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Light-ion-induced K-shell ionization in the adiabatic region
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K-shell ionization induced by fast ions was simulated by the excitation of a harmonic oscillator
perturbed by time-dependent coupling of a parallel spring. Permanent coupling of the spring cor-
responds to the atom where both nuclei are united. In this adiabatic limit the two systems have
an increased energy and reduced length scale. The ratio of the united-atom cross sections to the
experimental ones was compared to the ratio of the oscillator excitation probabilities calculated in
the adiabatic limit and by the coupled-channel method. Strong similiarities between the behavior
of both types of ratios were observed, and it was pointed out that the adiabatic approximation
overestimates the transition probabilities even at moderate collision velocities. The effective nuclear
charges were deduced from the model and used for the cross-section calculation with hydrogenic
Dirac wave functions. For the proton data, calculated and experimental cross sections agree within
10%. Due to the strong coupling of states in the adiabatic region, the efFective nuclear charges exceed
the united-atom limit by 20%.

PACS number(s): 34.10.+x, 34.50.Fa

I. INTRODUCTION

K-shell ionization induced by an adiabatic collision
with an ion has been extensively treated within first-
order perturbation theory, including higher-order effects
as corrections [1]. In semiclassical calculations [2—4] using
hyperbolic projectile trajectories and hydrogenic Dirac
wave functions, the corrections are limited to the change
of the electronic wave functions and binding energies due
to the presence of the projectile charge. The traditional
methods include the modification of the binding energy
by the monopole term [5—7], the modification both of the
binding energy and the efFective nuclear charge [8—10],
and the introduction of the polarized bound-state wave
functions [11,12]. It is common to the methods [8—12]
that for very slow collisions, the effective nuclear charge
is given in the united-atom limit [8], i.e. , by the sum of
the projectile and the target atomic number corrected for
the Slater screening constant. The united-atom nuclear
charge and binding energy may even be used for fast col-
lisions [8] and yield good values for the cross sections [4].
In order to study the united-atom approximation more
thoroughly, we have repeated the proton-induced cross-
section calculation [4] for some other target elements,
and normalized the results to the averaged experimen-
tal data [13]. In Fig. 1, the cross-section ratio is shown
with respect to the reduced projectile velocity (, defined
by ( = 1/aRqc where a~ and hqc are the K-shell ra-
dius and the minimum momentum transfer for adiabatic
collisions, respectively. In general, the united-atom cross
sections for Z2 50 targets are underestimated for faster
collisions, but largely exceed the experimental values for
very slow collisions.

In the present study we would like to show that the
difference between the uaited-atom cross section and the
experimental one is mostly due to the coupling of states
in the adiabatic region and therefore cannot be explained
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FIG. 1. The ratio between the semiclassical [4] and aver-
aged experimental cross sections [13] as a function of the re-
duced projectile velocity (. The calculation used hydrogenic
Dirac wave functions in the united-atom limit and included s
and y partial waves. The solid lines were obtained by inter-
polation. The ratio Zi/Zq varies approximately from 0.025
to 0.1.

by the first-order approach. We shall replace the ion-
atom collision system by a similar though simpler model
which can be easily approached by the coupled-channel
method. We propose to describe the K-shell ionization
by an ion impact as the excitation of a harmonic oscillator
perturbed by time-dependent coupling of an additional
spring (Fig. 2). In the adiabatic limit, the atom and the
oscillator respond in a similar way:

(i) The presence of an additional charge Zi in the
vicinity of the nucleus Z2 increases the atomic energy
(Zz —0.3) Ry to (Zz + Zi —0.3) Ry. Parallel coupling
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(4)

It is convenient to rewrite (4) into a dimensionless form
So we define

K
2PKd2

(5)

FIG. 2. Passage of an ion through the electron cloud cor-
responds to the time-dependent coupling of an additional
spring to the harmonic oscillator.

With the new quantities (5), Eq. (4) transforms into

(6)

of the spring with the constant K to the main spring
Ko increases the oscillator energy 5~0 = h/Ko/m to
h(u = hg(KO+ K)/rn

(ii) The charge Zi reduces the K-shell radius a~ =
a~/(Z2 —0.3) to a~/(Z2+ Zi —0.3). The length scale
of the oscillator is given by gh/ma and has the same
energy dependence as the K-shell radius in the atom.
Coupling of the spring K results in a reduction of the
oscillator wave function by a factor of y 1+K/Kp. For
equivalence between both systems, the energy or length
scale should change by the same factor. This implies for
the spring constant K the relation

II+ '
[

= 1+Z, l' K
Zz —0.3) Kp

In the adiabatic limit, the excitation probability of the
oscillator is calculated for the spring constant Ko + K.
The ratio between this and the exact excitation proba-
bility should thus be closely related to the ratio of the
united-atom and experimental cross sections.

II. THEORY

A. The harmonic-oscillator model

@(x,t) = ) G (t)(p„(x) e ' "+~ (2)

Since the oscillator is initially in its ground state, the
initial values of a„are

Transitions in the harmonic oscillator are provoked by
the perturbing potential

&
Kxzf (t/7 ). The function f

describes the time-dependent switching of the spring K
with the characteristic time ~. The function f is maximal
for t = 0 and approaches zero for ~t~ )) ~.

We shall expand the oscillator wave functions in the
complete, orthonormal set of eigenstates of the unper-
turbed oscillator:

Following (1), the energy and the length scale depend on
the parameter v:

= &1+2v,Zi
Zz —0.3p

or approximately v —2 Zi/Zz.
The excitation probability is then given by

p= ) /a„fz
n, &0

The matrix element (x2f) is different from zero for

,'gf(f —-1), f = n+2
(x„'q) =

& n+-,', n=f
, zi gn(n —1), n = f + 2

Since the oscillator is initially in the n = 0 state, only
even states are involved in the excitation process. So
the minimum energy transfer for excitation is given by
W~;„= 2hus. It is now possible to find the relation
between the parameter A (5) and the reduced projectile
velocity (, since we aim to express the excitation proba-
bility as a function of (. For atomic collisions, the char-
acteristic time is 7 = a~/V, where V is the incoming
projectile velocity. Ef we adopt the same characteristic
time for the excitation process, the parameter A is re-
lated to the reduced projectile velocity ( = hV/a~W;„
by

1A=—
2(

The probability of a transition into the states n ) 2
was found to be negligibly small with respect to the prob-
ability of a 0 —+ 2 transition. The excitation probability
is then well given by P(0, 2). In the first-order approxi-
mation, this probability is given by

ap(-oo) = 1, a„)p(—oo) = 0 . (3)
Pi(0 2) = ivA (xo~) f( )

2aAB d

The set of coupled equations reads as and in the adiabatic limit by
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Pz(0, 2) = t— (zcz) f(s) e ' '~'+ "dsvA

gl+2v
(12)

It is the probability ratio Pz(0, 2)/P(0, 2) which will be
compared to the cross-section ratio of Fig. 1. The calcu-
lation of excitation probabilities is considerably simpler
than the corresponding problem in atomic mechanics.
Due to the strong selection rules (9), the expansion (2)
may effectively be terminated for a rather small number
of states. Matrix elements are simple analytical expres-
sions and there is no continuum. On the other hand, the
time dependence of particular matrix elements is given
by a single function f, while in the atom time depen-
dencies of particular matrix elements are different. This
requires particular care when choosing f which is at most
an approximation of its atomic counterpart.

B. Time dependence of perturbation

In the atom, the most important matrix elements are
those coupling the 1s state to the continuum and to itself:

G= (k ls), 1s 1s

(13)

1-F = —1 —(1+R) e (14)

where r and R denote the position of the electron and
the incoming ion, respectively. The length unit is given
by the K-shell radius of the unperturbed atom. The
function f(t/r) should describe the characteristic time
dependencies of F and G. Both functions are time de-
pendent through R(t) and we shall normalize f, F, and
G to unity for R = 0. For this reason we shall also omit
the usual normalization factors of the wave functions in
further derivation. The function F is given by [5]

After some algebra it may be shown that the following
relation holds for M~:

) (p+2)M„=O (19)
@=0

while G is given by the expansion

G= (1+R)e R

. ( & R~
+e ) 1+ ) (/ —p+1) Mt&+' i=o ) p'

'

s=)
@=0

(20)

Compared to an earlier expression [16], the series (20) is
simpler and numerically stable for quite large values of R.
The lowest term is independent of k and it was already
used as a low R approximation for the zero-energy matrix
element [17]. However, the functions G, F, and (1+
R) e R differ for R and higher terms (Fig. 3).

The expansion (20) is valid for positive and negative
values of kz. For negative values it is possible to expand
G in a different way. The final state is virtually bound
and its wave function is given by

2r1@o=e =I'I 1 —n, 2, —~,
rl, j (21)

where n is generally noninteger. Expanding the hyperge-
ometric function into a power series, an expression anal-
ogous to (20) is obtained, but with different coefficients
M„, the summation p terminating at the n —1 term for
integer n, and with R replaced by "+ R. Comparison of
the lowest term with that of (20) implies that we search

0.3)z Ry; it is related to the transferred energy W by [15]

k =W —1

For G, we shall assume the monopole approximation,
or the contribution of the s partial wave to the contin-
uum:

G = ('ko 18)

where r& denotes the greater of r and R. The Coulomb
function @o for l = 0 [14] is written for the present pur-
pose as

1.0-
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.6-

0.4-

0.2-

„,(p+ 1)' (16)
0.0

The coefficients M„are determined by the recursion re-
lation

2M„= —-Mq g
—k M„g )

p
MO ——1, Mg ———2 .

(17)

Here k2 is the outgoing electron energy in units of (Zz—

FIG. 3. Radial dependence of the monopole matrix ele-
ment G' for three values of W. Also shown are the 18 —18
matrix element F and the function (1+R) e n. The radial
distance is measured in a~.
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the function f in the form

f = (1+aR) e (22)

where n is an optional parameter. The choice of f (22)
is sensible since for a straight-line trajectory with the
impact parameter 5, the probability Pi(0, 2) is obtained
analytically. From [18] we derive a useful formula

l+ V'qs +co) e s ' +' cos(Pe)de

which yields immediately

Pi (0, 2)

s Ks(qV'1+lqs), (23)

2

(bqo) Ks(boo/i + (tsq)s)

(24)

In the adiabatic limit, ( ~ 0, Pq and the K-shell ioniza-
tion probability [19] have a rather similar velocity and
impact-parameter dependence. Since n then influences
Pi through the ns multiplicative factor only, the value
of n is not so important for G and can be determined
with respect to the function F. Taking n = 2/v 3, the
functions f and I" agree up to the Rz term. It should be
noted that higher values of a would move f closer to G;
the choice of e =

z returns an exact expression for G at
W= 43.

III. NUMERICAL METHODS

u us=u+d ln —+ — +1

The method of solving (6) was of a modified midpoint
type extrapolating the step size to zero [20]. The size
of the integration interval was found empirically. The
time dependent function f (22) actually depends on the
projectile coordinates. The calculation was made for
straight-line —constant-velocity projectile trajectories, as
well as for hyperbolic trajectories in the Coulomb field.
For the latter case, a parametric representation of the hy-
perbola was used. Since the system of differential equa-
tions (6) contains oscillatory functions, we used a some-
what diferent representation which is linear for large val-
ues of the parameter u:

IV. DISCUSSION
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We expected the harmonic-oscillator model to yield re-
liable results even in its simplest form. For the straight-
line projectile trajectories it was found that the ratio
P2/P does not depend strongly on 6 So we present
results for b = 0 and R = ~s~ (Fig. 4). The value of
n = 2/v 3 was used throughout. The ratio P2/P of Fig. 4
reproduces a large part of Fig. 1. For faster collisions,

( 1, the adiabatic excitation probability and united-
atom cross sections yield too low values. Both quantities
become realistic at ( 0.6 but yield too high values for
slower collisions. The functions P2/P and oiiA/(T„f ex-
hibit a broad maximum at ( ~ 0.35. For even slower
collisions, the functions behave quite difFerently.

For very slow collisions, the contribution of p partial
waves predominates in the K-shell ionization process on
account of the hyperbolic projectile trajectories [3]. It
is not possible to find the function f which would cor-
respond both to F and G for dipole transitions. The
dipole matrix element G is zero for R = 0 and varies
as R 2 for large R. Since the 1s —ls matrix element
remains unchanged, the functions ( and Ii have very
different behavior for small R. Nevertheless, it is possi-
ble to demonstrate the effect of hyperbolic trajectories
in a difFerent way. Dipole transitions shift the mean im-
pact parameter in the atom to much smaller values than
predicted by the monopole approximation (Fig. 5). So
we calculate the ratio Pq/P for the function f (22) but
for R(t) as determined by the hyperbolic trajectory at
the atomic mean impact parameter. The results of this
calculation are shown in Fig. 6. The high-velocity part
of P2/P is not essentially changed, but there is a strong
increase of Pz/P for very low values of (.

The structure of the ratio ouA/(rpgf can thus be clearly
explained. The maximum at ( 0.35 corresponds to the
reduced s-partial-wave cross section and the strong in-
crease at low ( values to the reduced p-partial-wave cross
section. The cross sections are reduced due to the cou-

R= Juz+(ed)2+d
(25) 0.5

0.1 0.2 0.4 0.6 0.8 1.0

Here d and e denote half the distance between the projec-
tile and the target nucleus in a head-on collision and the
eccentricity of the hyperbola, respectively. The calcula-
tions involved states up to n = 8, in order to maintain
1% accuracy up to v = 0.3.

FIG. 4. The ratio Pz/P as a function of the reduced veloc-

ity ( for the straight-line projectile trajectory at zero impact
parameter. The values of v are equally spaced from 0.05 to
0.2 and roughly correspond to the ratios Zq/Z2 of Fig. 1.
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FIG. 5. Mean impact parameter as a function of ( for
protons incident on Mg, P, Ti, and Mo targets. The calcula-
tion was performed in the united-atom limit and the results
were normalized to qo . SL denotes the mean impact param-
eter as follows from (24), and Hyp. its value for hyperbolic
trajectories.
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FIG. 6. The ratio P2/P as a function of $ for hyperbolic
projectile trajectories calculated for the atomic mean impact
parameters. Accurate values of v were used.

pling of states. Differences between oUA/o„r and P2/P
for Ti and Mo in Figs. 1 and 6 may be accounted for by
relativistic effects which are not included in the oscillator
model. Large experimental errors also prevent detailed
examination of crUA/o'„r in the extreme adiabatic region.

At this point it is also appropriate to discuss the in-
fluence of the parameter cr (22). Taking cr = 1 would

slightly shift the maxima in Fig. 6 to ( 0.4. Replacing
the function f by G from Eq. (20) would shift the max-
ima down to ( 0.25 since 0 influences the ground-state
wave function much less than the functions Il or f.

For other light ions, we examined sHe-Ti and sLi-Cr
collisions (Fig. 7). Experimental data are from [21, 22]
and extend down to ( 0.3. The ratio oUA/rr„r exhibits
a broad maximum at ( 0.35, in accordance with the

FIG. 7. The ratios P2/P and a'vA/o' „pt for He-Ti and
Li-Cr collisions, as a function of (. Experimental errors are

smaller than 8.4% and 13% for Ti and Cr, respectively.

gl+2v =
~

1+ hZ
Z, -0.3q

(26)

The results of this procedure, based on the values of P
according to Figs. 6 and 7, are shown in Fig. 8. The
effective increase of the nuclear charge is greater than

Zi for ( 0.6 and attains a nearly universal value of
approximately 1.2 Zi for g 0.35.

The values of LZ were used to calculate further ef-
fective binding energies. The contribution of the outer-
electron screening was calculated from the experimental
data in the united-atom approximation. The cross sec-
tions, normalized to the experimental values, are shown
in Fig. 9. For protons, the structure of Fig. 1 is greatly
reduced and the calculated and experimental cross sec-

proton data. The maximum is reproduced by P2/P for
sHe-Ti collisions to within 10'Fo. For sLi-Cr collisions,
the position of the maximum is correct, but the values of
P2/P are larger by 3070. Experimental values for sHe-Ti
and sLi-Cr collisions are quite close for ( 0.35, in spite
of the different Zi/Z2 ratios of 0.09 and 0.125, respec-
tively. Since the height of the maximum is a clear func-
tion of Zi/Zs in the case of protons, we can assume that
oUp, /o„r also depends on Zi. A possible reason might be
the Zi-dependent increase of the ionization cross section
due to parallel ionization processes.

A comparison of Figs. 1 and 6 indicates that for ac-
curate cross-section calculation a coupled-channel ap-
proach such as that of [23] is required. As shown by
Paul [24], proton cross sections for Cu and Ag [23] agree
with the experimental cross sections within 10'. Since
calculations of this type [23] are rather complicated, it
seems worthwhile to revisit the first-order semiclassical
theory and calculate the efFective nuclear charge from
the harmonic-oscillator model. Numerically, it is possi-
ble to find an effective value of v 1+2v which renders
the results of (12) equal to those of the coupled-channel
method. The effective (nonstationary) increase of the
nuclear charge is then given by
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FIG. 8. Effective increase of the nuclear charge as pre-
dicted by the harmonic-oscillator model.

tions agree within 10%. For low values of (, the values
of o /ro, »qare scattered, mostly due to the large exper-

imental errors (see Fig. 1). For ( ~ 0.4, cr/cr, »|, varies
with ( in a way similar to the ratio of the united-atom
and Dirac-Hartree-Slater [25] cross sections for Ni and
Ag [4]. This suggests that the hydrogenic approximation
remains the principal reason for the difference between
the semiclassical and experimental cross sections.

There is also good agreement between the calculated
and experimental cross sections for He-Ti collisions, ex-

cept for faster collisions ( 0.8. The ratio /oo', »q for
sLi-Cr collisions has a similar ( dependence though all
values are smaller by 15%. Inclusion of I ) 1 partial
waves into the calculation would increase the cross sec-
tions and therefore the ratio o/ «o&q by several percent
for ( 1, but this would not explain the differences in

Fig. 9. It seems again that parallel ionization processes
are switched for higher Zq and ( values.

Among recent calculations, the cross sections derived
using the time-dependent distorted wave functions [12]
also reproduced the experimental values rather well. For
protons, the cross sections [12] largely overestimated the

experimental values for ( 0.2. According to the present
model, the p-partial-wave contribution to the cross sec-
tion is strongly reduced as a result of the coupling of
states in this velocity region. For sHe-Ti and sLi-Cr col-
lisions, the present cross sections are slightly closer to
the experimental values than those of [12] and would be
improved further by extending the calculation to l & 1

FIG. 9. Semiclassical cross sections, using effective nu-
clear charges according to Fig. 8 and normalized to the exper-
imental cross sections, as a function of (. The lines connecting
proton data were obtained by interpolation.

partial waves.
It is surprising that the harmonic-oscillator model

works so well. In a recent study of the ion-atom sys-
tem [26], the electronic coordinates were transformed into
the rotating-coordinate system. In the united-atom limit,
the atomic Hamiltonian was indeed that of the perturbed
three-dimensional harmonic oscillator.

V. CONCLUSION

At low ion velocities, the coupling of states strongly in-
fluences the K-shell ionization cross section. The united-
atom limit is not approached in the velocity range ac-
cessible to experiments. A model of the harmonic os-
cillator, where the united-atom limit corresponds to the
permanent coupling of the perturbing spring, suggests
two regions of the ionization process suppressed below
the united-atom limit: one at ( ~ 0.35, responsible for

the s partial wave, and the other for ( 0.2. The latter
region involves a p-partial-wave contribution and results
from Coulomb repulsion of the projectile in the field of
the target nucleus.

First-order models using hydrogenic wave functions
with the efFective charges reproduce the proton cross sec-
tions within 10%. The present model predicts effective
charges which are greater than the corresponding united-

atom limit in the velocity range ( 0.6.
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