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The approximate quantum numbers A and T in the (K, P classi6cation scheme of doubly excited
helium states have been evaluated. A strong mixing of the symmetrized and antisymmetrized com-
ponents has been found in the A =0 states. A direct veri6cation supporting rotorlike structures has also
been found.
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I. INTRODUCTION

It is well known that the „(E,T)tt scheme [1,2] is suc-
cessful in classifying doubly excited helliumlike states. In
this notation, N (n) labels the shell where the inner
(outer) electron stays; K is an integer to describe the an-
gular separation between the two electrons:
A (=+, —,or 0) describes the symmetry with inter-
changing r& and rz (r; is the norm of r, originating from
the nucleus); T=~m'~, m' is the projection of the total
orbital angular momentum L along the direction of
r, —r2. Recently, a new set of quantum numbers n&n„m
based on the molecular-orbital description was proposed
[3,4], where nz, n„, and m are quantum numbers associ-
ated with the prolate spheroidal coordinates A, , p, and g.
It was shown in [3] that in certain states the motion asso-
ciated with the variation of A, is independent from that of
p.

Ii «12

(r/rp) Gt, / (r$rp)
(l, l~)++ (I, l~)

rir2 r)r2

However, since we are concerned mainly with the quali-
tative aspect, they are accurate enough for qualitative
purposes.

Let us denote an (anti)symmetrized partial-wave (PW)
channel by

(lil2)*=ez[[Yi, (r, )Yt, (r2)]t+[Y, (r2)Yt, (ri))L, ]

(2)

where lz ~l&, and a+=1/&2 (l, %12) or [1+(—1) ]/4
(l&=l2). Evidently, (l&lz)+ is symmetric with inter-
changing r, and rz, while (l

&
l2) is antisymmetric.

Let the spatia1 part of the eigenwave functions be ex-
panded as

These two schemes can be considered essentially
equivalent in the sense that the set of quantum numbers
of one scheme can be reproduced by those of the other
scheme by the following relations:

n
A =( —1) ", —,'(N —K —T —1)=n&,

T = im i, E= [n„—[1—( —1) "]/2] l2 nz . —

Let us define

W'= g f dr&drz~G&'&'
~

li «l2

Wb= g f dr, drz~Gt' i'
~

(3)

(4)

However, the A =0 states in the (E,T)" scheme have no
counterpart in the (n~n„m) scheme. Both schemes are
approximate schemes in the sense that both sets of quan-
tum numbers are approximate quantum numbers. It is
the aim of this paper to determine the exactness of these
numbers by extracting relevant information directly from
numerical solutions of the exact Hamiltonian. These
solutions are obtained via a procedure outlined in [5],
which is essentially a variational procedure; the solutions
obtained are not very accurate (the accuracy is roughly
the same as those by Lipsky, Anania, and Conneely [6]).

Wt t
= fdr&dr2()G" )

+[G'"'
) ) (6)

This is the weight of a PW channel, i.e., the weight of

Let W+ ( W ) be the weight of the symmetric (antisym-
metric) component of 4 with respect to the interchange
of r, and r2 fulfilling W++ W =1. Evidently, in the
case of total spin S=0. We have W+ = W', and
W = W; in S=1, the reverse is true. The deviation of
W+ from 1 or 0 measures the exactness of the quantum
number A. Let us further define
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having one electron (either the inner or the outer one) in

I, and the other one in I2. These quantities show the PW

composition of a state. In what follows, the
P', 'P', 'D', D'states with N=3, n 5 are examined.
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II. EIGENENKRGIES
AND THE PARTIAL-WAVE COMPOSITION
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The results are given in Table I. The first column gives
the (K, T)" and (n&n„m ) labels, and the second column
gives n. Then, in each L,S,~ state, the energy and the
WI I are given from left to right; the energy calculated

1 2

by Lipsky [6] is also given in parentheses for a compar-
ison.

This table shows several things:
(i) Among the states having the same L,S,~, those

having the same (K, T)" have similar PW composition.
The qualitative feature of this composition does not
change with n; however, increasing n usually results in
stronger mixing of the PW components.

(ii) Among the states having the same „(E,T)z, states
having different L,S,~ have different PW compositions.
However, we shall see that the difference affects mainly
the collective rotation but not the internal motion, as
shown later.

III. EVALUATION OF THE A NUMBER

The exactness of A is shown by 8'+ given in Table II
(since W++ W =1, only giving W+ is suf5cient). This
table shows that the mixing of the symmetric and an-
tisymmetric components is, in general, remarkable.
There are some noticeable points:

(i) Evidently, there are three types of states: the first

type (having A =+1) has a much larger W+, and the
second (having A = —1) has a much larger W, while
the third (having A =0) has very strong mixing of the
symmetric and antisymmetric components. It appears as
that there is no explicit border (or gap) to separate the
W+ (or W ) into three regions. The existence of the
states with particularly strong mixing implies the definite
existence of the A =0 states; however, they have no
counterpart in the (nzn„m ) scheme.

(ii) In order to understand the details of mixing, let us
first rewrite the Hamiltonian as

H =H„„+H;„,

VI

a
a5

II

bQ

~ M

a5

mt

4

0

a5

O

Ct

a5

0

bQ

05

00

0

QO
QO

QO

I

QO

QO

I

00
QO

0

QO

I

CV

QO

I

00
VO

0

0

cV

I

QO

0
I

0

00
QO0

QO

I

I

00

0

I

I

00
0
0

0

I

I

QO

0

00
QO0
QO

t

0
QO0

QO

I

QO

00

0
0
0

cV
QO

I

QO

I

0

QOn&AAOO0 0 0 0 0 0 0

QO 0 WQ
t

I I

eX Xc

Ch VO ~
Ch

t

I I I

O~&
QO
I

M t

I I

Q QO QO
QO

I
M l

I I

VO

0 0

QO

I

QO

QO

I

Ch
t0 0

QO QO0 0 0 O

I

'40

I I

K
t
t

t

I I

QO
QO

I I

Q
QO Vj
VO M

I I

QONHOO~~000000 0

0 0 0 0 0 0 0
Q $ C& W ~ ~
000000 0

QO
V)

I

I

QO
QO

QO

I I

QO

QO QO

I

QO
QO

Q H t

I I

00 IPl

I I

I

I

0 00 0
m V)

0 0

M~mt MAO0000000

where

1 1 8 8 1

2 ri ~r

+—(8+8 ) +—1 1
4 1 2

r2

z 1

r2 r12

keeps the symmetry with interchanging r, and r2, where

8; is the operator of the orbital angular momentum of
the ith electron;
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TABLE II. The weights of the symmetrized components of
states having IV=3.

(K, T)"
(nzn„m)

(1,1)+
(021)

( —1, 1)+
(101)

3pe 1po

0.91
0.88
0.89
0.85
0.76

1Do

0.83
0.86
0.77

3D e

0.76
0.77
0.69

(2,0)
(050)
(0,0)
(130)
(0,2)
(012)

0.07
0.06
0.22
0.20

0.22
0.31

0.12
0.12
0.25
0.28
0.11
0.17

( —2,0)
( —1, 1)

0.61
0.52
0.46

0.37
0.32

mixes up the symmetric and antisymmetric components.
Evidently, the extent of the mixing is determined by the
matrix elements of H;„.

Now, in the P' states, since l& =l2 as shown in Table
I, there is no mixing. In the 'P' states, there are mainly
the (01), (12), and (23) PW components having
~l](l]+1)—l2(l2+1)~ equal to 2, 4, and 6, respectively.
We found that the (2,0) states are dominated by the
(01) component, as shown in Table I, and thus they have
a smaller mixing. On the other hand, the main com-
ponent in the ( —2, 0) states is the (23) component, and
thus it results in a larger mixing. This explains the back-
ground of the numbers in Table II. Since the states hav-
ing different E have different PW structures, thus the ex-
tent of mixing depends on E.

Another example is the D' states. Where the (1, 1)+
states are dominated by the (02) component resulting in
stronger mixing; the largest components in the (2,0)
and (0,2) states are (11) and (22), respectively, resulting
in weaker mixing.

Now let us compare the mixing in a rotor series having
the same „(K,T)g. but different L,S,m. An example is
the „(1,1)3+ states, where the P' states are dominated by
the (11)component, the 'P' states by a mixture of the (01)
and (12) components, the 'D' states by the (12) com-
ponent, and finally the D' states by the (02) coinponent.
Thus in this series ~(E, —Ez) ~

gets increasingly larger.
Consequently, the mixing also gets increasingly larger.
Thus the exactness of A in different states of a rotor
series is different; it depends on the PW structures.

(iii) The factor (1/r] —1/r2 ) is not as important as the
difference in orbital angular momenta. When 1V and n
both become large (both electrons are far away from the
nucleus), the mixing is, in general, weaker. When N is
fixed and n is increasing, this factor is, in general, larger;
however, the effect from increasing n is weak.

IV. EVALUATION OF THE T NUMBER

An evaluation of the T number has been recently made
in Ref. [7] by numerical calculation to obtain the weight
of each T component. In this paper, we use another pro-
cedure to make the evaluation. The advantage of the
present procedure is that the angular correlation of the
electrons can be evaluated at the same time, and the main
structure of the wave function can also be revealed, as
follows.

Let us define a body frame with its k' axis parallel to
r, —r2. Then 4 can be expanded as

X
m'= —L ]r2

(10)

where 8]2 is the angle between r, and r2, % denotes the
Euler angles, m' is the projection of L along the k' axis,
and T= ~m'~. From the symmetries with respect to the
interchange of r, and r2, and to the refiection, we have

Q (r]rye]2)=« —1) + Q,(r]r28]2),

Q~ (r]r28]p) —« —)
+ Q~.(r2r]8]2) .

Inserting Eq. (11) into Eq. (10), we have

L
q'= X DmMQm «]rz

m'=0

D m M=Dm M+« —)

(12)

(13)

(14)

where Q =Q ~ (m'%0), and QO=QO/2. Evidently, the
factor D M describes the collective rotation, while Q
describes the internal motion. If in Eq. (13) only one m'

component is dominant, as we shall show, the coupling
between these two kinds of motion is weak.

Now let us define a pair of distances r;„and r,„, for
each state. r;„(r,„,) is the most probable distance that
e;„(e,„,) prefers to stay. These pairs of distances can be
obtained from the one-body densities defined later (also
refer to [5]). In what follows we shall present the results
on Q ~ by a number of figures, where Q ~ are considered
as functions of 8&2 with r, given at r;„and r2 given at
rout

Figures 1(a)—1(d) show the P', 'P', 'D', and iD'
states of the 4(1, 1)i+ supermultiplet, respectively. We
found that the internal structures of these four states are
essentially the same, and are all dominated by the m'=1
component; the shapes of the curves Q, are very similar,
in particular, the peak of each curve is closer to the right,
which implies a larger angular separation in a positive-E
state. This finding is a direct verification of the rotorlike
structure. However, this description is not exact. Only
in the P' state is the m'=1 component pure; there is a
small amount of the m'=0 component mixed in the 'P'
state, the m'=2 component mixed in the 'D' state, and
both the m'=0 and 2 components mixed in the D' state.

Although these states have similar internal structures,
they have different ways of collective rotation. This
arises because the D M(%) factor is n and L dependent.
Accordingly, the system may prefer different orientations
in these different states. This situation is shown by the
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one-body densities defined as

pi(r i ~i ) =4~r i f«2I +I',

where 8& is the angle between r& and the Z axis. Figures
2(a)—2(d) show p, of the above four states as a function of

FIG. I. Q ~ of the 4(1, 1)&+ supermultiplet as functions of 8,2

when rl is given at r;„and r2 at r,„,~ The solid line is for m'=0,
the dashed line is for m ' = 1, and the dotted line is for m '= 2.

r, when 8, is specified. In these figures, we have M (the
projection of L on the Z axis) equal to ILI, such that L is
essentially lying along the Z axis. Thus, the anisotropism
of the distribution shown in these figures is relative to the
direction of L. Different members of the supermultiplet
do exhibit different anisotropism. In particular, the elec-
trons strongly prefer lying along L in the P' state, but
prefer lying in the plane perpendicular to L in the D'
state. Incidentally, the location of the main peak of p, (in

the %=3 shell) is defined as r;„, and that of the outmost
peak is defined as r,„, in each state. If we change n from
4 to 5, we find that the above qualitative features of the
4( 1, 1)i+ supermultiplet remain unchanged.

Figures 3(a) and 3(b) show the Q of the ~(
—1, 1),+ su-

permultiplet. Here we recover the similarity of the inter-
nal structures. It is also dominated by the I'=1 com-
ponent. The m'=Q component intrudes in the 'P' state
as before; howeverno, w the Q, lies closer to the left,
which implies a smaller angular separation in the
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FIG. 2. One-body densities p& of the 4(1, 1)3 supermultiplet. p, is plotted as a function of r, when 0& is given at 90' (solid line), 45

(dashed line), and 0 (solid line), respectively. The abscissa t is related to r by r =0.05t" A. In each state the z component of I. is

equal to L.
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negative-E states.
Figures 4(a) and 4(b) are for the 4(2, 0)s supermultip-

let. These two Ggures are very similar; besides, the D'
state contains a small amount of the m'=2 component.
Figures 5(a) and 5(b) are for the ~(0,0)3 supermultiplet;
when n =4 changes to n =5, Figs. 5(a) and 5(b) change to
Figs. 5(a') and 5(b'), respectively. We found several
things:

(i) The main component has m'=0 with two nodes,
and there is a great distribution around 8&&=90'. This
suggests the quantum numbers T=0 and K =0.

(ii) The D' states have a stronger T mixing than the
'P' states. It is expected that larger L will result in
stronger mixing.

(iii) The n =5 states do not, in general, have a stronger
mixing than the n =4 states.

Figures 6(a) and 6(b) are for the ~(0.2)3 supermultip-
let, where the 'D' state cannot have the m'=0 com-
ponent due to Eq. (11). Evidently, the wave functions are
dominated by m'=2 component and are mainly distri-
buted around the 8&&=90' region. The similarity in inter-
nal structures inside this supermultiplet is once more ex-
plicit.

Figures 7(a) and 7(b) are for the 4(
—1.1)3 supermulti-

plet, where the distributions shifts to the left. Figure 8 is
for the 4(

—2, 0)3 supermultiplet. This figure can be com-
pared with Fig. 4(a) to show the great difference in angu-
lar correlation. It is noticeable that this state has A =0,
and has very strong A mixing, as shown in Table I.
However, it does not have particularly strong T mixing.
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V. FINAL REMARKS

It is emphasized that the emphasis of this paper has
been only in the qualitative aspect. Though the wave
functions under consideration are not very accurate, the
following facts related to the accuracy are noticeable:

(i) The basis functions used in this paper are well
chosen. As stated, the set of single-electron basis func-
tions

—yr/2 I+1L2l+2( (16)

E; =(q';i'7+E; e;)IE;, (17)

where 7 is the total kinetic-energy operator. According
to the virial theorem, c.; should be zero if 4, is exact;
hence, if ic, ; i

is large, 4; must be far apart from the exact
solution (the reverse is not necessarily true). It turns out

TABLE III. The eigenenergies E; (in eV) of the N=3 series
of the D' states obtained in a 64-dimensional space (column
one) and in a 134-dimensional space (column two).

has been used successfully in [8]; where the extent of the
distribution is determined by the adjustable parameter y,
all basis fu~'ctions have the same y. In our model space,
we use similar but improved basis functions, where y
may not be the same for all basis functions. Since, in
fact, the extent of the distribution of an electron depends
strongly on the effective charge arising from the nucleus
and from the screening effect of the other electron, in our
procedure the y of each basis function is strictly related
to the effective charge, which is adjustable in an interval
depending on the status of the other electron. With the
defrozen y, our model space become purer and more
effective in the sense that it is less contaminated by the
spurious components from the continuum. As a result,
most eigenstates are stable with respect to the change in
dimension and in parameters. For example, in the N =3
series of the D' states, the eigenenergies obtained by us
in a smaller (64-dimensional) and in a larger (134-
dimensional) model space are listed in Table III, where
the stability is explicit. The energies by Lipsky, Anania,
and Conneely (shown in Table I) are, in general, lower
than ours; this may arise because the 2lnl' basis functions
are excluded in their N =3 calculations.

(ii) We have used an additional judgment to evaluate
the accuracy of the solutions by calculating

that once our model space is suitably chosen, the eigen-
states can be explicitly divided into two groups; one has
very small is;i, while the other has very large iE, i. This
is shown in Fable IV, where the c,,- of the eigenstates adja-
cent to the lowest D' state of the N=3 series are given.
This table shows that a few states have exceptionally
large is; ~; this implies that the spurious components are
heavily concentrated in these states, and they should be
eliminated. After the elimination, the rest of the model
space is expected not to be seriously contaminated by
spurious components.

(iii) Although Table III shows a small change in ener-
gies when the dimension of the model space is enlarged,
we found that the qualitative features of the wave func-
tions remain unchanged. For example, let us observe the
weights of the partial-wave channels 8'I

&
of the D'

1 2

states [defined in Eq. (6) and shown in Table I]. We
found that most of them have only a 0.01—0.02 change
when the model space is enlarged from 64 dimensions to
134 dimensions. Accordingly, the related figures of Q
change only very slightly.

(iv) Although primarily the results of the N=3, n =4
states have been presented, many other states of the N =3
series and states of the N =2 series have also been investi-
gated. Thus, what we provide is a systematic knowledge
of the spectrum and not only the information of a partic-
ular state.

Since we have used a reasonable model space, since
most spurious components can be eliminated, since the
qualitative features of the wave functions remain un-
changed when we enlarge the model space, and since the
qualitative features are extracted from systematic obser-
vations, we conclude that, though we have not yet ob-
tained very accurate solutions in the quantitative sense,
the information extracted is reliable in the qualitative
sense. We found several things:

(i) The mixing of the symmetric and antisymmetric
components is remarkable. Since the mixing is contribut-
ed mainly by the factor (Pf —Pz), the details of mixing

TABLE IV. E; [refer to Eq. (17)] of a sequence of adjacent
'D' states close to the head state of the N=3 series. These
states are obtained via a diagonalization of the Hamiltonian in a
64-dimensional space.

3D8

E, (eV)

64 dimensions

—8.842
—7.699
—7.338
—7.271
—7.113
—6.963
—6.817
—6.778
—6.769
—6.680

3De

134 dimensions

—8.847
—7.697
—7.336
—7.271
—7.112
—6.964
—6.820
—6.777
—6.770
—6.679

—13.750
—13.335
—9.331
—8.842
—7.699
—7.338
—7.271
—7.113
—6.963
—6.817
—6.778
—6.769

—0.227
—0.297
—1.834
—0.004
—0.003
—0.001
—0.005
—0.002
+0.001

0
—0.002
—0.002



46 EVALUATION OF THE EXACTNESS OF THE APPROXIMATE. . .

are explicitly PW dependent. The mixing can be quanti-
tatively measured by 8'+ (or W ), and may be close to
1, 0, or —,'; thus not only the positive- and negative-A

states, but also the A =0 states are necessary to classify
roughly the symmetry of the states. It is noticeable that
the A =0 states have no counterpart in the molecular-
orbital model [3], and thus the correspondence between
the (K, T)" scheme and the (nzn„m ) scheme should be
carefully checked.

(ii) The exact definition of the collective rotation and
the internal motion depends on the choice of the body
frame. If the body frame is chosen with its k' axis paral-
lel to r, —r2, then we find from the states under investiga-
tion that the coupling between the collective and internal
motions is, in general, weak. Accordingly, the mixing of
the m' components is weak, and the T number is approxi-

mately conserved. In fact, direct verification has been
found to support the rotorlike structures; namely, the
states belonging to the same supermultiplet have similar
internal structures. The mixing is also PW dependent.
For example, Figs. 5(a) and 5(b) show that the D' state
has a much stronger mixing than the 'P' state. In fact, it
has already been found in [7] that the extent of mixing
will increase when l. increases.

(iii) In the states under investigation, the (E,T)"
scheme works in general. However, we do see that some
states have 8'+ to be close to 4 or 4, and in some states
the mixing of different m' components is very strong
(e.g., those in Figs. 5(b), 5(b'), and 7(b); in these states, A
and T are far from exact quantum numbers. Nonethe-
less, they are still valuable numbers to expose some of the
underlying physics.
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