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Computational approach to the quantum Zeno en'ect: Position measurements
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We present computational results of quantum-mechanical sequential measurements of a single dynam-
ical variable (position) in a barrier penetration system. Our model is based on a well-rounded two-
minima potential with a particle initially located on one side of the barrier. First we allow the particle
wave function to propagate without further disturbance and calculate its barrier penetration time, then
we perform measurements of the particle's position and contrast the barrier penetration time T with the
results for the undisturbed system. The time-dependent Schrodinger equation for the problem was
solved using fast-Fourier-transform techniques. The barrier penetration time was found to depend on (1)
the type of measurement made, (2) the strength of the interaction of the system with the meter, (3) the
rate at which the measurements were performed, and (4) the precision of the meter (which in our model
is related to the width of the meter s wave function). We find no evidence in support of the Zeno effect.
However, by using a caricature of quantum mechanics we can obtain results similar to the Zeno effect.

PACS number(s): 03.65.Bz, 42.50.—p

I. INTRODUCTION

A discussion of the interpretation of quantum mechan-
ics (QM) on any level, above the basic mathematical for-
malism, almost inevitably becomes rather vague. The
difficulty which one faces is the concept of a quantum
measurement. The simplest object of a measurement in
QM is to determine the value of a single physical observ-
able for a dynamical system with as much precision as
possible. We take as self-evident that any measurement
on a quantum system will disturb the system in some
way. In this paper, we are considering a sequence of
measurements, and their effect on the system.

The theory of sequential quantum measurements has
applications in optical communications systems, in gravi-
tational wave detection, and in the understanding of fun-
damental quantum phenomena, such as barrier penetra-
tion, decay processes, and the quantum Zeno effect.

Recently, Wineland and co-workers [l] have reported
an observation of the quantum Zeno effect in action.
They have seen an inhibition of ratio-frequency transi-
tions between two hyperfine levels of the berillium ion
caused by "sequential measurements" using short light
pulses. Although Wineland and co-workers have un-
doubtedly seen an interesting quantum effect, we agree
with the comment of Ballentine [2], in that it is most like-
ly unrelated to the quantum Xeno effect and should be at-
tributed to a form of quantum interference phenomenon.
The original version of the quantum Zeno effect, as for-
mulated by Misra and Sudarshan [3], referred to a spon-
taneous emission process of an unstable particle and stat-
ed that a continuously observed state will never decay.
We believe it to be of the greatest importance to be able
to describe the measuring procedure accurately and take
account of all aspects of the system. We therefore choose
an example where everything can be calculated and ac-
counted for, before we delve into more complicated sys-
tems.

It has come to our attention that there are, sadly, very
few simple relevant problems in the quantum theory of
measurement that have been solved and discussed in the
literature. This paper, together with papers published
elsewhere [4—8], are an attempt to meet this need.

II. COMPUTER SIMULATION
OF BARRIER PENETRATION

Our barrier penetration model is based on a well-
rounded double-minimum potential with an elementary
particle, described by its wave function, initially located
on the right of the barrier. Figure 1 shows a graph of the
potential, solid curve, and the eigenfunctions of the po-
tential, various dotted and dashed curves. The energy ei-
genvalues are given in the caption. The wave function of
the particle satisfies the time-dependent Schrodinger
equation of the system, which can be solved by computa-
tional fast-Fourier-transform (FFT) techniques. We al-
low the particle to move freely and find its barrier
penetration time T. We then carry out sequential particle
position measurements [4—8], to be described later, and
compare the resulting barrier penetration time with the
free-propagation time T. This will enable us to observe
what effect the measurements have on the system. This
model usually leads to a discussion of the quantum Zeno
paradox in terms of a particle decay. It is at first sight
not obvious why we chose to consider a double-well po-
tential rather than leakage through the barrier of a single
mell. The double well adequately describes tunneling
through a barrier, which is the essential ingredient in
some decay processes. It has the added advantage that
the energy eigenfunctions and eigenvalues can be calcu-
lated with greater ease than the single-well case and used
to define the initial wave function for the particle. Furth-
ermore, knowing the energy eigenvalues gives a direct
method of finding the undisturbed barrier penetration
time, which we discuss below. The two-well model is im-
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FIG. 1. Potential well and eigenfunctions: The graph shows
the potential well, solid curve, and several bound eigenfunc-
tions, various dotted and dashed curves. The x axis represents
the spatial coordinate and the y axis represents the energy. The
energy eigenvalues for these wave functions, from the lowest to
the highest, are —3.19921, —3. 19897, —1.43042, —1.40992,
—0.134408, and 0. 192 680 respectively.

portant in its own right since it describes tunneling in sys-
tems of considerable importance in solid-state physics.
Although we do not present the material here, we have
found that the decay rate of a particle in a single well is
disturbed by measurements in a similar way to the
double-well case presented below.

The decay process can be described by the propagation
of the particle wave function from the right-hand side of
the well to the left-hand side. In this paper we consider
particle position measurements. If the particle is found
to be on the left of the barrier, we assume that it has de-
cayed. It is necessary to choose an initial particle wave
function in some way. We would like it to sit on the right
of the barrier. Clearly, the initial wave function must be
a linear superposition of the eigenstates of the problem.
The time evolution of the particle density function will be
dependent on differences in the energy eigenvalues of
each eigenstate involved in its construction. Combina-
tion tones of higher frequencies are present and will cause
peaks on the propagated wave function. The eigenvalue
equation, for our potential, was computationally solved,
and we choose as our initial particle wave function, a
50:50 linear superposition of the nearly degenerate
ground-state pair of eigenfunctions. These two eigen-
functions represent the lowest-energy, even and odd solu-
tions to the time-independent Schrodinger equation. This
initial wave function resembles an eigenfunction for a
single-well potential on the right of the barrier. See Fig.
2.

The Hamiltonian of the system can be written as the
sum of the kinetic and potential energies of the particle,

FIG. 2. Initial wave function: Superpose the lowest pair of
wave functions in Fig. 1 to form the initial particle wave func-
tion. The plot shows the initial particle wave function as a func-
tion of position.

where the constants a =1.6725 and b =0.0408 were
chosen to give only four energy eigenstates lower than
the barrier. This helped to quicken the undisturbed bar-
rier penetration time to an acceptable duration.

Now we will take a moment to describe the units used.
Consider the time-independent Schrodinger equation,

8 g(x)/Bx = [V(x) E)g(x) . — (3a)

To each parameter (x, m, E, and V) assign a dimension-
less amplitude and unit magnitude parameter which car-
ries the dimension. (For example, x~xx, where x is

now a dimensionless number and x, is unit magnitude
parameter with dimensions of length. ) The above equa-

tion can be rewritten as

(x) m, E,x,2
[ V(x) —E]g(x),

Bx fi

where the factor in the first square brackets is a dimen-

sionless number. We take rn =%=1,E, =%co/2, and cu is

determined by the curvature of the well at one of the
minima. By assuming that the wells are nearly quadratic
in nature we find that

() V =mao =4a .
Bx

8 = T(p)+ V(x),

where p =fik, T(p)=A' k /(2m), and the potential is
given by

V(x)= ax +bx—
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This leads to a value of co=2.5865 which is our inverse
time unit.

Our choice of initial particle wave function had the ad-
vantage that it was easy to calculate the undisturbed
propagation barrier penetration time T for this wave
function. It is well known that the time dependence of
the probability amplitude of a wave function composed of
a superposition of two states with different energies is
given by

DE~=A, (5)

where hE is the energy difference between the even and
odd ground-state eigenfunctions, and the period of oscil-
lation is twice the barrier penetration time, ~=2T.

For our system the even eigenfunction had a bound-
state energy E, of 3.19921 n.u. (natural or dimensionless
units for the problem), and the corresponding energy for
the odd function was 3.19897 n.u. with an error toler-
ance 1X10 n.u. Hence, the barrier penetration time
can be given as

T=805 Sco (6)

yields

g(x, t)=exp[ i(T(—p)+ V(x))t/A']g(x, 0) . (8)

Generally speaking, T(p) and V(x) are noncommuting
operators in QM. However, following the successes of
beam propagation techniques, we apply the symmetrized
split operator [9-11]

exp[ i T(p)ht /2A—] exp[ i V (x )b t /h]—

Xexp[ iT(p)bt!2']—, (9)

where the V(x) exponent acts on f(x, t) and the T(p) ex-
ponent acts on the Fourier-transformed wave function
%(x,k). The time integration is carried out by iteration
using many small time steps ht. Thus, we have an
effective way of numerically solving the time-dependent
Schrodinger equation for the barrier penetration prob-
lern.

III. QUANTUM THEORY OF MEASUREMENT

Let us briefly consider the evolution of measurement
theory; Dirac [12] stated that a measurement of an ob-
servable will give an eigenvalue of that observable and
that a very fast repetition of the measurement would give
the same result. This is equivalent to the collapse of the
wave function (or reduction} hypothesis of von Neumann.
Later, von Neumann introduced a measuring device (me-
ter) into the picture. In the last few pages of his book
[13], he gave an account of the dynamics of the interac-
tion of the meter with the system. Take P(x) as the wave
function for the system and M(X} as the wave function

where the time is measured in inverse natural frequency
units. This value was found to be in good agreement with
the computationally observed value, as we shall see later.

Solving the time-dependent Schrodinger equation

Bl/J( x, r )

for the meter. The interaction Hamiltonian between the
meter and the system is taken in the form ~xP, where P is
the momentum of the meter and in terms of the meter
coordinate P = if—id/dX W. e have added the a as a
variable interaction strength. During the brief time of
the interaction to we assume that we may ignore the ki-
netic energies of the system and meter since these ener-
gies are overwhelmed by the interaction strength. By in-
tegrating the time-dependent Schrodinger equation
through the small time step to,

a a—+ex $(x,X)=0,
Bt

(10)

we obtain

P(x,X)=f(x}M(X—x) . (12)

Taking this value of to essentially leads to a minimum un-
certainty in the system wave function, or one could say it
gives the best meter performance [14]. (von Neumann
would have taken ~=1 and hence to= 1.) At this point
von Neumann's book ends and we are never told what to
do with the combined x,X system. The first steps to-
wards a more useful technique were made in 1965 by
Arthurs and Kelly [15], in connection with simultaneous
measurement of conjugate observables. They considered
a single simultaneous measurement of position and
momentum, and were the first to introduce the variable
interaction strength ~ which was used in the way de-
scribed above.

In recent years, one of us [4—8] has outlined a way in
which QM can describe the effect of a sequence of obser-
vations to be made on an otherwise carefully isolated sys-
tem. This approach was not to find the best method of
practical measurement, but to examine methods which
can be carefully and clearly explained. We assume, as in
[4—8], that when the interaction takes place, and we have
obtained the combined state P(x,X), a measurement of X
gives a reading X . The system is assumed to be restored
to a pure case wave function P(x) which is given by

P(x)=P(x,X ) . (13)

The following steps are involved in the measurement of
X. First, we form the probability distribution for the me-
ter coordinate X, regardless of what the value of x might
be,

D(X)= J ig(x, X)i'dx . (14)

The position X can be chosen by using a random num-
ber generator to select one of the X values from the
weighted D(X) distribution. In practice, one can easily
achieve this by chopping the D (X) distribution into n
equal regions of probability 1/n. Each of the n regions
should be associated with one X coordinate, possibly the
central coordinate of the segment. Then a random num-
ber generator chooses one of the n, X coordinates. Thus,

$(x,X)=f (x,X tolrx) —.

Hence, the wave function of the combined system, taking
t0

= I /a, becomes
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we obtain an L which can be used as the measured
value of X. Substituting X =X, into Eq. (12), we regain
a pure case wave function in x for the system. In prac-
tice, one would use a meter only once and then throw it
away and use freshly initialized meters for the subsequent
measurements. (In our work we took n =100.) One
should note that no wave-packet reduction or quantum-
mechanical collapse of the system wave function has oc-
curred. (In Refs. [4—g] one is led to believe that this mea-
surement procedure is equivalent to collapsing the meter
wave function. The author no longer believes this to be
the case and will publish new material on this subject
elsewhere. )

IV. RESULTS
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Our results have been split into four sections in order
to cover four important features of the Zeno effect, as
mentioned in the abstract. The 6rst point mentioned was
that the type of measurement performed would greatly
effect the outcome of a sequential measurement pro-
cedure. We will delay this discussion until the conclud-
ing section. The second point involved the strength of
the interaction between the system and the meter, namely
the value of ~. The third point considered the rate at
which the measurements were performed and the fourth
point involved the precision of the meter.

A. Strength of the interaction between
the system and meter

In Sec. III we introduced the variable interaction
strength ~ into the system-meter interaction formalism of
von Neumann. There are two ways to think about the
effect of x, an intuitive picture and a more mathematical
approach. Intuitively, Eq. (11) suggests that if trto were
not unity the meter wave function would not point accu-
rately to the system variable x resulting in a less-precise
measurement. Mathematically, one may calculate the
Heisenberg uncertainty relation for x and p of the system
[14]. (The calculation is quite involved and we do not
give it here. ) The uncertainty relation is minimized when
~t0=1. This is therefore the optimum criterion for the
meter and the value that we have used throughout this
paper.

B. Rate of the measurements

Applying the methods of Sec. II, we 6nd the undis-
turbed particle propagation time T to be roughly 800co
see Fig. 3. This is in good agreement with our calcula-
tion, in Eq. (6). Furthermore, when the particle probabil-
ity density function is plotted at various times we see a
smooth transition of the particle probability density on
the right moving over to the left and back again as ex-
pected.

After finding the undisturbed barrier penetration time
T, we were able to introduce Gaussian meters into the
problem. Applying the methods of Sec. III, we took the
Gaussian meters to have a width of 3 n.u. During a set
time interval t of more than 2T (t =2000co '), we carried
out 5, 10, and 100 measurements of the particle position.

0.0 0.5 &.0 1.5

time {103 n. u. )

2.0

FIG. 3. Propagation of the undisturbed particle: Plot of the
probability of finding. the particle on the right-hand side (RHS)
of the barrier vs time.
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FIG. 4. EA'ect of the number of measurements: Plot of the

probability of finding the particle on the RHS of the barrier vs

time. Taking five measurements in a time of 2000m ', the graph
represents a Ineter width of 3 n.u.

We plotted the resulting probability densities versus time
in Figs. 4—6. It is quite clear that 100 measurements,
which is equivalent to a measurement every T/40 time
units, causes a vigorous flipping of the particle from one
side of the barrier to the other. This example shows that
the Zeno effect is completely nonexistent. We may go
further and say that quite the reverse of the Zeno effect
occurs, the measurements appear to help the particle to
surmount the barrier. We would expect measurements of
the type described in Sec. III (especially those performed
in quick succession) to cause the particle to decay more
rapidly than it would have done without the disturbance.
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FIG. 5. Effect of the number of measurements: Plot of the
probability of finding the particle on the RHS of the barrier vs

time. Taking 10 measurements in a time of 2000co, the graph
represents a meter width of 3 n.u.

FIG. 7. Effect of meter precision: Plot of the probability of
finding the particle on the RHS of the barrier vs time. Taking
10 measurements in a time of 2000co ', the graph represents a
meter width of 5 n.u.

C. Precision of the meter

In this section we consider the effect of the width of the
Gaussian meter wave function on the outcome of the
sequential measurements. Taking 10 measurements, and
setting a time limit of 2000co, as above, we plotted the
particle density against time for various meter widths.
Figures 5, 7, 8, and 9 show the results of this procedure
for meter widths of 3, 5, 8, and 12 n.u. The smallest me-
ter width represents the greatest precision. It is found
that the greater the precision of the meter the more dis-
ruptive is the measurement, which agrees with Peres [16].
For a sharp meter, we expect that a high momentum
would be transferred to the particle and that as a conse-
quence the particle would be more likely to penetrate the

barrier. Without access to a great number of such graphs
it is difficult to understand what is going on. It should be
remembered that a random number generator is being
used and so the graphs shown here represent single exam-
ples of possible outcomes of such measurements.

V. CONCLUSIONS

In general, we have found that measurements involve a
transfer of momentum to the particle which has a tenden-
cy to enhance the probability of barrier penetration, and
therefore speed up the decay process.

Returning to the first point mentioned in the abstract,
we would like to reconsider the form of measurement
adopted, in an attempt to revive the Zeno paradox. After
close examination of the paper by Misra and Sudarshan,
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FIG. 8. Effect of meter precision: Plot of the probability of
finding the particle on the RHS of the barrier vs time. Taking
10 measurements in a time of 2000co ', the graph represents a
meter width of 8 n.u.
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According to our calculations using a meter measure-
ment, we find no quantum Zeno effect. In this paper we
have not tried to model "continuous measurements. " In
fact, we would say that the concept is not well defined.
The obvious meaning would be to take the limit when the
consecutive measurements become so close that a mea-
surement is made immediately after the previous one.
We have shown that precise sequential quantum measure-
ments lead to a rapid Gipping of the particle from one
side of the barrier to the other. For example, see Fig. 6,
which corresponds to a narrow meter width and measure-
ments made in rapid succession. Finally, it is clear that

one should be very careful about the theoretical (or ex-
perimental) conditions before claiming to observe quan-
turn Zeno-type results.
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