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Relativistic multichannel calculation of the Ne KLL
and Ar L2M23M2, 3 Auger transition rates

J. Tulkki and T. Aberg
Laboratory of Physics, Helsinki University of Technology SF 081-50 Espoo, Finland

A. Mantykentta and H. Aksela

Department of Physics, University of Oulu SF 9057-0 Oulu, Finland
(Received 21 January 1992)

The multichannel multiconfiguration Dirac-Pock method has been used to study the Ne KLL
and Ar LqMq, 3M),3 Auger-electron transitions. Final-state correlation effects are accounted for by
simultaneously including several ionic configurations and ionization channels in the calculation of
the final-state many-electron wave functions. Our computational approach is based on scattering
theory, which properly accounts for the incoming wave boundary condition. The line intensities from
our test calculation for Ne KLL transitions are in good agreement with earlier theoretical results
and with experiment. The interchannel coupling is stronger for the final states of the Ar LqMq, 3M/ 3

transitions, but the net effect on the line intensities is somewhat smaller than that for Ne. Even
the most extensive multichannel calculations are not fully able to reproduce the measured total
rate and the ratio of Po, &,p to 'D~ transition rates. The remaining discrepancy in the branching
ratios of Auger lines is attributed to the omission of initial-state configuration interaction, whereas
the discrepancy between the measured and calculated total rates is suggested to be mainly due to
the neglect of relaxation. Our results indicate that, in analogy to outer-sheO photoionization, the
final-state interchannel interaction does not in general affect the strongest Auger lines very much

when the kinetic energy of the Auger electrons exceeds about 200 eV.

PACS number(s): 32.80.Hd, 32.80.Fb

I. INTRODUCTION

The nonradiative decay of an inner-shell hole usually
results in several ionization channels corresponding to
difFerent angular momenta and spin of the Auger elec-
tron and to difFerent final states of the doubly charged ion

[1].The interaction between difFerent ionic configurations
[final-ionic-state configuration interaction (FISCI)] and
associated continuum states [final-continuum-state con-
figuration interaction (FCSCI)] may lead to significant
redistribution of intensity in the spectrum of the emitted
electrons [2]. The electron spectrum is also infiuenced by
other many-body effects such as initial-ionic-state con-
figuration interaction (IISCI) and relaxation. The post-
collision interaction (PCI) may have conspicious effects
on Auger spectra in the near-threshold excitation region
[3, 4] but they are not explored in this work. In the fol-
lowing we shall describe in detail the multichannel mul-
ticonfiguration Dirac-Fock (MMCDF) method which we
have recently developed for calculation of near-threshold
photoionization cross sections [5] and apply it to the
study of final-state correlation effects in Ne KI L and Ar
LQMQ sMz 3 Auger spectra. The MMCDF method ac-
counts for FISCI and FCSCI in a unified and nonyertur
bative way by combining configuration-interaction (CI)
and channel-interaction (K-matrix) methods. Our ap-
proach has been especially tailored to serve as a general
tool for the construction of many-electron vrave functions
of a system which consists of a many-electron ion and one

continuum electron, independently of a particular exci-
tation or decay mechanism. IISCI and relaxation can be
included in our computational method on an ab initio
basis but are excluded from the present calculations. In
general the MMCDF method should be most effective
in cases where strong correlation effects are confined to
a rather small subsection of the total configuration and
channel space. The relativistic effects are small in the
Auger spectra discussed in this work. Using MMCDF
the LS-coupled states are automatically obtained in the
calculation as superpositions ofjj-coupled configurations
and channels.

Although the first nonrelativistic multichannel calcu-
lations of Auger transition rates were carried out more
than a decade ago [6—8] there exist so far very few calcu-
lations based on this method or its relativistic extension.
The cases studied were the Ne KIL Auger transitions
[6, 7], as well as the Mg KLL, KLM, and KMM tran-
sitions [8]. The same scattering-theoretical method [1]
was applied to a study of the intense LiLQ 3Mi Coster-
Kronig transitions in Ar [9] and of the Ne KLL tran-
sitions using another numerical technique [10]. Recent
studies of KLL spectra of neonlike ions [11], of the Kr
LsMM spectrum [12], and of the L-shell Auger spectra
of Mg-like Al and Ar [13] involve a relativistic gener-
alization of this method. The Ne KI L transitions have
also been studied using an S-matrix [14] and a relativistic
close-coupling approach [15]. Kelly calculated the partial
and total Ne KII rates using nonrelativistic many-body
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perturbation theory (MBPT) [16]. All these calculations
agree in that interchannel coupling can change the spec-
tral distribution of the Auger or Coster-Kronig electrons
and reduce the sometimes very large discrepancies [9] be-
tween calculated and measured transition rates. For Ne
and Mg the changes caused by the interchannel interac-
tion are rather small for the strongest Auger lines (typi-
cally less than 10%) whereas the effect is much larger for
the weak lines on a relative scale. In the Ar LiLz 3Mi
spectrum the interchannel effect is somewhat larger as
expected on the basis of the low kinetic energy of the
Coster-Kronig electrons [9]. The interchannel effects in
the K-shell Auger spectra of Ne and Mg are somewhat
surprising considering the high kinetic energy (700—1200
eV) of the emitted electrons. In calculations of photoion-
ization cross sections we have found that the channel in-
teractions become very small at kinetic energies of about
200 eV above the threshold [5].

These fairly succesful applications of the multichannel
method and MBPT in the calculation of Auger spectra
showed that inclusion of channel mixing can reduce the
discrepancy between theory and experiment significantly.
As a consequence, discrepancies between single-channel
calculations and experiment have since then been often
addressed to the exclusion of channel mixing. In this
work we present a computational approach which can be
used for a systematic study of these interactions. We
will first describe the scattering-theoretical derivation of
Auger rates with theoretical and numerical details in the
Appendix. We have used the frequently studied Ne KLL

Auger transitions as a test case to check the numerical
accuracy of our code. We have also applied our method
to Ar L2M~ 3M2 3 transitions where among existing dis-
crepancies the intensity of the Po 1 2 line as compared to
the intensity of the D2 line is clearly overestimated by
the single-channel theory [17]. The electron energies of
this Auger spectrum lie between 200 and 210 eV, which is
only a fraction of the KLL transition energies in Ne and
Mg. The interchannel interaction is therefore expected
to be important in this spectrum.

II. THEORY

The derivation of nonrelativistic multichannel Auger
rates from the first principles of scattering theory has
been presented by Aberg and Howat [1]. The relativistic
extension of their formalism is obtained by replacing the
Hartree-Fock bound and continuum orbitals in the tran-
sition amplitudes by the corresponding Dirac-Fock or-
bitals. The theoretical basis of the MMCDF method, the
computational approach and the structure of our com-
puter code are described in the Appendix. The Breit
interaction has been excluded from the matrix elements
of interehannel interaction and from the transition am-
plitudes but can be included if important. In the follow-
ing we have also neglected the coupling between radia-
tive and nonradiative decay modes [1]. The multichannel
Auger transition amplitude consequently is

(Co~H - Z]C„-.) = )-
(eo~H Z~y, ) + )-.P dZ'("] ~'")(~~'~ ~~-~) Z-„

A=1 P=l

where ~Co) denotes the initial-state wave function and

~C„z) the multichannel multieonfiguration final-state
wave function. The single-channel transition amplitude
is given by (@o~H —E~P @) where H is the full elec-
tronic Hamiltonian, and as explained in the Appendix the
coefficients Z z take full account of the incoming-wave
boundary condition. The functions Pa@ and Pp@ are the
multiconfiguration single-channel wave functions (A3).
In the Appendix we show that the general scattering-
theoretical result of Aberg and Howat [1] is equivalent to
that of Starace [18] and that both lead to Eq. (1). In pre-
vious numerical calculations [6—13] different lower-order
approximations of Eq. (1) have been used. Typically the
K matrix (A9) has been set equal to the V matrix (A6)
and Z z has been replaced by the unit matrix 6 z. As
will be seen below these approximations are only justified
at high kinetic energies of the continuum electron. In the
calculation of low-energy Auger or Coster-Kronig spectra
the full multichannel wave function given by Eq. (A12)
must not only be used in the calculation of angular dis-
tributions but also in the calculation of line intensities.
In the calculation of angular distributions a superposi-

tion of the wave functions ~@i,&) must be introduced in
order to fulfill the appropriate angle-resolved incoming-
wave boundary conditions [1, 18]. In this work we will
use a common orthogonal set of initial- and final-state
orbitals which excludes relaxation effects. The single-
channel transition amplitudes in Eq. (1) now become
(Oo~H —&~4'aE) = (C'o~ P,&~ 1/r, ~ ~Paz). The relaxation
effects [1] have been studied within the single-channel
approximation in the case of Ne KLL [7] and Mg K [8]
Auger transitions and have been found to be rather small
except for some weak lines. In contrast, relaxation makes
a large contribution to the Ar L1Lq 3M1 Coster-Kronig
spectrum [19].

III. CALCULATIONS

A. Ne KLL transitions

The initial- and Gnal-state wave functions were cal-
culated by the multiconfiguration Dirac-Fock (MCDF)
method using average level (AL) optimization [20]. For
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TABLE I. Multiconfiguration atomic-state functions 4' of the final doubly charged ion in Ne KLL transitions, and continuum orbitals g„~
which are needed for the construction of the corresponding multiconfiguration single-channel J = 1/2 wave functions. The symbols t and t

distinguish between Dirac-Fock orbitals having j = L —~ and j = l+ ~, respectively.1 . 1

Assignment Wave function Continuum
orbital

4'4

4'6

4g
@10

0.5637(2s 2p 2p, J = 2) + 0.8260(2s 2p 2p, J = 2)
12s 2p 2p, J=1)
0.0029(2s 2p 2p, J = 0) —0.8062(2s 2p 2p, J = 0) + 0.5917(2s 2p 2p, J = 0)
—0.8260(2s 2p 2p, J = 2) + 0.5637(2s 2p 2p, J = 2)
—0.1845(2s 2p 2p, J = 0) —0.5820(2s 2p 2p, J = 0) —0.7920(2s 2p 2p, J = 0)
(2s 2p 2p, J=2)
0.8138(2s 2P 2p, J = 1) —0.5811(2s 2p 2p, J = 1)
(2s 2p 2p, J = 0)
0.5811(2s 2p 2p, J = 1) +0.8138(2s 2p 2p, J = 1)
0.9828(2s 2p 2p, J = 0) —0.1069(2s22p&2p, J = 0) —0.1504(2s22p22p, J = 0)

d d

s, d

did
s

pf
pi p

p
pi p

the initial state we used the single-configuration ls-hole
wave function. The final bound states of the Ne KLL
transitions were calculated by including 10 jj-coupled
configurations obtained from the 1s22s02ps, lsz2si2ps,
and 1ss2sz2p4 double-hole parent configurations. In Ta-
ble I we list the multiconfiguration atomic-state wave
functions (ASF's) of the final doubly charged ion and
all possible continuum orbitals that can be coupled to
these ionic-state vectors to obtain the multiconfiguration
single-channel wave functions, corresponding to the total
angular momentum J = 1/2. This gives altogether 16
jj-coupled channels.

The transition rates were calculated using two different
sets of bound and continuum orbitals. The first set (I)
was constructed by optimizing the bound orbitals with
respect to the initial state of the ion. These bound or-
bitals were also used for the final state to obtain the
ionic-state vectors in a separate CI calculation. This
gives state vectors that are slightly difFerent from those
listed in Table I which are based on orbitals (F) that
are optimized with respect to the final state of the ion.
The continuum orbitals were generated in the jj-average
V+ z potential constructed from either orbital set I or
I'. In both cases the electronic occupation numbers were
set to correspond to the average electron distribution in

the final doubly charged ion. Lagrangian multipliers were
included to obtain orthogonality between bound and con-
tinuum orbitals. In Table II the single-channel calcula-
tion (1) and multichannel calculation (3) are based on
orbital set I. The results obtained using the orbital set Il
for both initial and final states are labelled (2) and (4) in
Table II. For the numerical evaluation of the multichan-
nel rates (1) the channel-interaction matrix V [Eq. (A6)]
must be tabulated as a function of the channel energy.
In the Ne KLL case the Auger electrons are ejected with
kinetic energies between 745 and 810 eV. A distribution
of continuum orbital energies starting from 300 eV with
a spacing of 30 eV for the first 33 points and a spacing
of 200 eV for the last 8 points was found to provide so-
lutions of the K-matrix equation (A8) and eigenchannel
equation (A10) with a good numerical accuracy.

For comparison we also include some previous theoret-
ical results in Table II. A comparison of our MMCDF
results with the nonrelativistic multichannel calculation
of Howat, Aberg, and Goscinski [7] and the relativistic
close-coupling calculation (which efFectively accounts for
interchannel interactions) by Bruneau [15] we find that
the influence of FCSCI is very similar. All multichannel
calculations agree within 4'Fo. Comparison between dif-
ferent relative partial rates shows that the KLiLz, s P

TABLE II. Neon KLL relative partial transition rates and absolute total transition rates in units of 10 a.u. The sum of the relative line
intensities is normalized to 100.

Final state Single-channel rate Multichannel rate Expt.

L1L1 'S (%)
L1L2 3 P (%)
L]L2,3 P (%)

L2 3L2 3 S (%)
L2 3L2 3 D (%)
L2 3L2 3 P (%)

Total rate
(ma. u. )

Calc. 1a

8.35
22.47
9.71
6.93

52.53
0.01

10.29

Gale. 2

8.16
22.40
7.09
6.84

55.50
0.01

7.93

Gale. 3

6.37
18.28
9.46
8.76

57.12
0.01

10.31

Calc.4

6.03
18.07
6.82
8.79

60.27
0.02

7.95

Gale. 5

6.1
17.0
6.1
9.6

61.2

8.05

Calc.6

5.7
18.4
9.6
9.0

57.3

10.57

6.0
18.5
8.4
8.9

58.1

9.77

6.2+0.3
17.2+0.2
6.3+0.2
9.5+0.4

60.9+0.2

9.9+0.7

Single-channel calculation, basis set I.
Single-channel calculation, basis set F.
Multichannel calculation, basis set I.
Multichannel calculation, basis set F.

Nonrelativistic many-body perturbation theory (Ref. [16]).
Nonrelativistic multichannel calculation (Ref. [7]).

~Relativistic close-coupling approach (Ref. [15]).
"R fs. [21-23].
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and KL2 SL2 3 D transition rates depend mostly on the
choice of the orbital set. The change from one basis to
another has an essential e8'ect on the total KLL tran-
sition rate. Instead FCSCI changes the total rate very
little even if the relative rates of individual lines change
considerably. Table II shows that when FCSCI is taken
into account the calculations are, independently of the
choice of the basis set, in a better agreement with the
experiment than the single-channel results.

The experimental absolute value of the total rate in Ta-
ble II is based on a 18 linewidth of 0.27+0.02 eV [21]. The

experimental relative line intensities are taken from a re-
cent high-resolution work [22]. The error limits were ob-
tained by comparing these intensities with our own high-
resolution results [23]. The total experimental width in
Table II is reproduced to experimental accuracy by cal-
culations (I) and (3), based on orbital set I. The same
is true for the rates (6) and (7) which were also obtained
using bound orbitals which were optimized with respect
to the initial state. Multichannel calculations based on
orbital set Il (calculation 4 in Table II) reproduce the
relative line intensities fairly well but underestimate the

TABLE III. Multiconfiguration atomic-state functions 4' of the final doubly charged ion in Ar L2M2 3M2 3 transitions, and continuum orbitals
g„, which are needed for the construction of the corresponding multiconfiguration single-channel J = 1/2 wave functions. The symbols t and t

distinguish between Dirac-Fock orbitals having j = l —~ and j = t + ~, respectively,

Assignment

4'4
4'5

+8
4'g

+10

+14

+15

Wave function

0.784913s 3p 3p, J = 0) —0.608813s 3p 3p, J = 0) —0.007913s 3$) 3p, J = 0)
0)3pa, J = 3/2]3d1, J = 0)
1)3p, J = 3/2]sd, J = 0)
1)3p, J = 5/2]3d, J = 0)
1/2)3p, J = 3/2]3d, J = 0)
1/2)3p, J = 5/2]Sd, J = 0)

2 2'2

(Ss'SP', J =
(3s13p1 J
(3s 3$), J =
(3s13p2 J
(Ss13y2 J

+0.04101[
+0 07481 [
+0.07691[
—0.00801 [
+0.00521[

I= 3/2]3d1, J = 0)
= 3/2]Sd', J = O)
= 5/2]3d, J = 0)
J = 3/2]Sd, J = 0)
J = 5/2]3d, J = 0)

= O)Sp', J
= 1)Sp', J
= 1)3p, J
= 1/2)3p,
= 1/2)3p,

(Ss'SP', J
(3s 3p, J
(3s 3$), J
(3s13p2 J
(3s13p2 J

3

+0 01091[
+0.01071[
—0 0109[[
-0.0084[[
+0.0108([

1 -2—ISs Sp Sp, J =2)
0 8089]ss 3p 3p4, J = 1) 0 588013s 3p 3p j = 1)
13"Sp sp', J =o)
0.588013s 3p 3p, J = 1) + 0.808913s 3$) 3p, J = 1)
0.087013s 3p 3p, J = 0) + 0.127013s 3$) 3p, J = 0) —0.736613s 3p 3p, J = 0)

3s 3p, J = 0)3p, J = 3/2]3d, J = 0)
3s 3p, J = 1)3p, J = 3/2]3d, J = 0)
3s 3p, J = 1}3p,J = 5/2]3d, J = 0)
3s 3p, J = 1/2)3p, J = 3/2]3d, J = 0)
3s 3p, J=1/2)3p, J=5 2]3d, J=O)
3p 3p, J = 0) + 0.006513s 3p 3p, J = 0)
3s 3p, J = 0)3p, J = 3/2]3d, J = 0)
3s Sp, J = 1)3p, J = 3/2]3d, J = 0)
3s Sp, J = 1)3p, J = 5/2]3d, J = 0)
3s 3p, J = 1/2)3p, J = 3/2]3d, J = 0)
3s 3,J = 1/2)3p, J =5/23d, J =0)

—0 26911[(
-o.17671[(
+0.40311[(
+0.21311[(

0 34951
0.003013s
+0.67211[(
-0.55341 [(
+o.21331[(
+0.33571[(
+0 28721[(

—Q.033813s 3p 3p 1 J = Q)

J = 0) + 0.010713s 3$) 3p, J = 0)J
= 0)3p, J = 3/2]3d, J = 0)
= 1)3p, J = 3/2]3d, J = 0)
= 1)3p, J = 5/2]3d, J = 0)

1/2) 3p 1 J 3/2] 3d ) J 0)
= 1/2)3p, J = 5/2)Sd, J = 0)
J = 0) + 0.051113s sp 3p, J = 0)
= 0)3p, J = 3/2) 3d, J = 0)
= 1)3p, J = 3/2]3d1 J Q)
= 1)3p, J = 5/2]3d1 J 0)
= 1/2)3p, J = 3/2]3d, J = 0)
= 1/2)3p, J = 5(2]Sd, J = 0)

0) —0.040313s 3p 3p, J = 0)—
= 0)3p, J = 3/2]3dl J = 0)
= 1)3p, J = 3/2]3d, J = 0)
= 1)3p, J = 5/2]3d, J = 0)
= 1/2)3p, J = 3/2]3d, J = 0)
= 1/2}3p, J = 5/2JSd, J = 0)
J = 0) —0 084013s 3p 3p, J = 0)
= 0)3p, J = 3/2]3d, J = 0)
= 1)3p, J = 3/2]3d, J = 0)
= 1)3p, J = 5/2]3d, J = 0)
= 1/2)3p, J = 3/2]3d, J = 0)
= 1/2)3p, J = 5/2]3d, J = 0)

—0.001113s SP~Sp,
—0.47521[(3s 3$), J
+0 02721[(3s 3p, J
+0 27381[(3s SP, J
+0 11001[(3s 3p, J
+0.82741[(3s SF, J

0.074013s Sp 3p,
+0.30361[(3s 3$), J
+0 26821[(3s 3p J
+0.67171[(3s 3p, J

0.61311[(3s 3p, J
+0 02421 3s 3p, J
0.059513s 3p 3p, J

0 24671[(3s 3$), J
—0.72601[(3s 3p, J
—0.15421[(3s 3p ) J
—0.61861[(3s 3p, J
+0 01581[(3s Sg, J
—0.062513s 3p 3p,
—0.30841[(3s 3p, J
—0.23871[(3s 3p, J
+0 48581[(3s 3$) J
+0.26621[(3s Sp, J
—0.33141[(3s 3p, J

0.042013s Sp 3p, J = 0)

+ 0.003513s 3p 3p, J = 0)

0 006513s 3p 3p s J = 0)

+ 0.648213s 3$) 3p, J = 0)

—0.539513s 3p 3p, J = 2) —0.842013s 3p 3p, J = 2)
ISs23p'Sp', J = 1)
0.842013s 3$) 3p, J = 2) —0.539513s 3p 3p, J = 2)
0 602913s 3p sp, J = 0) + 0.7760 ss sp sp, J = 0) +0 185013s sp sp J = 0)

Continuum
orbital

gKC

p
p f
ps p
pf

p
d, d
S)d

s
s, d



46 RELATIVISTIC MULTICHANNEL CALCULATION OF THE Ne. . . 1361

total rate. A very good agreement is also obtained by the
MBPT method (calculation 5 in Table II) which however

gives a too low total rate in analogy to our calculations
(2) and (4). We have also studied the effect of using the
V matrix instead of the K matrix and of replacing the
incoming-wave phase matrix Z [Eq. (All)] by the unit
matrix in the transition amplitudes. It was found that
these approximations change the relative line intensities
by less than 1'. In their calculations Howat, Aberg, and
Goscinski [7] also neglected some of the intrachannel in-

teractions. We found however that these residual terms
have a very small effect on the line intensities. On the
basis of these test calculations it can be concluded that
our code is working with good numerical accuracy.

B. Ar LqMq, qMq, q transitions

The basic procedure in the case of Ar Lz Mz, s Mz, s tran-
sitions was the same as for Ne. For Ar we carried out
several calculations by gradually increasing the number
of final-state configurations and channels. In the lowest-
order approximation (1) we only included 3sz3p4, J =
0, 1, 2 parent final states. By coupling these with the
Auger electron orbitals we obtain 8 jj-coupled channels.
Second (2) we also included the 3s03ps, J = 0 and
3si3ps, J = 0, 1, 2 parent states which gives 16 channels.
Finally (3) the 3si3p43di, J=O parent states were added
which results in 21 channels. Our calculations indicated
that the inclusion of the channels corresponding to the
3si3p43di, J = 1, 2 states did not significantly alter the
results of the 21-channel calculation. The ionic-state vec-
tors and the ionization channels of our 21-channel cal-
culation are listed in Table III. The single-channel (cal-
culations 1 to 3) and multichannel (calculations 5 to 7)
transition rates are given in Table IV together with previ-
ous theoretical and experimental data. The above three
calculations were performed using bound-state orbitals
which were optimized with respect to the final state ex-
cept for the 8-channel calculation. In this case bound

orbitals which were optimized with respect to the initial
state of the ion were also used (calculations 4 and 8 in
Table IV).

In calculations (1) and (2) the bound orbitals were ob-
tained from an AL MCDF calculation [20]. In calculation

(3) we first carried out a MCDF calculation including the
15 possible states which can be obtained from the con-
figurations and J values that are listed in Table III. The
bound orbitals were taken from this calculation except
for the 3d orbitals. The 3d orbitals were recalculated
as follows: we first constructed a jj-average frozen core
V+ z potential excluding the 3d orbitals. The Dirac-
Fock equation for the 3d electrons was then solved using
this potential which was also used for the generation of
the continuum orbitals. This procedure was necessary,
since we found that when the 3d orbitals were taken from
the ordinary MCDF calculation the Lagrangian multipli-
ers between the 3d and the continuum orbitals became
anomalously large. This led to a distortion of the con-
tinuum orbitals and to artificial transition rates. A sep-
arate calculation of the 3d orbitals as described above
eliminates this artifact. The ionic-state vectors listed in
Table III are based on the recalculated 3d orbitals. The
Ar LzMz, sMz, s transitions energies are between 202 and
209 eV. The continuum orbitals which are needed for the
solution of the MMCDF equations in the Appendix were
calculated at 41 energies starting from 1 eV. A spacing of
12 eV was used between the first 33 points and a spacing
of 90 eV between the last 8 points.

There is a close analogy of FISCI effects in the Ne
KLL and Ar LzMz sMz s transitions as far as the s and

p electrons are concerned. The most important configu-
rations are obtained by distributing two holes in the Ne

2s, 2p and Ar 3s, 3p subshells, respectively. The coeffi-
cients of the state vectors obtained from the CI calcula-
tions including the resulting ten jj-coupled double-hole
configurations agree within 10% for Ne and Ar. A re-
markable difference exists, however, between FISCI in
these final states which is due to the strong coupling of

TABLE IV. Argon L2M2 3M2 3 relative transition rates, The sum of the relative line intensities is normalized to 100. The L2M2 3M2 3 group
rates and the L2MM total rates are given in units of 10 a.u.

Final
state

Single-channel rate Multichannel rate Expt. '

S0 (%)
D2 (%)

+0,1,2 (%)

Group rate
(ma. u. )

Total rate
(ma. u. )

Gale. la

11.38
43.08
45.54

3.94

Calc. 2

10.03
43.78
46.19

3.88

5.24

Calc.3

9.86
43.85
46.29

3.87

5.24

Calc.4d

10.89
40.75
48.36

4.98

Calc. 5a

10.33
43.95
45.72

4.11

Gale. 6

8.92
44.94
46.14

4.39

5.78

Calc. 7

8.72
45.21
46.34

4.40

5.80

Calc 8d

10.34
41.70
47.96

5.15

Calc. 9

10.51
43.06
46.43

4.81

6.43

15.0+2.0
47.9+0.4
37.1+0.4

3.0+0.7

4.4+0.7

3s 3y J = 0, 1, 2 (8 channels in calculation 5).
3s 3y, 3s 3y, 3s 3p J = 0, 1, 2 (16 channels in calculation 6).
3s 3y, 3s 3p, 3s 3y J = 0, 1, 2 and 3s 3p 3d J = 0 (21 channels in calculation 7).
8 channels, initial ionic state basis.

Single-channel calculation, Ref. [17].
Refs. [25—30].
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the Ar 3s 3p configuration with the 3s 3p 3d configu-
ration. This leads, especially when the coupling between
the 3s 3p and 38 3p 3d configurations is also included,
to a very complicated line structure in the Ar LqMiM2 3
and LqMiMi spectra [17,24]. We have not been able to
identify separate lines in this part of the spectrum and
therefore we have limited ourselves to the analysis of the
LQMQ 3M' 3 spectrum. As can be seen from the single-
channel results in Table IV these transitions are rather in-
sensitive to the increase of the number of configurations.
The strongest effect can be found for the LqM3 3M' 3 Sp
line. This is predominantly due to the mixing between
3s 3p J = 0 and 33 3p J = 0 states in analogy to
a similar well-known mixing between 23 2p4 and 2so2ps
states in Ne. The inclusion of the 3s 3p43d J = 0 states
does not change the single channel rates very much be-
cause these states do not have nonzero transition matrix
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Flc. 1. Upper part: Experimental [23[ and theoretical
L2 MQ, 3M2, 3 Auger electron spectra of argon. The line posi-
tions have been determined experimentally. The experimental
intensity distribution is indicated by the solid line. The dotted
line represents the 15-configuration single-channel calculation
(Calc. 3 in Table IV) and the dashed line the corresponding
21-channel calculation (Calc. 7 in Table IV). The theoretical
spectra have been normalized at the maximum of the exper-
imental D2 line. Lower part: L2,3MM Auger spectrum of
Ar [29]. The L2M2 qM2, 3 spectrum was chosen for a detailed
study since it consists of reliably identified lines making a
comparison with theory feasible.

elements with the initial ionic state. These states can
only contribute to the single-channel rates by changing
the mixing coefBcients slightly in the final ionic states.

The comparison of the single and multichannel rates
in Table IV shows that changes mainly take place in the
transitions to the iDq and iSo final states. At the same
time the relative rate of the L2M2 3M2 3 Pp ] 2 transition
is hardly affected by FCSCI. The effect of the choice of
the orbital basis is similar to Ne; the total rate increases
when we use orbitals optimized with respect to the initial
state. In contrast to Ne, however, the total rate is also
increased due to FCSCI.

The experimental total Lq rate of Ar is obtained
from the corresponding width of 0.12 6 0.02 eV which
agrees with the accepted L3 width [2]. Data from high-
resolution x-ray emission [25] and electron-energy loss
[26] spectra support this value although some earlier low-
resolution results [27, 28] point at a somewhat lower value
of 0.10 eV. All data are however within the error lim-
its. The LqM33M33 group rate was determined from
the Auger line distribution obtained in a synchrotron-
radiation experiment [29] in which the satellites originat-
ing from the 2s ionization were suppressed. The corre-
sponding spectrum is shown in the lower part of Fig. 1.

The comparison between experimental and calculated
values of the total rates shows that all calculations over-
estimate both the total rate and the group rate. The
21-channel calculation gives the best agreement.

The relative intensities given in the last column of Ta-
ble IV are our own high-resolution results [23]. Error
limits are obtained from the difference between our val-
ues and those reported in the literature [30]. Due to
the strong overlap between the LqM33M33( So) and
L3M3 3M3 3( Dq) lines the error limit is large for the
weakest i So line. A comparison between experiment and
theory shows that the theory overestimates the 3Pp ]
relative rate but underestimates the D2 and Sp rates,
respectively. This is shown in the upper part of Fig. 1
where we compare experimental and calculated spectra
FCSCI does not remove the discrepancy as is visualized

by the difference between the solid (experimental) and
dashed (21-channel calculation) lines.

IV. CONCLUSIONS

The present study of final-state channel interaction
leads to the unexpected result that this effect is stronger
in the 800-eV Ne KLL than in the 200-eV Ar L2M2 3M2 3
Auger spectrum. This surprising observation is in contra-
diction with our studies of channel-interaction effects in
valence-shell photoionization which show that interchan-
nel matrix elements become negligible at kinetic energies
of about 200 eV above threshold [5]. Our results also
contradict the intuitive belief that the doubly charged fi-
nal ionic field would in distinction to the singly charged
ionic field in photoionization tend to reduce final-state
correlation effects including the channel interaction. In
order to understand this anomalous behavior we have
studied how the K-matrix elements and single-channel
amplitudes influence the partial amplitudes in Eq. (1).
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For Ne we found that some weak lines (like KLz 3L2 3 8)
are strongly coupled through the interchannel interaction
with lines that have a large intensity. This leads to rel-
atively large changes in the intensity of the weak lines.
In Ar LqMq 3M' 3 spectrum we found that the weak Sp
line is not coupled with the strong Dp and Pp 1 2 lines.
Consequently the line intensities are not changed as much
as in Ne. In both spectra we found that the total channel-
interaction effect comes from several partial amplitudes
without a single dominating one.

In contrast to Ne KLL the channel interaction causes
a significant increase of the total Ar LzMz sMz s tran-
sition rate. This indicates that there is no "sum rule"
that would preserve the total rate while the Auger in-
tensity is redistributed as a result of the interchannel
interaction. On the basis of present calculations it is too
early to state any general rules based on known proper-
ties of one-electron orbitals or of many-body effects which
could be used to obtain a lowest-order estimate of the ef-
fect of channel interaction on the Auger spectra. Since
the overall strength of channel interaction is defined by
two-electron Coulomb integrals involving the continuum
orbitals of the ionized electrons it is likely to be larger in
any low-kinetic-energy spectra or when the penetration
of the centrifugal barrier becomes possible. The fact that
single-channel calculations have been found to reproduce
the spectral distribution surprisingly well in many high-
energy closed-shell and nearly-closed-shell Auger spectra
[31] supports the conclusion that in general the channel
interaction does not affect the intensity distribution in
Auger spectra very much if the kinetic energies exceed
about 200 eV. This energy corresponds to the kinetic en-
ergy of Auger electrons in the Ar LzMz sMz s spectrum
in which the relative intensity of the weakest SD line ex-
hibits the largest change of about 10%. According to our
view the Ne ALL spectrum is thus one of the exceptions
of this general rule. In this case constructive interference
between partial channel-interaction amplitudes leads to
significant changes in the intensities of weak lines.

The present and many previous calculations have sin-
gled out FISCI as the dominating correlation effect in
the intensity distribution of Auger spectra. The IISCI,
although presumably less important for deep inner-shell
one-hole states in closed-shell atoms, can also make a sig-
nificant contribution as pointed out by Kelly [16]. The
inclusion of IISCI in the MMCDF Auger amplitudes is
possible on an a,b initio basis and we expect to be able to
present studies of this effect in the near future. The cal-
culated total rates depend rather much on the choice of
the orbital basis set. This indicates that relaxation may
have a large effect on these spectra. Therefore a complete
account of relaxation in the transition amplitudes is very
important. Work in this direction is in progress and will
be reported separately [32].
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APPENDIX: MULTICHANNEL
MULTICONPIGURATION DIRAC-POCK
METHOD: THEORY AND NUMERICAL

APPROACH

where the sum is taken over Ny ionic configurations. In
Eq. (Al) we have for brevity combined the quantum num-
bers PJM into one index P. The coefficients CP and
the one-electron orbitals of the Slater determinants in
Eq. (Al) are usually optimized with respect to the fi-
nal ionic states using the MCDF method. In the case
of Auger transitions orbitals optimized with respect to
the initial state are also used to simulate the effect of
orbital relaxation. The CI wave function in Eq. (Al) is
a solution of the wave equation

(@ ~H' "—Ep~@p) = 0 ( 2)

for a = 1, . . . , Nf.
%e define the multiconfiguration single-channel state

as a properly coupled antisymmetrized product

(A3)

where ~y„,) is the continuum orbital corresponding to
the quantum number K = (2j + 1)(E —j) and the ki-
netic energy e. The continuum orbitals are energy nor-
malized and for the asymptotic phase we use the same
convention as Rose [33]. The total energy associated

In this appendix we summarize the theoretical founda-
tion of the MMCDF method and describe the numerical
approach used in our computer code. The MMCDF ap-
proach is a combination of configuration-interaction and
K-matrix methods. The following derivation of the MM-
CDF equations underlines their independence of a partic-
ular excitation or decay mechanism. The resulting wave
functions can be used to account for final-state inter-
actions in a variety of atomic collision processes. Al-
though the continuum electron is called an Auger elec-
tron in the following our description applies, for exam-
ple, to photoionization as well. The present version of
our code can be applied to calculate correlated many-
electron wave functions for any system which consists of
an ion (atom) and one excited continuum electron. Our
Hamiltonian and wave functions are explicitly relativis-
tic, but the multichannel formalism is equally applicable
to the nonrelativistic case.

The construction of the MMCDF wave functions is car-
ried out in two steps. First we account for bound-state
correlation effects by constructing a multiconfiguration
wave function of the ion using the MCDF method [20].
Second the total wave function including both the ion and
the Auger electron is calculated using the multichannel
method. The single-configuration atomic-state function
is denoted by ~@ gM), where the index n identifies the
configuration, the angular momenta, and their coupling.
The multiconfiguration ASF of the ion is given by the
linear superposition

Nf

(Al)
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1C r z) = ) bpr(E', E)
1 gpz )dE',

P=1
(A4)

where the integral includes a sum over Rydberg states as-
sociated with each ionization channel and N, is the nuin-

ber of ionization channels. In analogy to the CI equation
(A2) the wave equation now becomes

(&~z IH —EIC'rz) = o,

with each single-channel state is a sum of the energy
of the ion and the kinetic energy of the Auger electron:
F = E&" + e. For brevity we again use the notation
PE instead of PrE JM in the following. The energy nor-
malized continuum orbitals in Eq. (A3) are calculated
in an average frozen-core field of the ASF's in Eq. (Al)
by including Lagrangian multipliers to obtain an orthog-
onal set of discrete and continuum final-state orbitals.
The average frozen core in the field of which the contin-
uum orbitals are generated can be constructed in several
different ways. The corresponding residual intrachannel
correction terms are accounted for in the diagonalization
of the multichannel wave equation as described below. In
our calculations we have used the same frozen-core po-
tential for all channels, because this procedure results in
a fully orthogonal set of all final-state orbitals.

In analogy to Eq. (Al) the multichannel multiconfigu-
ration wave function [@rz) is obtained as a linear com-
bination of the single-channel wave functions (A3) inte-
grated over energy. We have

Nc

(P z-1H E—lgpz. ) = (E' E—)b(E" E—')P p+V p(E"E'),

(A6)

which in general not only includes the nondiagonal inter-
channel interaction matrix elements but also some diag-
onal (n = P) intrachannel elements. The latter matrix
elements depend on Slater integrals which account for
the difference between the frozen-core potential that is
used to generate the set of continuum orbitals in the wave
functions (A3) and the exact term-dependent frozen-core
Dirac-Fock potential. This potential accounts for the in-
teractions that are related to the coupling between the
Auger electron and the ion and which in general are dif-
ferent for each ionization channel. In our code the intra-
channel matrix elements are obtained by first calculat-
ing those Slater integrals which appear in the expression
of the Koopmans energy for the continuum orbital [34].
Second these integrals are substracted from the diagonal
elements of the total Hamiltonian including the interac-
tion between the continuum electron and the ion.

We have paid particular attention to an accurate eval-
uation of the asymptotic contributions to the Slater in-

tegrals. Outside the ion the numerical solution is fitted
to the regular and irregular solutions of the Coulombic
Dirac equation. The asymptotic parts of integrals can
then be transformed into integrals over products of Whit-
taker's functions which can be analytically integrated
[35).

An energy normalized solution

where n = 1, . . . , N, and H is the combined Hamiltonian
of the ion and the Auger electron.

In order to solve Eq. (A5) we first define the residual
interaction V by of Eq. (A5) is given by [18]

(A7)

Nc Nc

l@rz) =): ~ Ik.z)+ ).P ldpz)(6z 1&14 z)dEI, ~dE' ~ U r cos gr. (AS)

Here the K matrix is a solution of the integral equation

Nc

(4~z l&ld~z) = (4g z IV14gz)+ ):P
p/I

(0'~ zlV14'~ z-)(&~-z-1&14'~z) dEII
g// (A9)

The energy-dependent matrix elements U~p and the mul-
tichannel eigenphase shifts gr in Eq. (A8) are solutions
of the equation

Nc 1) (&~z l~ldpz) &pr = ——tan gr ~mr

P=l
(A1O)

which diagonalizes the on-the-energy-shell K-matrix for
each E.

In our computer code the K-matrix equation (A9) is
solved iteratively by starting from K = V. This method
is computationally effective, but leads to convergence

problems when the absolute values of the elements of the
interaction matrix V (a dimensionless quantity in this
case) are close to 1. Depending on the application the
V matrix is tabulated at 40 to 70 energies. The distri-
bution of tabulated energy points is chosen to optimize
the accuracy of the integral equation (A9). Usually a
mixed linear-logarithmic distribution has been found to
be the most effective one. Near ionization thresholds the
Rydberg states make a very important contribution to
Eqs. (A8) and (A9), and also to the transition ampli-
tudes. In photoionization calculations we usually include
the three lowest Rydberg states explicitly and account for
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the region between the third Rydberg level and the low-
est continuum state (typically 0.05 eV above the thresh-
old) using the quantum-defect method. The eigenchannel
equation (A10) is solved using subroutines from standard
mathematical program libraries.

The wave functions (A8) are energy normalized eigen-
functions of the total electronic Hamiltonian but do not
fulfill the incoming-wave boundary condition [18]. This
condition requires that asymptotically the proper multi-
channel scattering wave function 14r,z) can only have an
outgoing spherical wave in the multiconfiguration single-
channel state Pr @ defined by Eq. (A3).

It can be shown in analogy to the nonrelativistic case
I

(Ref. [18], Sec. 4) by considerations of the asymptotic
limit that the incoming-wave boundary condition re-
quires a linear transformation of the eigenchannel states
(A8) which involves the coefficients

Z r = ) UoAcosrj~exp( —irIA)Ur~exp( —iver), (All)

where 6i is the non-Coulombic Dirac-Fock phase shift.
The spherical incoming-wave normalized multiconfigura-
tion multichannel wave functions IC»&) are thus given
by

pre Ãc

) = ) I& )+) -P 14'P~ )(PP~ I 14'~~)d gii z
a=1 P=1

(A12)

It is not necessary to include the Dirac-Fock phase shift
bi in states (A12) if they are used for calculation of inten-
sities of Auger lines or partial photoionization cross sec-
tions. In the calculation of angular asymmetry and spin
polarization parameters [36) one however needs multi-
channel states which asymptotically correspond to a spe-
cific state of the ion and to a specific wave vector of the
continuum electron. These states are superpositions of
the spherical wave functions (A12) and the phase shifts
bi have to be included either in the Z matrix (All) or
in the corresponding expansion cofficients. In previous
multichannel calculations of Auger rates [6—8, 15] the Z
matrix has been set equal to the unit matrix. This ap-
proximation is justified only when the kinetic energy of
the Auger electrons is large. For low kinetic-energy tran-
sitions the Z matrix (except for the phase shifts bi)
must even be included in the calculation of line intensi-
ties or partial photoionization cross sections. In Fig. 2
we describe the basic structure of our present computer
code. The subroutines which are needed for the calcu-
lation of autoionizing rates and electron scattering cross
sections are still incomplete.

Our derivation of Eq. (A12) follows very closely
Starace's [18] formulation of the nonrelativistic multi-
channel theory of photoionization. Another form of
the multichannel equations was developed by Aberg and
Howat in Ref. [1] for the calculation of partial Auger
rates. Both approaches define, however, exactly the same
multichannel wave functions, as we will explicitly show
below.

The incoming-wave Lippman-Schwinger equation in
Ref. [1] (Sec. 2) is given in terms of the T matrix by

) = 14 )+»m) - l&w")(6~ IY ISSUE)d@Ii
V~Q

Q E —E' —xvP=1

(A13)

where Y t = T . First we take the limit v ~ 0 in
Eq. (A13) using the formula lim„o[, *,.„] = P[ (*

] +
inn(0)b(x) which is valid for an arbitrary differentiable
function n(z). Second we eliminate the Y matrix using
the transformations Y = KZ and Z = 1 + iz Y

MCDF code Multiconfiguration atomic
(ionic) state wave function

Rydberg
orbitals

DF continuum
codes (20keV

Choice of gauge

Choice of interaction
Hamiltonian

Overlap integrals ac-
counting for relaxation

UJ

M

I-
z

Singelwhannel many-
electron states

Autoionizing
states

Relativistic K-matrix
code

'll( 'll( i(
Transition matrix FINAL Multichannel many-
code STATE electron states

Multipole transition rates, Auger electron rates
photoexcitation and ionization cross sections,
inelastic and elastic electron scattering cross
sections, beta parameters, spin-polarization para-
meters, post-collision shifts

FIG. 2. A schematic diagram of the present version of the
MMCDF code. The MCDF and the Rydberg state codes are
modified versions of the code of Grant et aL [20]. The single-
channel Rydberg and continuum states can be calculated in
an arbitrarily de6ned potential, including the average-j j and
atomic-state-function potentials used in this work. The sub-
routines needed for the analysis of autoionizing resonances
and electron scattering are under construction.
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Z- = (1+St)/2. (A14)

This procedure results in Eq. (A12) with the Z matrix
de6ned in terms of the S matrix. Using the asymptotic
representation of the wave function (A12) it can be shown
(See Ref. [18], Sec. 4) that the scattering matrix S in

Eq. (A14) is given by

The former transformation which is valid both on and oE
the energy shell is given by Eq. (2.16) in Ref. [1], and the
latter on-the-energy-shell condition by one of Eqs. (2.13).
Equations (2.13) also show that

St& = ) Uvre '""Upr.
r

(A15)

Since U is an orthogonal matrix Eq. (A14) can be ex-
pressed as Z = (UU+Si')/2 which is identical to expres-
sion (All) of Z except for the phase shifts br . In Ref. [1]
the corresponding nonrelativistic phase shifts were in-
cluded in the expansion coefBcients of the angle-resolved
incoming-wave-normalized multichannel wave functions.
This completes the proof that the multichannel of ap-
proaches of Starace [18] and of Aberg and Howat [1] are
identical as they should be.
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