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Faddeev calculation of e ~ -Ps scattering lengths
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The modified Faddeev equations in configuration space are applied to solve numerically the problem
of the zero-energy elastic scattering of an electron by positronium at zero angular momentum. The sing-
let and triplet scattering lengths are calculated and zero-energy limits of elastic and ortho-para conver-
sion cross sections are established. The results confirm and improve previous variational estimations of

these parameters.
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I. INTRODUCTION

Since the experimental discovery of the negative ion
positronium [1], the e "e “e ™ system has become a sub-
ject of intensive theoretical study. In particular, high-
accuracy variational calculations of its bound state Ps™
have been performed [2]. Another problem of consider-
able interest is the elastic e~ -Ps scattering at low ener-
gies. Theoretical calculations of the cross sections for the
electron impact on Ps could provide a guide for possible
experiments of fundamental interest [3,4] including tests
of charge conjugation in the leptonic systems e e e
ande e e™.

Previously, the low-energy e ~-Ps scattering has been
treated via the Kohn variational principle [3,4] and adia-
batic method [5,6]. We find it worthwhile to solve the
problem in a completely different way by solving the Fad-
deev equation in configuration space. In this paper, we
apply the Faddeev approach to calculate the s-wave e~ -
Ps scattering lengths.

General motivation of our interest in the problem is
that this is an application of the configuration space Fad-
deev method to scattering states of a purely Coulomb
three-body system. As is known, in this case one cannot
exploit directly the standard version of the Faddeev equa-
tions, for they are noncompact and should be modified
via a cutoff procedure due to Merkuriev [7]. The
modified Faddeev equations were established long ago
but have never been solved numerically; here we will at-
tempt to do so. We believe it will stimulate further devel-
opment of the Faddeev approach in order to study more
complicated processes of atomic and mesoatomic physics.

II. MODIFIED FADDEEV EQUATIONS

Throughout the paper we use the atomic units (a.u.)
ﬁ=e2=me =1, so that the length unit is the Bohr radius
ag.
The particles are numbered by the label a=1,2,3:
(e ,e ,et)=(1,2,3). Configuration space is
parametrized by the scaled Jacobi vectors {x,y,}. In
our case of equal particle masses, they are related to the

position vectors of the particles r, as follows (for a=1):
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x;=(r,—r3),

_ 2
n=5

r2+r3
r,— 2

Cyclic permutations of indices in (1) yield the Jacobi vec-
tors with other a’s. Relation between them is given by
the orthogonal transform
V3
X5= —%xa—keﬁa—z Ya o

__. V3
yB__eBa 2 X7 3Y¥a >
with €5,=(—1 ¥~ %sgn(a—B).
When the total angular momentum L of the system is
fixed, the three-body dynamics is constrained onto three-

dimensional internal space [8] which can be
parametrized, for instance, by the coordinates

x.=x4l , ya=lyal , 6,=arccos(x,5,) - 3)

The s-wave (L =0) state is governed by the Hamiltonian

(8]

3
H=Hy+ 3 V(x,), @)

a=1

where V, stand for the potentials of the Coulomb in-
teractions between the particles:

1

1
V](x):Vz(x):_; 5 V3(x):x 5

and H|, is the s-wave kinetic energy operator:

HO: _xgzaxaxiaxa —yc:zayayiaya

1
2
a

csceaaeasinﬁaae . (5)

1
T3
a

X

As mentioned in the Introduction, one cannot exploit
the usual form of the Faddeev equations related to the
Hamiltonian (4):
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(Hy+V,—EVW,=—V, 3 Y, (6)
B(#a)
where ¥, are the Faddeev components of the total wave
function. The reason for failure of Egs. (6) is that the
Coulomb potentials in the right-hand side of (6) yield a
long-range coupling of the Faddeev components in the
so-called three-body region where all three particles are
well separated asymptotically. This results in noncom-
pactness of Egs. (6) in the continuum spectrum. A
method to get rid of this problem is due to Merkuriev [7]
and is as follows.
Each Coulomb potential is decomposed into the two
parts

Vg)(xayya )= Va(xa(xa )g(xa’ya) ’
VD xgrya)=Volx o)1 —Exarba)]

where &, is a cutoff function. Its form can be rather arbi-
trary within some general requirements. Namely, let Q,
be domain of the (x,,y,) plane where y, = x} with v>2.
Then asymptotically, as y,— «, the cutoff function is to
achieve fast enough the limits

1 if (x,,y,)EQ,

0 otherwise.

)]

S(XpYo)—

Thus V' may be regarded as a short-range potential that
vanishes asymptotically in the three-body region (where
X,~y,— ) whereas the long-range potential V) goes
to zero in the two-body sector (..

In terms of the potentials (7) the Hamiltonian (4) can
be written as

H=H,+ 3 VY, H,=H,+ 3V . (8)
a a

J

[Ho+ V() 4+ V¥ (xpy 1)+ V(x5 p31)—E 1¥,(x,9,0)=— V' (x,)[p¥1(x 2,021, 7— 051) + ¥3(x31,¥31,651)]
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The operator H,; incorporates the long-range tail of the
total Coulomb potential.

Using the representation (8), one now can construct the
Faddeev equations in the standard way, treating H, as
an unperturbed Hamiltonian. This leads to the modified
Faddeev equations

(Hy+ VS —E)W (X .0 050,)

BFa

The sum of the Faddeev components gives the total wave
function

v=3v,. (10)

Note that the number of the modified Faddeev equa-
tions can be reduced from three to two when two parti-
cles are identical. For the e "e et system, these are the
particles 1,2. The coordinate part of the wave function
possesses additional quantum number p =*1, being pari-
ty with respect to electron exchange: P, W=pW¥. Thus
p=+11(—1) for the singlet (triplet) spin state of elec-
trons.

For fixed parity state, the Faddeev components obey
the (anti) symmetry relations P, ¥,=pW¥,,P, ¥Y;=pV¥;
(the cutoff functions §; and &, are to be equal). In terms
of the coordinates (3) they become

V,(x,y,0)=p¥,(x,y,m—0) ,
Wi(x,y,0)=pV¥;(x,y,m7—0) .

Therefore Egs. (9) are reduced to the set of two equations
for the components ¥, and ¥;:

(11)

[Ho+V3(x)+ V(l”(xl3,yl3 )+ V(zl)(xzs,hs )—E¥;(x,y,0)=— V(f)(x,y MW (x13,913,013) +p W (x23,03,m—03)] ,

where X g,, ¥gq> and 6, stand for the coordinates x4, y g,
and 6y expressed through x,=x, y,=y, and 6,=6 ac-
cording to (2).

III. BIPOLAR EXPANSION

For computational purposes, once can reduce the di-
mension of Egs. (9) by expanding the Faddeev com-
ponents into an auxiliary basis, at the expense of dealing
with an infinite number of partial equations. To this end,
we make use of the bipolar expansion which has been ex-
ploited extensively in the trinucleon problem [9-11] and
more recently, in the Coulomb three-body bound-state
J

’
1

(=&, +Vi—E)F+ 3 W‘f])f]_ + W‘;l’{, ]F‘(,‘,l’ =—pV{
(»I

1

problems [12]. In our case of zero total angular momen-
tum, this is the expansion of the Faddeev components
into Legendre polynomials, the eigenfunctions of the an-
gular part of the operator (5) being

F@(x,y) _

Y, (x,y,0)=T7 P/a(cose) R (12)

e xy
where P, are the normalized Legendre polynomials:
P,(u)=V'¢+1/2P,(u).

Substituting Eq. (12) into Egs. (11) leads one to an
infinite set of two-dimensional integrodifferential equa-
tions for the partial components of ¥, ¥;:

A\ (1) 1 (3)
;( )ﬁ,],,lF,,l+/2( Ry FOL
3

! (13)

(=8 A V=B + SW,), + WD, IF))==2VY Sk, FY)
l 4

3
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where — A, are the partial components of the kinetic en-
ergy operator (5):

—A,=—0k =+ +1)

1 1
22

The coupling due to the functions W% comes from the
long-range potentials V(Bl) of Egs. (11), for instance,

W2 (x,y)= flldu PP, (1)VP(x", "),

where u =cos6,

. 3 ] 12
—xz——3—xyu +—y2

x'(x,y,u)=x5 = 4 5 y)

3 V3 12
—x2+—éxyu +ly2

y’(x,J”u):)’z]: 4 2 4

The operators h /¢ yield the standard integral coupling of
the partial Faddeev components:

2 = (' 0, XY B (B (g

h, F)x,y)= d p P, (u')F(x',y'),

(b F)ep)= [ u PP WOF(x, ")
where x',p’ are defined by (14) and

u'(x,y,u)=cosf,,

v
=(2x'y")"! —xyu+—2§(x2—y2) . (15)

In the derivation of Eqs. (13) use has been made of the
symmetry relations

xy(—u)=xp(u)=xy(—u)=x,,(—u)
=x,(u)=x"(u),

yul—u)=yu)=y,(—u)=y,(—u)

=ynu)=y'(u),
—cosf3,(—u)=cosf;3(u)
= —co080,3(—u)
=cos0;,(u)= —cosf( —u)

=cosb,,(u)=u’",

where the functions x’, y’, and u’ are defined in (14) and
(15). These relations from (2) are responsible for sign fac-
tors by the integral terms of Egs. (13).

In the expansion (12) for the component V¥, the partial
indices ¢; run over all nonnegative integers
(¢£,=0,1,2,...) whereas for the component ¥; only
even/odd indices are involved, depending on parity:
¢3,=0,2,4,... ifp=+1land ¢/;=1,3,5,... ifp=—1.

Equations (13) are subject to the boundary conditions

F‘;jj(xzo,y)=F‘ﬁ;(x,y=0)=0 . (16)

For the scattering problem, one also has to impose an
asymptotic condition. We shall consider the problem of
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the zero-energy e -Ps elastic scattering where E=—1
a.u. is the binding energy of the Ps ground state. In this
case, all partial components vanish asymptotically except
for the component F({! which contains zero-energy
asymptotic state:

qoo(x)(%y— A) ifa=1,¢,=0

0 otherwise ,

F%)(x,py—>w)~

(17)

where @, stands for the radial wave function of positroni-
um and V'3y/2 is the distance between the incoming
electron and the positronium center of masses [see Egs.
(1)]. The constant A is scattering length to be calculated.

IV. RESULTS AND DISCUSSION

First, we have to fix the cutoff functions §, which are
input parameters of the method. Of course, the total
wave function (and, therefore, scattering length) must be
independent of the particular choice of the cutoff. How-
ever, one should expect that only in the limit when all
partial channels of Egs. (13) are taken into account. For
a truncated set of Eqgs. (13), results obtained with different
cutoffs will differ, but the difference must vanish with in-
crease of the number of partial waves included. This pro-
vides a rather strong test of the selfconsistency of the
method and convergence of the bipolar expansion.

In our calculations, we take all cutoff functions to be of
the same form,

(x/xy)"

y)=2 —
Calx,y) /vt

1+exp

We make the following remarks on choosing the cutoff
parameters. According to the compactness requirements
[7], v must be greater than 2. There are no principal re-
strictions on x,, and y,. However, the parameter x, is
rather important, for it determines the effective range of
the short-range potentials ¥'¢). The larger x,, the more
V'$)(x,y) is spread over the x axis. Thus, in order to di-
minish the integral coupling of the Faddeev components,
x, should be taken small enough. But with decrease of
x, the coupling due to the matrix elements W', in-
creases, so that x, should not be too small. Interplay of
these factors determines the optimal region where x, is to
be chosen from. We found that x being around the size
of the positronium atom is the optimal choice. In our
calculations, we use two sets of the cutoff parameters:

v=2.3, x,=2, y,=10, (18)

v=2.6, x,=18, ys=5. (19)

To solve the problem (13), (16), and (17) numerically,
we adopt a method proposed previously for the neutron-
deuteron scattering problem [13]. It consists of the
finite-difference approximation of Egs. (13) in the
Cartesian coordinates on a rectangle Q={x,y}
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€[0,% .y I® [0,y ] Which is meshed by a nonuniform
rectangular grid. The integral terms of Egs. (13) are cal-
culated by the eight-point Gauss quadruture formula
with a linear interpolation of integrands in between the
grid points.

At the boundaries of Q we set all partial components to
be zero except for the component F) at y=y .. where
the condition F{(x,pn.)=@o(x) is imposed. Thereby
the asymptotic behavior (17) is ensured (up to a normali-
zation factor) and the scattering length is derived from
the y dependence of the solution in the asymptotic region.
The x independence of A4 obtained in this way provides a

FIG. 1. The singlet (a) and triplet (b) wave functions (21) of
the zero-energy e -Ps scattering as functions of x,,y, at fixed
angle 6,=0.

1313

stability test of the method.

Both grids in x and y are taken to be piecewise uniform
with successive doubling of step at several points. To fix
an adequate grid, we solve the problem with three partial
channels of Egs. (13) and vary all grid parameters until
stability of result within 0.5% is achieved. A typical grid
providing such an accuracy consists of N, X N, =34X45
points

x=0(0.3)4.5(0.6)12.6(1.2)21 ,
y =0(0.4)4.4(0.8)12.4(1.6)25.2(3.2)50.8(6.4)108.4 ,

U, (z1,31,0, = 10%)

e ey
e T L LU

Y
\\\“‘.‘3‘-‘%.\'““1 8
L\

\\\'ﬁ\-{\\-\ 0

i

MRW ““9»
AW ‘f"’
RN

FIG. 2. (a) Singlet wave function at 8,=10". (b) Triplet wave
function at 6,=20°.
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TABLE 1. The singlet (p = + 1) scattering length for two different uses of the cutoff parameters (18)
(A4+) and (19) (4% ); N is the number of partial channels of Egs. (13) taken into account; {¢,} and
{ ¢} are corresponding sets of partial angular momenta for the components ¥, and V.

N 2 3 4 5 6 8
(1} 0 01 012 012 0123 01234
(£} 0 0 0 02 02 024
A, (au) 16.5337 12.0560 11.9467 11.8116 11.9826 11.9846
A, (au) 15.9591 12.0475 11.9481 11.7851 11.9820 11.9853

where a(h)b means that within the interval [a,b] the
grid step is A.

Tables I and II present the convergence of the scatter-
ing lengths with increase of the number of bipolar har-
monics taken into account. In both the singlet and triplet
cases the convergence is achieved for N =8 and the limit-
ing values are fairly independent of cutoff. Thus, our
final values for the scattering lengths are

A,=11.98a,, A_=4.78a, (20)

which yield the following zero-energy limits for the total
elastic and ortho-para conversion cross sections:

0 (0)=(+4% +32 4% )47a}=212.07ma} ,
0.(0)=4A4,—A4_)Pma}=12.96ma} .

These results are in agreement with the variational es-
timations of Ref. [4]: A, =(12.0£0.3)a,,
A_=(4.610.4)a,, and 0,,(0)=208ma}.

The adiabatic calculation of Ref. [5] gives
A, =13.16a,, A_=4.90a, (these numbers are derived
from Table I of Ref. [5] where a different representation
of the S matrix has been used). Some 10% disagreement
with our result (20) in the singlet case can be accounted
for by the fact that the convergence in the number of adi-
abatic channels is not quite achieved as is seen from
Table I of Ref. [5].

Note that in Ref. [14] an estimation of the singlet
scattering length was made by making use of variational
wave function of the Ps™ state. Somewhat surprisingly,
the result of this work 4 , =(12.233%0.006)a, is rather
good though the accuracy seems to be overestimated.

For a better understanding of the scattering dynamics,
let us now consider structure of the total wave function
which is composed of the partial Faddeev components
according to (10) and (12):

Fi*(x0¥a)
Y= }a: % TPIH(COSGG) : (21)

a

TABLE II. The triplet (p = — 1) scattering length. The same
notation as in Table I.

N 2 3 4 6 8
(1) 0 01 012 0123 01234
{£5) 1 1 1 13 135
A_ (au) 4.8971 4.6589  4.8491 4.8091 4.7839
A" (au) 49011 4.6902 48775  4.8209 4.7890

Figure 1 shows the singlet and triplet wave functions at
fixed angle 6,=0. One can clearly see two asymptotic
states propagating along the directions x =0 and x =V'3y
on the {x,y} plane:

lll‘(z,y,9 =0)

FIG. 3. The singlet Faddeev components ¥,(x,y,0) (a) and
WV;(x,y,0) (b) at 6=0.
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24,

1——

V3y

24,

1———=
\/3y'

+pPo(x”) , (22)

where x’ and y' are defined in (14) and @y(x)=@y(x)/x is
the (renormalized) positronium ground state. The direc-
tion x =V'3y corresponds to the maximum of the second
two-body bound state of Eq. (21) at x’=0. Out of these
two directions, the wave function vanishes asymptotical-
ly. Apparently, there are two different regions of
configuration space: the inner domain where dynamics is
essentially three body, and the asymptotic domain where
one of the electrons catches the positron to form a posi-
tronium atom. The singlet wave function changes its sign
when passing from one region to another. This is due to
orthogonality of the scattering state to the bound state of
Ps~. Note that the inner domain is much more spread
over in the case of the singlet compared to that of the
triplet.

The second asymptotic state of Eq. (22) exists only at
6,=0. When 6,70, the argument x’ of the positronium
wave function is bounded away from zero everywhere, so
that this term vanishes asymptotically. For small 6, it
leaves a fading trace at finite distances, as is seen from
Fig. 2. With further increase of 8, it disappears com-
pletely.

It is worthwhile to compare the complicated structure
of the wave function with that of the Faddeev com-
ponents (12) shown in Fig. 3 for the singlet state. The

Faddeev components are rather smooth and well local-
ized in the x axis. It illustrates the usual practical advan-
tage of the Faddeev method compared to methods deal-
ing with the total wave function.

There is one additional point we would like to outline.
The efficiency of the bipolar expansion method depends
drastically on convergence in the number of partial chan-
nels taken into account. In our case of equal particle
masses the convergence turned out to be quite satisfacto-
ry. However, one might expect it to be getting worse with
increase of mass differences. Recently [15], a method was
proposed to overcome this shortcoming of the bipolar ex-
pansion. It consists of directly solving the three-
dimensional Faddeev equations (11) via a supine expan-
sion in all three variables. The results of Ref. [15] for the
bound states of Ps~ and ppu~ systems are rather en-
couraging and the approach seems to be worthwhile to
apply to scattering reactions in systems like d +(tu™)
ande” +H.
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