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Coupling impedance of many holes in a liner within a beam pipe

Robert L. Gluckstern
Department of Physics, University of Maryland, College Park, Maryland 807/2

(Received 26 February 1992)

The longitudinal and transverse impedance of many holes in a thick-wall liner have been calculated
for hole dimensions that are small compared to the wavelength. These are shown to be small
compared with the corresponding resistive wall impedances of the liner at the frequency of the
lowest transverse coupled-bunch mode. Estimates are made of the effect of the propagation of TEM
modes in the coaxial region between the liner and beam pipe, and these can be neglected for a
sufficiently thick liner. Estimates are also made of the possible coherent effect of uniformly spaced
holes.
PACS number(s): 41.20.—q, 03.40.Kf, 03.50.De, 41.75.—i

I. INTRODUCTION 1
Zii(k) =— dS es"'E, (b, 8, z; k), (2.4)

In the preceding paper [1] the coupling impedance of a
single hole in a beam pipe was calculated for hole dimen-
sions small compared to the wavelength. In the present
paper we analyze the situation where a liner with many
holes is placed inside a beam pipe. This configuration
is being considered to remove the heat generated by the
synchrotron radiation of a high-intensity beam in a high-
energy proton storage ring, while allow'ing a low vacuum
to be maintained within the liner.

We first consider the case where the fields in the coax-
ial region between the liner of radius b and the beam pipe
of radius a can be neglected, and where none of the possi-
ble modes within the liner travel with the velocity of light
(in synchronism with the drive beam). We then remove
these assumptions and show that the results are not ap-
preciably changed for a reasonable choice of parameters,
even if the spacing between the holes is uniform.

where the surface integral is now taken over the interior
openings of all holes in the beam pipe. Assuming that
each hole is small, we may take the unperturbed source
fields for E„and Hs. Furthermore, if the wavelength is
large compared to the hole size, we can use a quasistatic
analysis for the induced electric and magnetic dipole mo-
ments [2]. We then obtain the same results as for a single
hole, but for the present situation we must sum over all
P holes. Thus

(2.5)

where Q;„and y;„are the inside susceptibility (in the
8 direction) and polarizability of the holes 3]. For har-
monic n = kR, where R is the radius of the ring, one
finds

II. ANALYSIS FOR COUPLING IMPEDANCE

Zii(k)
AZO

(2.6)

The longitudinal coupling impedance is most easily ob-
tained from the expansion of E„ the axial electric field
within the liner. Specifically we write

E,(r, 8, z; q) = ) f dq e zz* z"zA„(q)
"

, (2.1)
n

where g is the fraction of the liner surface covered by
holes, and where 6 is the cross-sectional area of each
hole.

For comparison, we use a similar calculation to obtain
the well-known longitudinal coupling impedance for the
resistive wall [4]. In this case the integral in Eq. (2.4) is
evaluated using

where

K =k —q, (2.2)

kbE, = ZpHs —(1+j),—
2

(2.7)

and where the contour goes below any poles on the nega-
tive real q axis and above any poles on the positive real q
axis. The longitudinal coupling impedance can be writ-
ten in terms of A„(q) as [1]

(2.3)

where 6 is the skin depth of the interior liner surface.
Using the source magnetic field

q jkz-
ZDHI9 =

2vrb
(2.8)

we find the result for the longitudinal impedance of the
resistance wall

where Q is the source charge. The inverse transform of
Eq. (2.1) leads to

1 +, ~

nZO 2 b
(2.9)
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~(~--x;.)
b

(2.10)

As a practical matter, we want the contributions from
the holes to be smaller than that from the resistive wall.
Thus we need to restrict the liner surface fraction q to a
value determined by the condition

A„(q) =
2 dSE, (b, 8, z; k)e q'+j",

inside

B„(q) =
~ f dss(b~, q, z, ; k)e~*+~"q1

4m b

(3.3)

(3.4)

For circular holes of radius rp, this reduces to [3]

grQ (2.11)

A similar analysis for the transverse coupling
impedance [1] leads to

Zi(Ir)
ZQ

~~(e,'."—X;.) 2R
2bb, b2

(2.12)

Since the transverse resistive wall impedance also satisfies

III. TEM MODES IN THE COAXIAL REGION

ZJ
Zii 2R

(2.13)

the same considerations as before also apply to the rela-
tive contributions of the transverse impedance caused by
the holes and by the wall resistance.

The most serious resistive wall effect corresponds to the
lowest frequency for the transverse coupled-bunch modes.
For this purpose the CERN Large Hadron Collider (LHC)
design assumes b = 0.1 mm. With a hole radius rp = 1
mm, Eq. (2.11) implies that il ( 0.4. In the current
design with ri = 0.05, which is apparently sufficient to
maintain a low vacuum within the liner, the contribu-
tion of the holes to either the longitudinal or the trans-
verse impedance will be about 1/8 of the corresponding
resistive wall coupling impedance at the frequency corre-
sponding to the lowest coupled-bunch mode.

+ g )
jqz +jn8 (3 5)

(q) (g g )ejqz +jql8 (3.6)

where

&s = qx. (E1 —E2) —&~pl. (H1 —H2)8, (3 7)

&a = qua(E1 + E2) Iq~pga(H1 + H2)8 ~ (3 8)

Here z, 8 denote the location of the center of the hole,
and y, „Q,, are the symmetric, antisymmetric polar-
izability and susceptibility. In terms of the inside and
outside polarizability and susceptibility defined by

If the liner were of zero thickness B„(q) and A„(q) would
be the same since E, would be continuous at r = b within
the holes and on both sides of the liner surface, where
E, = 0. For a thick liner this is not the case.

We again treat the problem as quasistatic in the hole
region where E„, H8 are denoted by E1,H1 near the in-
side surface of the hole and by E2, H2 near the outside
surface. For the electric field the situation is as shown
in Fig. 1. In Fig. 2 we separate the calculation into one
which is symmetric and one which is antisymmetric in
the electrical potential. The configuration in Fig. 1 is
then the sum of those in Fig. 2. The solution to the
electrostatic and magnetostatic problems allows us then
to write, for hole m

In the previous section we ignored the fields in the
coaxial region between the outside surface of the liner and
the inside surface of the beam pipe of radius a. These
fields have the potential to be important, since in this
region the TEM mode in the forward direction travels
at the velocity of light, in synchronism with the source
charge.

The longitudinal component of the electric field in the
coaxial region can be written as

E,(r, e, z;a) = ) dq e '" '"'B.(q)
"--, (31)

F„Kr
F„(Kb) '

gin, out =—Xs + Xa q An, out —= @s + ga,

we have

iK i't iK i4 d)II, iK i%

(3.9)

where the linear combination of Bessel functions

F„(u) = Y„(u)J„(Ka) —J„(u)Y„(Ka) (3.2)

is chosen to satisfy the boundary condition at r = a.
(We consider the inside and outside surfaces of the liner
to both be at r = b, since we neglect the thickness of the
liner compared to the wavelength. ) Inverting Eqs. (2.1)
and (3.1) leads to

FIG. 1. Static electric-field configuration near a hole in a
thick-wall beam pipe.
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E -E
2

Ei+E2
2

E„=ZpHe
k

8qrbr ln(a/b)

x [EgXout —E2X;„—ZpHilo t

+ZpH2$;„] . (3.14)

i IE jIE j'L jIL iIL

We recognize this as the TEM mode in the coaxial
region, and see that the rate of buildup of this mode
depends on the extent to which it has already built up.
In fact, since

Eg-Es
2

Ei+Es
2

ye
—jIEz

(Ei) = Zp(Hi)
2vrb

(3.15)

FIG. 2. Separation into symmetric and antisymmetric
electrostatic potential configurations.

we can set E„and He equal to Eq and Hq at r = b and
write

ge —jkz
E„=ZpH„= (E2) = Zp(H2) = F

2~b

~ (q) = 8»). [qEix. —qE~x-t
8qr2b

—kZpHiV n + kZpH24out]m

& pqz +jn8
'7

& (q) = »). [qEix. t —qE2x.8'»
—kzpHgy. „t + kzpH2@;„]

(3.10)

In this way we obtain, for identical holes,

2
8vrb~ ln(a/b)

) . [(cont —Xout)
m(m'

(3.16)

(3.17)

jq +jn8
) (3.11)

where we now sum over all holes.
We now write the field components E„,Hs in the coax-

ial region as jk(tout —Xout)
87rb~nL ln(a/b) +jk(g;n —X;„)

(3.18)

where we have included the attenuation constant n of the
TEM mode in the coaxial region. We now calculate the
steady-state level reached by F when the average axial
hole spacing is L In this w. ay we find

-gqz —ne

F„'(Kr)" "(q)KF„(Kb)

+(TE modes), (3.12)

It is easy to see that the longitudinal impedance in
Eq. (2.5) must now be modified to include the effect
of the steady-state field in the coaxial region. From the
form for Ap(k) in Eq. (3.10) we see that this leads to the
replacement

An —X ~ @ —X —F(@out —Xout) (3.19)

Fp(Kr) 1

KFp(Kb) q —k r ln(a/b)
(3.13)

The contribution from this pole comes only when the
contour is closed in the lower-half q plane. It is non-

vanishing only when z~ & z and leads in the coaxial

region to

where we have written only the TM modes explicitly.
There are poles at q = +k (K2 = 0) only for the n = 0
term in the TM modes, corresponding to the TEM modes
traveling with the velocity of light in both the positive
and negative z directions. If we assume that the holes
are spaced so that only the TEM mode in the forward
direction can build up, we find, near the pole at q = k,

We complete this phase of the calculation by expressing
the attenuation constant in terms of the geometry and
wall resistivity in the coaxial region. Specifically

a. ln(a/b) 1 fb, hg&

k 4)a bp' (3.21)

in Eq. (2.6) and we have

Zii(k)
nZ 2kb.

(@. t —x. t)'
g;n —X;„—j 87rb2(cz/k)L ln(a/b)

(3.20)
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F ~ @«f Xonf

in gin
(3.22)

Zi)(k) in(A. —X )
]1 Fz)

nZp 2bh
(3.23)

where we allow for the possibility of different wall resis-
tivities in the coaxial region.

The frequencies at which the skin depths should be
calculated are in the GHz range, corresponding to the
longitudinal bunch shape. At these frequencies and with

g = 0.05, the term involving the attenuation in Eq. (3.18)
can be neglected and we find

IV. UNIFORM HOLE SPACING

In the previous sections we have assumed that the holes
are spaced such that only modes traveling wth v = c in
the forward direction can remain in synchronism with the
driving source and build up. In this section we consider
the more attractive practical situation of uniform hole
spacing and ask if the coherent buildup of other modes
will modify our results.

We start with the equivalent of Eq. (3.12) in the region
within the liner and consider, as an example, a propagat-
ing azimuthally independent TMpg mode, for which we
write

—jqz 0 +~

Thus the presence of the outer wall reduces the
impedance. Values of the outside polarizability and sus-
ceptibility for a circular hole in a thick wall decrease
rapidly with the wall thickness [3]. (For wall thickness
greater than one hole radius, the reduction amounts to a
factor 10 or greater. )

We make a few additional observations at this point.
(1) The relative level to which the fields build up in

the coaxial region is given in Eq. (3.18). It is extremely
small because of the exponential decrease of the numer-
ator with increasing wall thickness.

(2) The result for the transverse coupling impedance is
even simpler, since no transverse TEM mode with cos 8
dependence exists in the coaxial region. Thus the result
in Eqs. (2.12) and (2.13) is not modified by the existence
of the coaxial region.

(3) In the absence of losses, the impedance depends on
the difference between (Q;„—y;„)z and (Q«i —y«i) .
For zero wall thickness this difference vanishes and the
steady-state impedance vanishes. In this case the field
level in the coaxial region builds up to that within
the liner, leading to no steady-state contribution to the
impedance.

(4.1)

Ap(q) =
z ) (qE g;„—kZpH Q;„)e' '

m

(4.2)

where Em, Hm are the radial electric and azimuthal mag-
netic fields within the liner near the mth hole.

Let us now consider the pole at Kb = pg in Eq. (4.1),
where Jp(pg) = 0. Near r = b and Kb = pg we write

Jpl(Kr) 1

KJp(Kb) K(Kb —pg) b(qz —cq/bz)
'

where

(k2bz 2)1/z

(4.3)

(4.4)

Combining Eqs. (4.1)—(4.3) and evaluating the residues
at the poles in the q plane, we obtain

where we include the driving source term. Neglecting the
fields in the coaxial region, we write, as in Eq. (3.10),

—jA:ze Cg+ s x
kb

x ) (ceEmgin kbZPHmgin)e
p e 2vrb 4vrbscg

z~&z
(4 5)

where we retain only the forward traveling mode E. A
small, positive imaginary part has been added to cg in
the exponent, corresponding to the attenuation of this
mode. We now write x ) (kbG Q;„—cgF y;„)

ZoHg 2~g 0 (4 6)
xe (~e—~I )(m' —m) (4.7)

and obtain, for uniform hole spacing, the difference equa-
tions

where

e = (kb —cg)L, /b (modulus 2n), (4.8)
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j ng(kbGQ;„ce—Fgin) ce=1— X
4vrbsce(aL, —j 8)

(4.9)

and where ne is the number of holes equally spaced in
the azimuthal direction at a given axial location. Here
I, is the axial spacing between rings of holes.

We now solve for the asymptotic behavior of I" and
G, which differs from 1 only when iaL, —j8i (( 1. (We
subtract the nearest multiple of 2vr from 8.) In this way
we find, for small 8 and aL„ 2m~

+L, |,2m7rb)
m= 1 2 (4.18)

In addition, the relative width of such a resonance is

corresponding to a resonance at 0 = —eQ with a half-
width given again by Eq. (4.14).

The frequencies at which this coherence occurs corre-
spond to 8 = 2m+ with m = 1, 2, . . .. From Eqs. (4.8)
and (4.16) these correspond to

from which we see that

(kbGQ;„—ceFg;„)

68
8 kzbz

0I.,c&

2m' kb
(4.19)

Since the attenuation constant of the TMQg mode is

ng(khan; —ceg )4~b ce(aL, —j8)
4vrbsce(aL, —j.8) +j ng(k2b Q —cezZ;„)

a = k b'/2ce, (4.20)

the effective Q„of this resonance can be written as

The impedance is obtained in terms of the asymptotic
fields E„a dnHg as it was in Eq. (2.5), and is

4b fL,pe)
Y I, 2m~b)

(4.21)

Zii (k)
ZQ

jkP
87t 2b2,b, (4 G —X F) (4.11)

For a skin depth 6 corresponding to the GHz frequency
range, Q„ is of order 10s.

At synchronism we have, from Eqs. (4.15) and (4.17),

Using Eqs. (4.9)—(4.11) we find

Zii(k) j kP—8,b, (4 —X.)
W

Zii (k) g . ng (khan;„p cey;„)
nZp 2bb, '" '" 4mbscenL, .

(4.22)

where

jng(kbgin —cere )'
4vrbsce(aL, —j8+ j8o)

(4.12)
where the real part of the impedance is now associated
with the wall dissipation. Using L, = ngA/2vrbg and the
expressions for n in Eq. (4.20) and Q„ in (4.21), we can
write for the impedance at synchronism

ng (k2b2$;„—cezy;„)
4mb3cg

(4.13)

Thus there is a resonantlike effect due to the uniform hole
spacing which reaches its maximum value when 6I = 8Q

and which has a half-width

Zll(k) jZ(q,.—x
nZp 2bh

g(Q;„T y;„ce/kb) Q
2bh, 2

68= aL, .

At synchronism we have

(4.14) r'pe .)i
(2m7r ) (4.23)

Zii (k) g . ng (kb@;„—cey;„) If we use the asymptotic value for a circular hole in a
thick wall [1] given by

(4.15) Q;„—y;„=0.562(4rp/3), (4.24)

8 = (kb+ ce)L, /b (modulus 2vr)

and the longitudinal impedance becomes

(4.16)

Zii(k)
ZQ

j kP jng(khan;„+ cey;„)2
8vrbz

'" '" 4vrbsce(aL, —j8 —j 8o)

where the real part of the impedance is now associated
with the wall dissipation.

A similar analysis for a backward TMQg mode within
the liner leads to almost the same result. In this case the
phase shift between adjacent axial locations is

we find

g(@;„—y;„) rjr p (4.25)

which is approximately 3 x 10 4 for the LHC parameters
(g = 0.05, rp/b = 0.05). Since L, is of the order of a few
mm, we can neglect pe with respect to kb and b/L, in Eq.
(4.22) for most of the modes l up to cutoff. (In fact, near
cutoff the order of magnitude of the second term is not
changed by neglecting pe. ) As a result, the second term
in Eq. (4.22) is of order

(3x10 ) x10 10
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Thus the second term contributes a peak impedance of
the order of Z~~(k)/n 40 with a width corresponding
to a Q„of 10s.

The narrow width and high frequency of this mode,
together with the bunch length of 5—10 cm reduces the
effective impedance for the single bunch mode by a factor
of 100 or so. But the situation is not really as serious as
indicated here since the axial spacing between holes will
not be constant to an accuracy of 1 part in 105. Normal
fabrication errors (or an intentional spread in the axial
spacing) are likely to reduce Q, to a value more like 10~

and the corresponding contribution to the impedance will
be of the order of 0.01 0 or less.

Thus we conclude that the second term in Eqs. (4.12)
and (4.16) can be neglected and that coherence effects
can be kept small. Similar conclusions apply for TE
modes, as well as for modes other than TEM in the coax-
ial region, and also for coherent propagation of deflecting
modes.

V. SUMMARY

We have obtained the steady-state longitudinal and
transverse coupling impedance of a liner with holes
within a beam pipe for hole dimensions small compared
to the wavelength. For a liner with thickness comparable
with the hole dimensions the primary results are obtained
neglecting all modes within the liner and in the coaxial
region between the liner and the beam pipe. These re-
sults are compared to the corresponding contributions

from the wall resistance and a simple limit is derived for
the fraction of the liner surface that can be covered by
holes in order that the impedance of the holes be less
than the resistive wall impedance.

We then explore the contributions from all modes
which may build up within the liner and in the coaxial
region. The most serious for the longitudinal coupling
impedance is the TEM mode in the coaxial region which
is in synchronism with the drive beam. We show that the
correction introduced by this mode and all other modes,
which may be coherent for uniform hole spacing, will be
smaller than the primary hole impedance result, provided
that the axial hole spacing is not uniform to an accuracy
of better than 1 part in 100. (To be on the safe side it
may be wise to make sure that such a nonunformity in
hole spacing is built into the fabrication process. ) Thus,
the primary results for the impedance in Eqs. (2.6) and
(2.12) accurately represent the physical situation.

We also believe that any reflections which may occur
in the coaxial region by the mechanical supports for the
liner can be neglected since they serve to further attenu-
ate any coherent efFects in the coaxial region.
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