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We study the persistence of self-trapping in the presence of arbitrary large perturbations. We obtain
the phase diagram for a nonlinear dimer interacting with a third linear impurity site and show that the
abrupt Kenkre-Campbell transition is sustained. In addition to the “free”” and “self-trapped” regimes we
find a “chaotic” regime for some well-defined values of the nonlinearity and linear coupling parameters.

PACS number(s): 05.45.+b, 03.20.+1, 71.35.+z

The discrete nonlinear Schrodinger equation (DNSE),
or discrete self-trapping equation, was introduced in 1985
[1] as a generic mathematical model for systems of cou-
pled anharmonic oscillators. It has received considerable
attention since due to its applicability in energy transport
in molecular crystals [1-3], polyatomic molecules [4],
nonlinear switching devices in nonlinear optics [5,6], etc.
In the context of the tight-binding model for a one-
dimensional solid, the DNSE has the form
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where c,, =c,,(t) represents the probability amplitude for
the excitation to be at a given site m at time ¢, E,, is the
local energy at the mth site, V,,, is the intersite transfer
matrix element that connects sites m and », and Y is the
nonlinear parameter arising from the excitation-phonon
interaction in the antiabatic approximation [3]. Equation
(1) can only be solved analytically for a small number of
cases, one of which is that for a system with two sites,
i.e., a nonlinear dimer. In this system a self-trapping
transition occurs for certain values of the nonlinearity pa-
rameter and different initial conditions. Eilbeck, Lom-
dahl, and Scott [1] found a bifurcation in the stationary
states of the nonlinear dimer occurring for Y =2V, where
Vi,=V, =V. Kenkre and Campbell [7], on the other
hand, focused on the time-dependent dimer solutions and
showed that the equation for the probability difference in
the site occupation p =|c,|>—|c,|? is that for a classical
particle in a quartic potential. For the case where only
one of the sites is occupied initially, the solution, written
explicitly in terms of Jacobian elliptic functions, shows
two distinct regimes: While 0=y /4V =1, p(t) oscillates
around zero and there is a complete transfer of the exci-
tation from one site to the other (“free” regime). At
X =4V the trigonometriclike time evolution changes and
gives rise to nonperiodic motion while for larger y values
(x|4V > 1) the excitation remains trapped in the original
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site (“trapped” regime). In this latter case, p(¢) has a dc
offset and the transfer of the excitation between the two
sites is incomplete. The Kenkre-Campbell (KC) self-
trapping transition for the nonlinear dimer depends on
the initial conditions [8] and for a specific set of the latter
can be seen to coincide with the Eilbeck et al. transition
[9]-

It is possible to find completely isolated (nonlinear) di-
mer systems [10]. There are instances, however, where
impurity atoms can be found in close proximity to these
nonlinear units or cases where the latter are embedded in
a host lattice and are interacting with other nearby sites.
In order to investigate the effects of (not necessarily
small) perturbations in the KC self-trapping transition
for the nonlinear dimer, we introduce the simplest possi-
ble “environment,” viz. an additional (third) lattice site
interacting with each of the other two through the matrix

element W (V3;=V,;=W). Equation (1) becomes
(i=1)
dc, 5
i——=Vc,+Wey—xle %, , (2)
dt
dc, )
i——=Vc,+Wc;—xlc,l%, , (3)
dt
dc;,
1—dt~=W(c1+c2) . 4)

These equations correspond to a doubly nonlinear trimer
(DNT) with the third site being “linear.” The exact evo-
lution for the probability amplitudes can only be obtained
for a limited set of initial conditions. For the symmetric
initial conditions, for example, where ¢,(0)=c,(0), we
obtain c¢,(t)=c,(¢) at all times, and an explicit solution
can be found in terms of ellipitic functions [11]. This
solution does not, however, display an abrupt transition
(in the sense of KC) and the degree of trapping varies in a
continuous fashion with the nonlinear parameter Y [6].
To investigate the effects of the influence of the third
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site on the KC self-trapping transition we numerically in-
tegrate Egs. (2)-(4) with ¢, (0)=§,,,. Following [7] we
calculate p =|c,(t)|2—|c,(2)|%, the difference in the occu-
pation probability of the nonlinear sites. In the W=0
limit we obtain the KC results with the self-trapping
transition occurring at y=4(V =1). As W increases (for
a given Y =4), the free oscillations of the particle are sus-
tained until a certain boundary is crossed. Then, depend-
ing on the actual y value, the particle becomes either
self-trapped or reaches a chaotic regime. For much
larger W values, there is another transition from the self-
trapping to a free regime. This behavior is shown in Fig.

A complete numerical investigation of the W, y param-
eter space leads to the W-y phase diagram of Fig. 2.
Three well-defined regions for free, trapped, and chaotic
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motion are obtained. These dynamic phases where ob-
tained using two different criteria, the spectrum of p(¢) as
well as its long time average p,,. The boundary lines ob-
tained with ether method are in approximate agreement.
When crossing, for instance, from the free to self-trapped
motion, a center peak appears in the spectrum of p(¢)
[Figs. 1(e) and 1(f)] accompanied by an abrupt change in
D,y (Fig. 3). In the chaotic regime, on the other hand, the
particle motion is erratic and the spectrum gets
broadened [Figs. 1(c) and 1(d)]. The latter region is ap-
proximately bounded by the y =4 line where (for W =0)
the KC transition occurs. Note that the self-trapping re-
gime protrudes to very small y values for appropriate W
values. Self-trapping can now be tuned to occur almost
at any desired small y value, in marked contrast with the
KC case.
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FIG. 1. (a), (c), and (e) probability difference p(z) as a function of time and (b), (d), and (f) the corresponding power spectrum S(w)
as a function of frequency for y =3.0 and different values of the impurity matrix element W: (a) and (b) 0.3, (c) and (d) 0.6, and (e)
and (f) 1.2. The strong center peak in (f) marks the self-trapped state. The scale for the spectrum (b), (d), and (f) is logarithmic.
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FIG. 2. Dynamical phases for the doubly degenerate trimer as a function of the impurity matrix element W and the nonlinearity

&

parameter ¥. The regimes labeled “free,

chaotic,” and “self-trapped” designate complete, chaotic, and incomplete energy transfer,

respectively. The boundary lines between the phases represent the approximate location where a discontinuous change in the dynam-

ical behavior of the trimer occurs.

In order to ascertain the precise nature of the self-
trapping transition, we investigate p,,, the time-averaged
probability difference for the nonlinear sites as a function
of Y. We choose several different values of the linear cou-
pling W and compare with the dimer as well as the com-
pletely linear case (y=0). For the latter (linear trimer
with two nonequal transfer matrix elements) we obtain
the exact solution for p:

p()=1[(1+8W?)~"2—1]cos

3—(1+8W2)‘/2tl
2

+1[(14+8W?) "2+ 1]cos 5

3+(1+8W2)”2t]

(5)

In the linear trimer, p,, is always zero except for the
“singular” case W =1, i.e.,, when all three overlap in-
tegrals are identical. Then, two of the energy eigenvalues
are degenerate leading to maximum “linear” localization
on the initial site that results in the largest possible prob-
ability difference, p,, = 1.

For W =0 we have the original KC problem with an
abrupt self-trapping transition at Y, =4. When this non-
linear dimer interacts weakly (small W) with the linear
impurity, the original KC picture is approximately
preserved except for the additional small, well-localized
chaotic regime that acts as a precursor to the self-
trapping transition. As W increases, the chaotic regime
extends to smaller nonlinearity values. For W values
larger than approximately W~=0.8, chaos gives in to
self-trapping. As W increases further, the KC self-
trapping transition is being attracted to smaller and
smaller y values reaching a minimum at W=1.1. Fur-
ther increase of W repeals the transition to larger non-

linearity parameter values (Figs. 2 and 3).

The minimum in the ) value, which signals the oc-
currence of the self-trapping transition for W=1.1, is a
result of two oppositely “moving” localization phenome-
na [11]. The first is the attraction of the genuine KC
transition to smaller y values where the linear impurity
state becomes more dominant. The other is related to the
degeneracy found in the linear trimer for W=1. This de-
generacy leads effectively to (linear) localization, which,
in the presence of small energy mismatch (y) is being
shifted to slightly larger W values. The two localization
tendencies in DNT meet at W=1.1 leading to the
aforementioned minimum in Y. This ability to tune the
occurrence of the self-trapping transition by changing,
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FIG. 3. Time-averaged probability difference p,,=(p) as a
function of the nonlinearity parameter y for different W values:
0.0 (dotted line), 0.5 (solid line), 1.1 (dashed line), and 3.0 (dash-
dotted line). The critical nonlinearity ., for the abrupt self-
trapping transition initially decreases as a function of W,
reaches a minimum at approximately W = 1.1, and subsequently
increases.
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for instance, the distance of the impurity site from the
nonlinear dimer can have important experimental
ramifications in spectroscopic studies [12], as well as in
nonlinear optics. The tunability of the dimer transition
depends sensitively on the initial conditions used. A

complete study will be presented elsewhere [11].
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and the University of North Texas for partially funding
this work.
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FIG. 2. Dynamical phases for the doubly degenerate trimer as a function of the impurity matrix element W and the nonlinearity
parameter y. The regimes labeled “free,” “‘chaotic,” and “self-trapped” designate complete, chaotic, and incomplete energy transfer,
respectively. The boundary lines between the phases represent the approximate location where a discontinuous change in the dynam-
ical behavior of the trimer occurs.



