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We study the persistence of self-trapping in the presence of arbitrary large perturbations. We obtain

the phase diagram for a nonlinear dimer interacting with a third linear impurity site and show that the

abrupt Kenkre-Campbell transition is sustained. In addition to the "free" and "self-trapped" regimes we

find a "chaotic" regime for some well-defined values of the nonlinearity and linear coupling parameters.

PACS number(s): 05.45.+b, 03.20.+i, 71.35.+z

The discrete nonlinear Schrodinger equation (DNSE),
or discrete self-trapping equation, was introduced in 1985
[1] as a generic mathematical model for systems of cou-
pled anharmonic oscillators. It has received considerable
attention since due to its applicability in energy transport
in molecular crystals [1—3], polyatomic molecules [4],
nonlinear switching devices in nonlinear optics [5,6], etc.
In the context of the tight-binding model for a one-
dimensional solid, the DNSE has the form

dcm
ih =E c ++V „c„—yIc I

c
dt

where c =c (t) represents the probability amplitude for
the excitation to be at a given site m at time t, E is the
local energy at the mth site, V

„

is the intersite transfer
matrix element that connects sites m and n, and y is the
nonlinear parameter arising from the excitation-phonon
interaction in the antiabatic approximation [3]. Equation
(1) can only be solved analytically for a small number of
cases, one of which is that for a system with two sites,
i.e., a nonlinear dimer. In this system a self-trapping
transition occurs for certain values of the nonlinearity pa-
rameter and different initial conditions. Eilbeck, Lom-
dahl, and Scott [1] found a bifurcation in the stationary
states of the nonlinear dimer occurring for g= 2 V, where

V,2= V2,
=—V. Kenkre and Campbell [7], on the other

hand, focused on the time-dependent dimer solutions and
showed that the equation for the probability difference in
the site occupation p = Ic, I

—IczI is that for a classical
particle in a quartic potential. For the case where only
one of the sites is occupied initially, the solution, written
explicitly in terms of Jacobian elliptic functions, shows
two distinct regimes: While 0~g/4V~ 1, p(t) oscillates
around zero and there is a complete transfer of the exci-
tation from one site to the other ("free" regime). At
g„=4Vthe trigonometriclike tisane evolution changes and
gives rise to nonperiodic motion while for larger g values
(yI4V& 1) the excitation remains trapped in the original

site ("trapped" regime). In this latter case, p(t) has a dc
offset and the transfer of the excitation between the two
sites is incomplete. The Kenkre-Campbell (KC) self-
trapping transition for the nonlinear dimer depends on
the initial conditions [8] and for a specific set of the latter
can be seen to coincide with the Eilbeck et al. transition
[9]

It is possible to find completely isolated (nonlinear) di-
mer systems [10]. There are instances, however, where
impurity atoms can be found in close proximity to these
nonlinear units or cases where the latter are embedded in
a host lattice and are interacting with other nearby sites.
In order to investigate the effects of (not necessarily
small) perturbations in the KC self-trapping transition
for the nonlinear dimer, we introduce the simplest possi-
ble "environment, " viz. an additional (third) lattice site
interacting with each of the other two through the matrix
element W ( V» =

V23
=—W). Equation (1) becomes

(ttt= I )

C1
i =Vc2+Wc3 —yIctI c, ,dt

C2 = Vc, + Wc, —XIc2I'c2,
dt

dC3
i = W(c, +cz) .

dt

(3)

(4)

These equations correspond to a doubly nonlinear trimer
(DNT) with the third site being "linear. " The exact evo-
lution for the probability amplitudes can only be obtained
for a limited set of initial conditions. For the symmetric
initial conditions, for example, where c, (0)=c2(0), we
obtain c&(t)=c2(t) at all times, and an explicit solution
can be found in terms of ellipitic functions [11]. This
solution does not, however, display an abrupt transition
(in the sense of KC) and the degree of trapping varies in a
continuous fashion with the nonlinear parameter g [6].

To investigate the effects of the influence of the third
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site on the KC self-trapping transition we numerically in-
tegrate Eqs. (2)—(4} with c (0)=5,. Following [7] we
calculate p =!c,(t)! —!cz(t)!,the difference in the occu-
pation probability of the nonlinear sites. In the 8'=0
limit we obtain the KC results with the self-trapping
transition occurring at y=4( V—= 1). As IV increases (for
a given y ~ 4}, the free oscillations of the particle are sus-
tained until a certain boundary is crossed. Then, depend-
ing on the actual g value, the particle becomes either
self-trapped or reaches a chaotic regime. For much
larger W values, there is another transition from the self-

trapping to a free regime. This behavior is shown in Fig.
1.

A complete numerical investigation of the 8',y param-
eter space leads to the 8'-y phase diagram of Fig. 2.
Three well-defined regions for free, trapped, and chaotic

motion are obtained. These dynamic phases where ob-
tained using two different criteria, the spectrum ofp(t) as
well as its long time average p,„.The boundary lines ob-
tained with ether method are in approximate agreement.
%'hen crossing, for instance, from the free to self-trapped
motion, a center peak appears in the spectrum of p(t)
[Figs. 1(e) and 1(f)] accompanied by an abrupt change in

p,„(Fig.3). In the chaotic regime, on the other hand, the
particle motion is erratic and the spectrum gets
broadened [Figs. 1(c) and 1(d)]. The latter region is ap-
proximately bounded by the y=4 line where (for W=O)
the KC transition occurs. Note that the self-trapping re-
gime protrudes to very small y values for appropriate 8'
values. Self-trapping can now be tuned to occur almost
at any desired small g value, in marked contrast with the
KC case.
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FIG. 1. (a), (c), and (e) probability difference p(t) as a function of time and (b), (d), and (f) the corresponding power spectrum S(co)

as a function of frequency for y=3.0 and different values of the impurity matrix element W: (a) and (b) 0.3, (c) and (d) 0.6, and (e)
and (f) 1.2. The strong center peak in (f) marks the self-trapped state. The scale for the spectrum (b), (d), and (f) is logarithmic.
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In order to ascertain the precise nature of the self-
trapping transition, we investigate p,„,the time-averaged
probability difference for the nonlinear sites as a function
of g. We choose several different values of the linear cou-
pling 8'and compare with the dimer as well as the com-
pletely linear case (g=O). For the latter (linear trimer
with two nonequal transfer matrix elements) we obtain
the exact solution for p:

linearity parameter values (Figs. 2 and 3).
The minimum in the y„value, which signals the oc-

currence of the self-trapping transition for 8=1.1, is a
result of two oppositely "moving" localization phenome-
na [ll]. The first is the attraction of the genuine KC
transition to smaller y values where the linear impurity
state becomes more dominant. The other is related to the
degeneracy found in the linear trimer for W=1. This de-
generacy leads effectively to (linear) localization, which,
in the presence of small energy mismatch (y) is being
shifted to slightly larger S' values. The two localization

tendencies in DNT meet at W= 1. 1 leading to the
aforementioned minimum in y„.This ability to tune the
occurrence of the self-trapping transition by changing,

In the linear trimer, p, „

is always zero except for the
"singular" case 8'=1, i.e., when all three overlap in-

tegrals are identical. Then, two of the energy eigenvalues
are degenerate leading to maximum "linear" localization
on the initial site that results in the largest possible prob-
ability difference, p,„=—,'.

For W=0 we have the original KC problem with an
abrupt self-trapping transition at y„=4.When this non-
linear diiner interacts weakly (small W) with the linear
impurity, the original KC picture is approximately
preserved except for the additional small, well-localized
chaotic regime that acts as a precursor to the self-

trapping transition. As W increases, the chaotic regime
extends to smaller nonlinearity values. For W values
larger than approximately 8'=0.8, chaos gives in to
self-trapping. As W increases further, the KC self-

trapping transition is being attracted to smaller and
smaller y values reaching a minimum at W=1. 1. Fur-
ther increase of W repeals the transition to larger non-
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FIG. 3. Time-averaged probability difference p,„=(p ) as a

function of the nonlinearity parameter y for different W values:

0.0 (dotted line), 0.5 (solid line), 1.1 (dashed line), and 3.0 (dash-

dotted line). The critical nonlinearity y„for the abrupt self-

trapping transition initially decreases as a function of W,

reaches a minimum at approximately 8'= l.l, and subsequently

increases.
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for instance, the distance of the impurity site from the
nonlinear dim er can have important experimental
ramifications in spectroscopic studies [12], as well as in
nonlinear optics. The tunability of the dimer transition
depends sensitively on the initial conditions used. A

complete study will be presented elsewhere [11].

We thank Lisa Bernstein for illuminating discussions
and the University of North Texas for partially funding
this work.
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