , fi=—-2q(Vv),, (49)

with (), denoting the symmetrical traceless part. The
heat conductivity A and the viscosity 7 are positive con-
stants, so that (47) is indeed never negative. Likewise, in
a binary gas mixture consisting of a dilute active gas and
a much more abundant buffer gas, the partial relative ve-
locity V, of the active component is given by [17]

n,V,=—DVn, , (50)

with D >0 the diffusion constant. Here the entropy pro-
duction (48) also is never negative. -

In a resonant radiation field, however, fluxes q, II, and
V, can be induced independent of the presence of gra-
dients. Therefore the entropy production can be nega-
tive. For example, when a temperature gradient exists
and the light-induced heat flux is sufficiently large so that
the total heat flux is directed along the temperature gra-
dient, the light acts as a heat pump and matter entropy
will be destroyed. The latter happens also when light in-
duces a net drift of the optically active atoms directed
from lower to higher density.

Negative entropy production is possible even when the
gas in a closed volume is in a stationary state, so that the
entropy of the gas itself remains constant. Hence the
(negative) entropy production in the bulk of the gas must
be compensated for by a flow of (negative) entropy
through the boundaries to the outside world. In other
words, there is a steady flow of entropy from the outside
world into the volume. Thus the entropy of the outside
world decreases at a constant rate. Note that the radia-
tion field is not in a stationary state, since there is a
steady flow of photons into the fluorescence modes.

VI. DISCUSSION AND EXAMPLES

We now apply the results obtained so far to some ex-
amples in order to find how efficient the decreasing of en-
tropy of matter by photons is in practical cases. As ar-
gued in Sec. VB we will consider the production of
Boltzmann entropy and use Egs. (47) and (48) for its pro-
duction rate. We distinguish two cases and two
definitions of the efficiency.

(i) A gas in thermal equilibrium is irradiated by light
and reaches a stationary state after some time. The en-
tropy of the gas has changed by a negative amount ASj
in this time interval, while the entropy of the photons has
increased by AS,. The efficiency of this transient process
is defined as

_ 1as,|
™ AS

r
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Note that photon entropy is still being produced in the
stationary state, when the photons are keeping the gas in
a state out of thermal equilibrium.

(ii) A gas irradiated by light reaches a stationary state
in which there is a constant negative Boltzmann entropy
production 3Sy /9t. Photon entropy is produced at a rate
aS, /9t. Now the efficiency of maintaining the stationary
state is defined as

aSp
at

as,
ot

U

A. Light-induced drift

One of the most spectacular phenomena in the field of
light-induced kinetic effects is light-induced drift (LID).
When the optically active component of a gas mixture is
velocity-selectively excited, two counterpropagating
fluxes of excited and ground-state atoms arise. The fric-
tion forces on these two fluxes due to collisions with the
buffer gas are different when the velocity damping rates
&, of excited atoms and §, of ground-state atoms differ.
Then the two fluxes do not cancel and a net flux n,V, of
active atoms, pushed by the buffer gas, arises, with n, the
density of active atoms and V, the drift velocity. For a
general expression for n,V,, see [24]. The magnitude of
the LID effect is proportional to the relative difference
between the damping rates,

a= —gﬁ . (51)
Ce

In general this is a positive quantity and a typical value
for atoms in a noble buffer gas is 10%. The LID velocity
can reach values up to about 50 m/s [9]. The deviation
from thermal equilibrium can thus be rather large.

We now consider a closed cylindrical cell of length L
and radius r. The light is assumed to be uniform over a
cross section of the cell so that the problem is in fact one
dimensional. Since the particle fluxes must vanish in a
stationary state, the entropy production (48) vanishes so
that 7,=0 for this process. We therefore calculate the
efficiency 7,. The entropy of the optically active gas de-
creases because the gas is pushed to one end of the cell
due to the LID effect. When the velocity distribution
function is close to a Maxwellian, the entropy change re-
sults only from the change from a uniform density # to a
nonuniform density n (z) for 0=z < L and one finds

ASp= —kﬂrzfoLdz[n (z)Inn (z)—7 Ink ]
=—kar? [ “dzn (2Nn(n (2)/7) , (52)

where both the n and 7 are normalized to the total num-
ber of active atoms in the cell N,. The deviation from
the Maxwell distribution gives an additional negative
contribution.

For explicit results for this case we now make use of
the results of Ref. [25]. Only two variables are needed to
describe the physical system consisting of gas and laser
light: the particle density n(z) and a scaled light intensi-
ty J(z) such that J has the same dimension as n. It turns
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out that the sum of » and J is constant as a function of z.
Therefore the density varies sharply where the absorption
of the laser light is large. When saturation can be
neglected, n and J can be expressed in the form [25]

n(z)=H/{l1+exp[ —qH (z —z4)]} ,

(53)
J(z)=H/{1+exp[qH (z —z()]} ,

for 0=z =<L. Here z; is the position where n and J have
the same value H /2. The parameter q is the absorption
cross section. For z —z, << —1/qH, the density varies
exponentially according to n(z)=H exp[qH (z —zy)].
For z —z,>>1/qH, the density approaches the maximal
value H. The transition region around z =z, has a width
of the order of 1/qH. The interesting case arises when
the density varies appreciably over the cell. This is true
when the transition region lies within the cell and is
reasonably well separated from the cell ends. This re-
quires that the vapor is optically thick and that the inten-
sity is sufficiently high. More precisely, when we intro-
duce the optical thickness x by

x =qnL (54)
and the reduced intensity
y=H/n, (55)

we require that x >>1, y >>1. Then the vapor of active
atoms is compressed to the value H at a region of length
L /y of the cell. From (52) we find that the Boltzmann
entropy change of the vapor amounts to

ASy~—kmr?

—f’LH InH —L7lnfi [(=—kN,Iny .  (56)

An example of typical values for the various parameters
in a LID experiment of the type described here can be
found in [9], p. 175. One finds there the values x =8.4
and y =12. The entropy of the gas thus decreases by
about 2.5 k per atom. From [9] we also obtain the num-
ber of spontaneously emitted photons per atom needed to
reach the stationary state, namely more than roughly 10°.
Thus the matter entropy decreases by about 10~° k per
spontaneously emitted photon. For the contribution to
the radiation entropy of one photon we need the number
of photons per mode. An estimate for a typical value of
f, is obtained from (29) when we use that S({2) is larger
than the minimum visible area of the cylinder which is
given by the minimum of mr? and 2rL, and when we use
that the spontaneously emitted photons have a spectral
range larger than the homogeneous linewidth determined
by A so that Aw> 10" %w,. This leads to the estimate

f,<1073, (57)

much smaller than unity. Hence we can apply (31),
which states that the entropy per photon is given by
k(1—Inf,). Hence the entropy of one photon increases
by at least approximately 10k. The efficiency of LID is
thus 17, <107 Note that the entropy per photon does
not depend sensitively on f,, which justifies using rough
estimates. It also implies that the efficiency is mainly
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determined by the number of photons per atom needed to
reach a stationary state since the matter entropy decrease
per atom is of the same order of magnitude as the in-
crease in radiation entropy per photon.

B. Light-induced heat flux

In a one-component gas LID is not possible since there
is no buffer gas to supply momentum, However, light
can induce both a pressure anisotropy Il and a heat flux q
[26,27]. In this section we consider the effect of a light-
induced heat flux and neglect the pressure anisotropy.
(By properly choosing the laser detuning from resonance
one can make II negligibly small [20].)

When the light propagates along the z direction, the
heat flux will also be in this direction. Thus light trans-
ports heat from one side of the cell to the other. When
these two ends of the cell are kept at different tempera-
tures, there is a nonvanishing entropy production given
by (47), even in a stationary state. This entropy produc-
tion is negative when the total heat flux is directed along
the imposed temperature gradient. We estimate the
efficiency according to the second definition 7,. There
are two contributions to the total heat flux, viz., the stan-
dard heat conduction and the light-induced heat flux,

q=—}»%;T+q0 , (58)
with A the heat conductivity. In a stationary state, this
heat flux is uniform. We use the expression from [20] for
the light-induced heat flux g,. It has the order of magni-
tude

172

An,
) (59

D=0

kT
m

with n, the density of excited atoms and «, the collision
rate of ground-state atoms. The local entropy production
(47) contains the product of ¢ and dT /dz. For given
value of g, this entropy production is maximally nega-
tive when the temperature difference is chosen such that

aT_a
dz 2\ °

The matter entropy production is then quadratic in g,.
When we use the expression [21]

2
A= 5k°nT

2m Kg

(60)

(61)

for the heat conductivity we can give the total entropy
production as

—aSp 1 N, , Ak
at ~_10— Na a mkANe . (62)

Here N, is the total number of excited atoms in the sta-
tionary state and thus AN, is the number of photons
spontaneously emitted per unit time. The Boltzmann en-
tropy loss is much less than one k per photon since each
of the factors in front of kAN, is (much) smaller than
unity. For typical values of the factors one finds this

number to be about 10”7 k per photon. Since, typically,
the photon entropy is at least one k per photon,
<1077,

C. Other cases

In this section we briefly discuss some other experi-
ments in which lasers are used to manipulate particles
and thereby lower the particles’ entropy.

1. Laser cooling

We consider the example given by Hansch and
Schawlow [28] in their proposal to cool atoms by what is
now known as Doppler cooling. The (one-dimensional)
temperature of a gas of magnesium atoms can be reduced
by a factor of about 2500 by using laser photons with a
frequency somewhat lower than a particular resonance
frequency. The entropy of the atoms decreases by
k In2500~ 8k per atom and each photon gains more than
one unit of k (again, this number does not sensitively de-
pend on the number of photons per mode). Here, too, the
efficiency of the cooling process is determined by the
number of spontaneously emitted photons per atom. The
number of photons per atom to reach the quoted reduc-
tion of temperature is about 1.3 X 10* which leads to an
efficiency 7;=~107>. In [16] a much lower estimate for
the efficiency was obtained. This discrepancy seems to
arise from confusing the entropy per atom with the total
entropy.

2. Light-induced viscous flow

Light-induced viscous flow may arise in a pure gas
from a pressure anisotropy resulting from a transverse
gradient of the intensity [11]. A net particle flow can
then be induced from lower to higher pressure. Analo-
gously to the case of a light-induced heat flux negative
entropy will be produced in an open cell when a pressure
gradient is maintained in a stationary state. This produc-
tion will be quadratic in the light-induced pressure an-
isotropy. Since the effect is proportional to the gradient
of the intensity, it is of first order in the number € <<1,
defined in Sec. V. Therefore the efficiency 7, is smaller
by a factor of € compared with the case of a (zeroth-
order) heat flux.

3. Light-induced kinetic effects in molecular gas

When experiments are done in molecular gases, it is no
longer true that each absorbed laser photon will be reem-
itted, either spontaneously or by stimulated emission. In-
stead, molecules deexcite rapidly in inelastic collisions.
The photon energy is, in the end, transferred into transla-
tional energy. Each absorbed photon will contribute
therefore to raising the temperature and hence the entro-
py of the molecules. On the average, a photon with ener-
gy #fiw will raise the temperature of one molecule by
#iw/k. The vibrational excitation energy is of the order
of 0.15 eV, which corresponds to 5kT at room tempera-
ture. The entropy of the molecules will then increase by
k Infiw /kT =~ 1.5k per absorbed photon. Thus for molec-



1448

ular gases this entropy gain per photon is somewhat
smaller than for atomic gases. On the other hand, the pa-
rameter determining the strength of LIKE—the relative
difference in collisional properties between excited and
ground-state particles—is for vibrationally excited mole-
cules also smaller, by at least a factor of 10, than for elec-
tronically excited atoms. The efficiency, either 7, or 7,,
is therefore even smaller in molecular gases.

VII. CONCLUSIONS

We considered the entropy balance during the resonant
interaction between light and matter. The form of the
rate equations describing this interaction leads to a par-
ticular definition of matter and photon entropy such that
their sum always increases until matter and photons are
in thermal equilibrium. The entropy of matter is the sum
of the standard Boltzmann entropies for excited and
nonexcited atoms, and the entropy of photons has the
standard form of boson entropy. We discussed the analo-
gies between Boltzmann’s H theorem and the approxima-
tions needed to derive it, and the H theorem for the in-
teraction of light and matter.

We divided the matter entropy into three parts: a part
related to the translational degrees of freedom of the
atoms, a part arising from the internal state of the atoms
(the entropy of mixing), and a part describing the correla-
tion between the translational and internal degrees of
freedom. For illustrative purposes, we derived expres-
sions for the local production of matter entropy in a gas
irradiated by broadband light, which can be separated
into three corresponding parts.
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We showed that light can lower the entropy of matter
and can keep matter in a stationary state out of thermal
equilibrium. In both cases the entropy of the photons
must increase. In the latter case, there can be a flow of
entropy from the outside world into a closed volume con-
taining the matter. The entropy of the volume’s bound-
ary then decreases at a constant rate. Of course, the en-
tropy of the radiation field increases also at a constant
and larger rate.

We explicitly treated some cases where a gas gains or-
der due to interaction with a laser field. In particular, we
discussed light-induced drift, where particles move from
lower to higher density. We calculated the entropy loss
and compared it with the gain of photon entropy. The
latter is found to be larger by, typically at least six orders
of magnitude. This small efficiency is mainly due to the
large number of photons per atom needed to reach the
final state. The same is true for laser cooling, leading to
typical efficiencies of about 107>, As a second example
we treated a light-induced heat flow directed from lower
to higher temperature. In a stationary state, photon en-
tropy is produced at a rate that is typically seven to eight
orders of magnitude larger than the rate at which matter
entropy is destroyed.
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