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Interferometer within a molecule
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We show how interferometry can be carried out within a molecule. The method can be used to test
semiclassical quantum mechanics and to map out Born-Oppenheimer energy surfaces. The interference
occurs between molecular wave packets that travel through different molecular states. Packet splitting
and recombination is carried out at laser-induced level crossings. We have compared the exact
quantum-mechanical behavior (calculated numerically on a Cray computer) with a pseudoclassical
method.

PACS number(s) 34.50.Rk, 03.65.—w, 82.30.—b, 42.50.—p

I. INTRODUCTION

In quantum mechanics, every time a final state can be
reached classically through two different pathways, an in-
terference term appears from the two contributions. In
optics, this is the manifestation of the wave nature of
light which has been utilized in many ways for beam ma-
nipulations and precision measurements. With particles,
the electron microscope and neutron diffractometer are
based on the corresponding quantum effect. Only recent-
ly has it become possible to observe interference with
atomic particles scattered from strong radiation or ma-
terial structures; for an up to date review of the situation
see Ref. [1].

In this paper we are going to look at another inter-
ferometric effect occurring inside a molecule excited in a
time-dependent way. Using femtosecond-long laser
pulses, it has now become possible to excite well-defined
molecular states and to study their evolution in real time
[2]. By the use of additional lasers, one can mix the wave
packet with other levels in a controlled way, and redistri-
bute the original excitation on sets of levels with different
spatial dependence. If the wave packets are able to
recombine, they will display quantum-mechanical in-
terference which carries information about the history of
both components of the mixture. Thus we have created a
matter interferometer inside the molecule.

In chemical physics various coherent methods have
been suggested for the steering of molecular reactions.
For a survey of these suggestions, see the publication [3]
and references therein. That work presents an experi-
ment involving the interference between wave packets,
but in contradistinction to our work it treats wave pack-
ets moving on a single excited electronic energy surface.
Their interference derives from the time difference be-
tween their coherent excitation, and hence the setup is
analogous to a Ramsey fringe experiment instead of a
separated-path interferometer.

We illustrate the operation of a simple molecular inter-
ferometer in Fig. 1(a). This shows two Born-
Oppenheimer potential functions depending on the one-
dimensional nuclear coordinate X. We assume that the

initial wave packet P, is excited to the potential surface 2
at the position Xo. It starts to move down the potential
slope, but soon encounters and interacts with another lev-
el 1, which is coupled to level 2 by a laser in resonance
with 1 and 2 at X, and also at Xb. Between these places
the state consists of a linear superposition of the two
wave packets g«and P,«which propagate independently
until the second crossing at Xb. Here there is a coherent
remixing of the packets, which have acquired different
phases in traveling from X, to Xb In Fig.. 1(a) we see
that part of P» is mixed with g», through photoabsorp-
tion to form

gatv.

And likewise, part of t)'I«, is mixed with

f« through a stimulated-emission process to form /tv.
The mixing process is coherent and we shall see that it
adds its own phase shifts. These shifts, together with the
difference in phase accumulated between X, and X&, re-
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FIG. 1. (a) This figure shows the level scheme of the inter-
ferometer. The two coupled levels are labeled 1 and 2. The ini-
tial packet g& travels on level 2 until it encounters the resonance
position with the laser at X, . It is then split into lb» and lb&«

which propagate independently to the second crossing at Xb
where the recombination takes place and the interference is pro-
duced. The outputs are taken at g,v and Pv. (b) An optical ana-

log of the wave-mechanical interferometer. Optical input is at 1

or 2 corresponding to input at level 1 or level 2. The light is
split at the partially silvered mirror a and travels through two
different paths. The path lengths may be varied by moving the
mirror pair a'-b'. The light is recombined at the mirror b and
the output taken from 1' or 2'.
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suit in interference and fringes. A slight change in phase
can dramatically alter the yield [(P»~ or ~gv~ in Fig.
1(a)] on levels 1 or 2 at a detection point well beyond the
crossings. This is the physical model to be discussed in
the rest of the paper.

To illuminate the operation of our molecular system as
an interferometer, me show its optical analogue in Fig.
l(b). The incoming light signal g& enters the beam split-
ter a and is divided into two paths as f» and P»&. These
go through the system in difFerent ways and are recom-
bined at the splitter b into the signal f&v which shows in-

terference depending on the phases acquired along the
two paths. The signal fv arises in a similar fashion.

The optical interferometer can be operated in a pulsed
manner as our molecular system, but it is usually used in
the steady state. The theoretical treatment is then car-
ried out using the optical modes of the system, which in-
clude the appropriate splitting and remixing of the sig-
nals. In our molecular case, we introduce a similar
steady-state description in terms of constant-energy
eigenmodes of the potential configuration combined with
an equivalent particle ensemble. Treating this in a semi-
classical way we develop an analytic description which
can be compared with the exact quantum-mechanical re-
sults obtained numerically from a Cray computer. The
theoretical treatment consists in part of an ad hac ap-
proach which is justified by its consequences.

In Sec. II we define the details of the molecular system
described above and give an example of the quantum-
mechanical motion of a packet. Then in Sec. III we de-
velop an analytic description based on an equivalent par-
ticle ensemble and time-independent wave functions. In
Sec. IV we compare the results from theory with the ex-
act numerical results and find that they agree surprisingly
well. Finally, Sec. V summarizes our results, discusses
the application of the interferometer, and suggests some
extensions and improvements.

II. THE MODEL

At the beginning of the experiment a molecular wave
packet is created at the position Xo on level 2. %e have
already discussed how such packets may be created and
modeled in Ref. [4]. The packet is initially stationary on
the level 2 and it mill accelerate downwards until it is
close to X, where it is afFected by the laser and distribut-
ed between the two levels. Stimulated processes may
transfer the packet upwards to level 1, preserving its
coherence. The amount of transfer depends on the way
the energy difference between the two levels changes as
well as the intensity of the laser. So by varying the pa-
rameters one can achieve any distribution of the state be-
tween the two levels. The particular form of the poten-
tials is not too important in this paper though for numer-
ical convenience we will use Morse potentials or similar
exponential functions. %e have chosen the upper surface
1 shown in Fig. 1(a) to be of a dissociating type and the
lower surface 2 may contain some bound states. %e will
denote the spatial dependence on energy by the potentials
as Vl, (X) and V/2(X).

At the end of the experiment the final detection can be

carried out in many ways. There may be fluorescence
from one of the levels, or a photoabsorption measurement
can be made. If the final state is a dissociating one, then
the final products may have signatures in their spectros-
copy. If the dissociating products are ions then the final
detection is even easier. The same kind of detection can
be used in conjunction with the field-ionization tech-
nique.

As we discussed in Refs. [5,6], when there is resonance
between the Born-Oppenheimer levels and the laser we
can model the situation with a system of crossing energy
levels that are "dressed" with the laser photons. That is,
if we shift the level 2 up by a single photon's energy we
obtain level crossings at X, and Xb as shown in Fig. 2. In
the rotating-wave approximation the wave packet obeys a
set of coupled Schrodinger equations on the two levels
[& 6]:

8
i fi %,(X, T) = ~ — +Vl, (X) %,(X, T)

aT ' '
2m gg2

+V+2(X, T),

8i' +2(X, T)= — +%2(X)+%co %2(X,T)
2m Q/2

T, =2mX, /A

and we introduce the parameters

t =T/T„x=X/X„xo=Xo/X„
x, =X,/X„.. . .

%ith the definition of the scaled coupling, and scaled and
shifted potentials,
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FIG. 2. This shows the shifted levels producing laser-induced

crossings. The following parameters define the potentials as

given in Eq. (6) and are the same in all the following figures:
21=1245.0, a) = 1.4, B)=3.0X 10', A2 =60.0, a2 =2.9,
B2= —1800.0, and b2=2. 0. All these parameters are in the
scaled units of Eq. (2). Specifically to this figure, we have
5=7.0X10 . Adjusting the value of 6 will move the levels

closer together or further apart.

+V%)(X,T) .

The functions 0, and %2 are the wave-function corn-

ponents that propagate on the two levels. The com-
ponents are coupled by V which represents the time-
independent interaction of the laser. The energy of a
laser photon is Ace and this is the shift of level 2 that
creates the crossings. For numerical convenience we re-
scale these equations by factors 7; and I, related by
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2mX,
V:—

2mX,
U, (x)= Q, (X,x ),

2mX,
U2(x) = Qz(X, x )+coT, ,

we find the scaled equations

i 4—', (x, t ) = — + U, (x) .%&(x,t )+ V+2(x, t ),
dt Bx

2+U2(x) %z(x, t)+VV, (x, t) .
Bx

,((II [IIIl Lll lL
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We have solved these equations by a numerical method
outlined in Ref. [4] which preserves the full quantum-
mechanical behavior of the wave functions. An example
of the wave-packet motion is given in Figs. 3(a) and 3(b)
where we plot P&=~4&(x, t)~ and Pz=~+z(x, t)~ as a
function of both x and t. The initial packet is a Gaussian
function of width 0.0=0.01 in scaled units. The positions
of the crossings are marked by the thin time-independent

lines on the surface. It is seen that the packets both
disappear and appear in the region of these crossings.
The potentials used in these calculations have been
chosen to have the form (as illustrated in Fig. 2)

U, (x)= A, e ' +8, —b, /2,

U2(x)= A2e ' +B2e ' +b, /2,
where 8& is a shift factor (determined by the molecular
structure) and 6 is a detuning factor that determines the
position of the two levels with respect to each other.
Changing the frequency of the laser effectively changes
the value of h. We have chosen 3 &, A2, B2, a &, az, and
b2 to be constants.

The initial packet is seen in Fig. 3(a). As it accelerates
to the first crossing it rapidly loses height. This is partly
because of the shape of the potential it moves in. Like a
narrow packet in a harmonic oscillator, it gets wider as it
moves down into the potential well. However, the well is
not harmonic; there is dispersion and the initial packet
never recovers. It loses height also because its probabili-
ty is being transferred to the level 2, as may be seen in
Fig. 3(b). This transfer is possible only near the crossings
where the difference in energy between U, and U2 is
comparable to the coupling V.

After the first crossing, some Rabi flopping may be
clearly seen due to the coherence between the two pack-
ets on different surfaces. These oscillations rapidly wash
out because of both dispersion and the energy difference
as the packets leave the crossing region. Between the
crossings the packets propagate independently until they
arrive at the second crossing. In this example, the packet
on level 1 arrives first, and mostly disappears to level 2
IFig. 3(b)] leaving only a trail of bumps. The main part of
the packet from level 2 arrives later and forms the major
part of the final probability.

This interferometer differs from usual devices in that it
operates in a pulsed mode, we have packets propagating
through the system. Thus if the time difference is too
great in traveling along the two paths, the final packets
may separate and we then lose the interference effect.
That is, we do not have a single packet f,v or fv in Fig.
1(a), but pairs of spatially separated packets as almost
seems the case in Fig. 3. Any phase difference between
the packets would lose significance when they are well
separated. It would still be possible to make simple semi-
classical predictions by adding the probabilities of packet
pairs separately. However, the case of partially overlap-
ping packets is beyond such a simple approach. In the
next section we will see how we can overcome this by a
pseudoclassical model which at its heart always retains
the interference effect.

III. A PSKUDQCLASS!CAL MODEL

FIG. 3. This figure sho~s the wave-packet motion on the two
levels as a function x and t. The probability density P2(x, t) is
plotted in (a) and P &(x, t) is shown in (b). The initial position of
the wave packet is xo= —3.79, its width is a.0=0.01, and the
coupling is V=2.0X 10 . Other parameters are the same as in
Fig. 2.

Because the main observable in our system is a phase
difference, no model based on a purely classical propaga-
tion can give the right result. In this section we will com-
bine an approach based on particle propagation and semi-
classical wave functions to calculate the observable entity
in our molecular interferometer.



1416 B.M. GARRAWAY AND S. STENHOLM 46

We start by exciting a localized wave packet from
some unspecified ground state to level 2. When the excit-
ing pulse is short enough, we showed in Ref. [4], that the
shape of the ground state is faithfully reproduced on the
excited level, which is taken to be a Born-Oppenheimer
state of the molecule. In the same work, we argued that
many features of the quantum description can be repro-
duced by splitting up the original wave function into an
equivalent ensemble of classical particles with a probabil-
ity distribution ~a~(x, )~ corresponding to the spatial
density of the ground-state wave function at point x;. If
we assume the ground-state potential to be (approximate-
ly) harmonic, we may use

a~(x;)=(2~oo) ' exp
(x; —xo)

4' o

This wave packet which is transferred to level 2 has zero
initial velocity. Equation (7) will be valid over a finite in-
terval; parts of the initial wave function outside this are
assumed to have a negligible effect on the outcome of the
experiment. The coefficients az{x;) will be used below to
give the probability of finding the energy of the particle,
E;, in a unique way. We assume the corresponding parti-
cle of the equivalent ensemble to propagate through the
potential configuration without interference from parti-
cles with other energies. The individual particles excited
at x; with zero velocity will have the total energy

E;—:Uz(x;) .

We treat the future fate of this particle in a time-
independent way analogous to that used in scattering
theory.

The states of the system in the basis of the Born-
Oppenheimer levels will be written as vectors

U, (x)
U(x) =

Ui(x) (14)

of the states to

4(x)=W(x)%(x) .

If we choose the angle 8 according to

tan0(x) = —2V/b, U(x),

with

The energy eigenvalue E is a parameter that will be fol-
lowed through the calculation.

If we now observe some property of the wave function
at a position beyond the second crossing, xf )xb, we find

a probability amplitude

e'(xf ) =G(xf, x; IE)e'(x;)

To obtain the propagator G, we should solve Eq. (13).
When we calculate G(xf, x; ~E') we have to include the

effect of the coupling V. We do this in two ways: first we
carry out an adiabatic diagonalization of the potential
matrix, to obtain the approximate eigenstates. These
should be a good approximation away from the level
crossings. Then to include the effect of the crossings, we
use a Landau-Zener matching of the wave functions com-
ing into, and going out of, the crossing regions. To the
extent that the potentials can be linearized near the cross-
ings, this is an exact result.

We start by a local unitary transformation

cos0/2 —sin0/2
Wx =

sin0/2 cos0/2

b, U(x) = U, (x )
—Uz(x) (19)

which we also write as

(9) we will be able to diagonalize U and we find that Eq. (13)
becomes

%'(x)=g, (x)e, +Pz(x)ez,

where

(10) —I —2y +U(x) 4(x) =E@(x),
B2 a

Bx

where we have a velocity-dependent coupling

(20)

e, =
1

0 and cp = 0

1 (x)= 0i/2
0'/2

0 (21)

As the probability of excitation of the particle at x =x,
is unity, we impose the boundary condition

and the new potential matrix

6'++ (0'/2) —0"/2
0

%(x =x, )=
1

=ez . (12)
U{x)= t9" /2 + (0'/2) (22)

This boundary condition will be imposed on the solution
of the full coupled eigenvalue problem,

a'—I +U(x) 4 (x)=E+ (x),
Bx

(13)

where I is the unit matrix and we have introduced the po-
tential matrix

The adiabatic potential curves are now given by

6+(x)=[Ui(x)+ Uz(x)]/2+[6, U(x) /4+ V ]'i . (23)

In the following we adopt an adiabatic approximation,
i.e., we assume the angle 0 to depend on x slowly enough
that we can neglect all derivatives of 0. This decouples
the two components of Eq. (20) allowing us to write down
the eigenfunctions P+(x ) as the eigenfunctions of the
separate potentials 8+(x). As seen from Eq. (18) this
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procedure cannot hold near the level crossings. That is
why we need the Landau-Zener approach to match the
states across these.

In the region where the adiabatic approximation holds
we may use the WKB wave functions in the form

TE
a

—&1 P—e'~

v'p V 1 P—e (31)

The Landau-Zener calculation [8] gives exactly the
transfer matrix

1 X
(x,E)= exp. i J k (x')dx'

[k (x)]'i

where we have introduced

(24) where the transfer probability

P =exp( —mA),

and the phase

(32)

k, (x)=[E—6 (x)]'i (25)

with a denoting the adiabatic levels (a=+). In this way
the functions P (x,E) constitute the components of an
approximation to the 4 (x) eigenfunctions, which in
turn determine 4 (x). We have chosen to refer the phase
factor of P to the crossing point x„where it is taken
to be zero. The change of phase between the crossings
can accordingly be expressed in terms of the adiabatic
states by the matrix

exp{i 4+(xb, x, }] 0
S (xb, x, )=

where

exp[i@ (xb, x, )]

(26)

4 (x,x, )=f dx'[E —8 (x')]'i~ . (27)

Consideration of the normalization factor in Eq. (24) is
not needed. The matrix S will apply to all wave func-
tions Pf(x) once the value of E is given. We note that we
define the WKB wave functions in terms of the adiabatic
eigenstates.

In order to account for the transfer of the wave func-
tion across the crossing at x, (and subsequently xb), we
introduce the explicitly time-dependent Landau-Zener
problem [7] in the bare basis (level 1 and level 2),

A,,u, t V c,(t)c, (t)

gt cq(t) (28)V —
A,.u. t c,(t)

Here the potential slope is linearized and taken as

b U(x)
1

2 Bx X=Xa

(29)

c,(~) c, ( —~)
TEci(~) ' cq( —~) (30)

with the velocity u, of the equivalent particle entering
the crossing. This velocity is found without ambiguity in
the bare basis as u, =2[E—U, z(x, )]' in scaled units.
[At the crossing, by definition, U, (x, ) = U~(x, ). ] In [6]
we showed that this gives a good agreement between
wave-packet calculations and Landau-Zener computa-
tions.

The coupling interchanges the bare levels between in-
coming and outgoing states, and hence it follows that we
may write the transfer matrix across the crossing in terms
of the dressed levels as

A A A Ag= ——+—ln ————arg I'
4 2 2 2 2

(33)

are given in terms of the adiabaticity parameter

p2A=
iX, u, /

(34)

%hen this is large, the adiabatic mixing of levels is nearly

complete. The transfer matrix T, is used to match the
adiabatic wave functions in the regions x (x, to those at
x )x, . The index E indicates the dependence on the en-

ergy.
At the crossing x& we make a second Landau-Zener

calculation to obtain Tb. This uses A,b defined as in Eq.
(29) except that the derivative is evaluated at x =xb.
Likewise the velocity u& is calculated as
ub=2[E —U, ~(xb)]'i.

All the phase mixing occurs from just before x, to just
after x&, and consequently we can now write, from Eqs.
(15), (26), and (31),

G(xb, x, iE)=TbS (xb, x, )T, . (35)

Because both the initial-state preparation and the
detection couple to the bare states we need the matrix
(35) in the representation of the states as defined by the
basis Eq. (11). Thus we introduce

G„(E)=(,e TbS (xb, x, )T,e„) (36)

0
@(x=x; ) =W(x; )

—sin8(x, ) i2
cos8(x;)/2 (37)

The particle is created with probability unity on the bare
level 2 and at the position x =x, with zero velocity. This
probability is divided between the two adiabatic states in
such a way that both energy and momentum are con-
served. This follows if the components are both given

which determines the scattering from input k to output j
at the energy E.

However, the initial state is not prepared at x = —00,
but at x; where the effect of the coupling between the lev-
els is already felt. In Eqs. (31) and (36) we have obtained
G in terms of the adiabatic states P„and hence we need
to evaluate the incoming state [defined in Eq. (12) at
x =x, ] in terms of these. Using the transformation (16}
we find that
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o velocity and the energies @ (x. ) defi
As Eq. (37) determines their relative probabilities, we find
that the average energy is conserved 7

46

(x, )cos [8(x;)/2]+ 0+(x;)sin [8(x;)/2]
= U2(x; ) =E' . (38)

0.8-

However, the two particles will be propagated b
differentent energies 6+(x, ) entering the function

e y

xb, x, !E) and hence they are assumed to pass throu h
the system without any additional interference.

Thus the rp ocedure is as follows: we excite a article
to level 2 at the position x; with energy E'= U2(x;). This
occurs with the probability !az(x;)! . This particle is
t en split up on the two adiabatic levels with different en-
ergies. We then follow the propagation of each of these

intermediate paths is contained in the propagators (36)
i eren energies, each onewhich are evaluated for the different

with its own weight determined by Eq. (37). The final
probability of detecting the system on the bare level j is
t en given by

xo+2)
II = f dx, [!G2(6 (x, ))! cos [8(x, )/2]

+!G~2(6+(x, ))! sin [8(x, )/2]]

X Ia2(x;) I', (39)

where we have combined the results from Eqs. (7) (36)
and (37). ThThe integration is carried out over a finite in-

' ~ ~

tegration domain 2) that surrounds the initial packet, but
does not encroach on the crossings.

This ends our pseudoclassical description of the inter-
erometric approach to double level crossings. By chang-

ing the tuning of the laser, we can vary the parameters of
the functions in Eq. (39). This is the expression we will

quantum-mechanical, results in the next section.

IV. COMPARISON OF NUMERICAL RESULTS

Figure 4 shows the spatially integrated probability II2
as a function of the detuning parameter h. The

btained from a fully quantum-mechanical in-
cr . e solid

tegration on a Cray computer. All the calculations cease

The positions of the level crossings as functions of 5 are
s own in Fig. 5. Here we also see that if 6 ~ 5.0X 10 we
cannot use our approach because the initial position of
the wave packet is at xp= 3.79. This happens at the

o ig. w ere the first crossing is approach-

packet develops very little kinetic energy up to the first
crossing, so it passes over it slowly and adiabaticall . As

e packet is split so unequally between the levels
aica y. s

that the fringes have very little visibilit . Th
'

i iiy. e second

adiabati
ng, eing at a similar potential energy is 1 1

a ia atic resulting in very little overall transfer of proba-
bility after both the crossings.

0.6 I I I I

5.0 6.0 7.0 8.0 9.0 10.0
1Q'b,

FIG. 4. In this figure we plot the final population H2 as a
ut wit other parame-function of the detuning parameter 5 b

'
h

ters t e same as in Fi s.'gs. 2 and 3. The solid curve shows the full
quantum-mechanical result, which has b b
call . Theca y. e dashed curve shows the pseudoclassical calculations

from a single pseudoclassical calculation, before ensemble
averaging and starting from the mean position of the k

'' no epac et
is shows that the averaging process destro s

many of the frin ese ringes, while leading to quite an accurate result.
s es roys

Disagreement occurs when the twowo crossings ecome close to
each other or if the first crossing approaches the initial osition
of the packet (see Fig. 5).

ac es e initial position

-2.5

X
-3-

-3.5-

-4 I I I I

5.0 6.0 7.0 8.0 9.0 10.0

1Q

FIG. 5. We lot thp e position of the crossings as a function of
The oower branch of the curve represents x and the upper

branch represents xb.

The final value of II& at the end of the motion shown in
igs. 3(a) and 3(b) is represented by a singl

'
t

' F
(when 6=7.0 X 10 ). It can be seen that this is close to

the place where the oscillations in the solid curve start to
develop for increasing A. And as Fi 3 has ig. s ows, the out-
going packets are just beginning to have diverging trajec-

t ~ ~ ~ ~

tories at this point, so it seems that tha ere is some connec-
tion. Qualitatively this is because as b, increases the two
crossings come closer together, allowing a lesser int 1

e development of a time difference in the emerging
packets. If this difference is too great the interference is
ost. However, the interpretation is different in terms of

p ot, as the dotted curve with many oscillations, the re-
sult from a single pseudoclassical calculation (where

of frin
x;=xo, be ore averaging over x . It shows f 11ws a u range
o ringes as a function of A. So we see that the fringes
are partially destroyed only after avera in ' this is

wn as e dashed curve which closely matches the
direct integration of the Schrodinger equation. This loss
of fringes means that only for lower values of 6 is the
phase of the frin e a

'

g p ttern, before averaging, sensitive to
the initial total energy U2(x;).

The fit of the pseudoclassical calculation (dashed



46 INTERFEROMETER WITHIN A MOLECULE 1419

0.8- it/ )I I i,

0.6 I I

5.0 6.0 7.0 8.0 9.0 10.0

FIG. 6. Same as Fig. 4, but with o.0=0.02 and V=2.0X10 .

curve) to the quantum calculation (solid curve) is very
good, with the principal deviations occurring at the ends
of the figure shown. The upper end (high b, ) shows bad
agreement on the last fringe because this is where the two
crossings approach each other prior to disappearing. The
hypothesis of separate crossings breaks down as the cou-
pling remains effective at creating non-adiabatic transi-
tions between the crossings. For small couplings, pro-
gress could be made by considering a quadratic depen-
dence of Eq. (28) on time [9].

In Fig. 6 we show what happens if we double the width
of the initial wave packet. It is satisfying to see that the
pseudoclassical calculation still gives a good agreement
with the quantum-mechanical calculation, but the num-
ber of visible fringes has become reduced. In the wave-
packet picture this is surprising because we expect that
wider packets will have a greater possibility for more
overlap in the fina state; i.e., they will lead to more
fringes. However, a wider initial wave packet also means
that there is a greater range of energy in the packet, lead-
ing to diverging trajectories or greater incoherence dur-
ing the x; integration in the time-independent picture.

In Fig. 7 we return to the previous initial packet width
of Fig. 4, but we reduce the coupling V. (This corre-
sponds to turning down the intensity of the coupling laser
in the physical system. ) The population 112 shows a
much greater swing (higher visibility) because of more
equal splitting of the packets at the crossings. However,
the number of visible fringes is not changed because this
is controlled less by the coupling and more by the packet
width and the shape of the potentials between the cross-
ings.

state in a molecule. When this travels along the potential
surface, it is mixed with another level by the action of a
laser coupling. In this way the wave packet is split up,
and later recombined. This leads to interference which
has been considered the analogue of an optical inter-
ferometer.

We have used an energy decomposition of the initial
state to follow the quantum-mechanical phases through
the system, and we have found that the dependence of the
outgoing wave packet on the laser detuning and the pa-
rameters of the potentials can be calculated with a simple
semiclassical method based on WKB states and the
Landau-Zener matching of wave functions across the lev-
el crossings. In obtaining an agreement we have used the
wave functions corresponding to the adiabatic potentials.
To show the necessity of this we exhibit in Fig. 8 the
same results shown in Fig. 4, but without the unaveraged
interference fringes. Instead, we have added the results
obtained from the WKB wave functions on the bare po-
tentials with the energy chosen as in Sec. III. As we can
see, the main period of the interference fringes comes out
correctly, but the overall agreement is poor. Thus we
have found that the adiabatic levels must be used.

Observing the interference fringes experimentally, one
may hope to determine the potential surfaces of the mole-
cule. Often, there is some knowledge about one of them,
i.e., the dissociating potential may have been probed by
scattering or the bound one by vibrational spectroscopy.
The interferometric observation can then be used to
determine the other potential. Methods have been
developed to extract potential data from WKB states by
molecular physicists; e.g., the Rydberg, Klein, and Rees
(RKR) method [10].

In our case the situation is complicated by the fact that
the Landau-Zener phase will change when the level cross-
ings are moved. Thus not only will the phase integral
enter the problem, but also the crossing parameters with
their dependence on potential slope and particle velocity.
This complicates the picture and prevents a straightfor-
ward inversion of the interferometric data.

Using one laser for both level crossings will make the
number of uncontrolled parameters very large as the two

V. CONCLUSIONS

We have considered the model in Fig. 1(a), where an
electronic wave packet is created on a Born-Oppenheimer
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FIG. 7. Same as Fig. 4, but with a.o=0.01 and V= 1.3 X 10 .

FIG. 8. The upper chained curve (short chain) shows what
happens when we carry out the pseudoclassical calculation with
the propagation part on the bare states (rather than the adiabat-
ic states) between the crossings. There is a significant difference
even though the positions of the fringes are similar to the
correct calculation. As before, the solid and dashed curves
show the quantum-mechanical result and the normal pseudo-
classical results, respectively. The parameters are the same as in
Fig. 4.
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crossings differ greatly. The situation can be improved
by the use of two lasers. We may then keep one crossing
fixed with a preassigned splitting ratio (preferably close to
50% for each wave packet). By tuning the other laser we
can move the second crossing and study the shape of the
potentials around it. The main problem with the use of
two lasers with different frequencies is the danger of hav-
ing four crossings appearing. This will complicate the
situation and care must be exercised if the packet is to
traverse only two crossings. In special situations, one
may be able to consider more complicated level
configurations where a third level would be used as part
of the interferometer. Thus some disadvantages could be
avoided at the expense of additional dif5culties in the in-
terpretation of the experimental results.

In conclusion, we have suggested an interferometric ar-
rangement inside a molecule. We have indicated that this
may be used to acquire information about the molecular
energy surfaces, but we have pointed out the technical
di%culties in interpreting the resulting data. However,
combined with other independent information about the
molecule, this approach could offer valuable insight into,
or confirmation of, the molecular spectra.
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