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Coupling impedance of a single hole in a thick-wall beam pipe
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The coupling impedance of a hole in a thick-wall beam pipe has been calculated for hole dimen-
sions that are small compared to the wavelength. In particular, the longitudinal and transverse
coupling impedances are shown to be proportional to the difference between the transverse magnetic
susceptibility and the electric polarizability of the inside surface of the hole, and these quantities are
themselves proportional to the cube of the hole dimensions.

PACS number(s): 41.20.—q, 03.40.Kf, 03.50.De, 41.75.—i

I. INTRODUCTION

The calculation of the coupling impedance of a small
hole in the wall of a beam pipe, at frequencies near or
above the cutoff of the pipe, is of current interest. In
particular, a liner with holes or slots is being considered
to remove the heat generated by synchrotron radiation
in the high current rings being designed at the supercon-
ducting supercollider (SSC) [1] and at the CERN Large
Hadron Collider (LHC) [2]. In addition, a slotted cylin-
drical tube is being considered as a compact wiggler for
free-electron lasers (FEL’s) (3, 4].

Kurennoy [5] has calculated the longitudinal and trans-
verse coupling impedance of a hole or slot in a thin metal-
lic beam pipe wall. In the present calculation we shall use
a more direct method than Kurennoy and also obtain the
results for a hole or slot in a wall whose thickness may
be comparable with the dimensions of the hole.

II. LONGITUDINAL COUPLING IMPEDANCE

We consider a point charge Q traveling along the axis
of a circular waveguide of radius b at extreme relativistic
velocity v 2 ¢. The definition of the frequency-dependent
longitudinal coupling impedance of any obstacle can be
taken to be

1 [ .
Zy(k) = —= / dz /% E, (0,9, z; k), (2.1)
QJ-w
where E,(r,0,z;k) is the axial electric field in the fre-
quency domain, with frequency dependence exp(jwt),
where w = kc.
The field component E,(r,8, z; k) can be written as

Jn(KT)

B.(r, 0,2 k) = Z / dge~~m 4,(@) 2T, (22)

which is the general solution of the wave equation which
is regular at r = 0. Here K, defined by

2=k*- g% (2.3)
is the radial propagation constant and A,(q) are expan-
sion coefficients to be determined by the geometry. The
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contour goes below any poles on the negative real ¢ axis
and above any poles on the positive real ¢ axis in order
to satisfy the outgoing wave boundary condition for the
fields generated by the obstacle. The source fields in the
frequency domain generated by the charge traveling at
v = ¢ are

ZOQ —sz

ES)(r,0,2;k) = ZoHS (1,0, 2; k) = . (24)
E®)(r,0,2;k) =0, (2.5)
where Zp = 1207 Q.
If we set r = 0 in Eq. (2.2), only the n = 0 term
survives, and Eq. (2.1) becomes
1 dgAo(q) / -
Zy(k =——/ dze92(a=H)
i1 (k) B RACO)
2m
= —5140(]“)» (2:6)
where the last form is obtained because
oo
/ dze 9%k = ox§(q — k). (2.7)

For an obstacle configuration which does not extend into
the pipe (r < b), one can perform a Fourier inversion of
Eq. (2.2) in z and 6 for 7 = b to obtain

1 21r (o] . .
@) =gz [0 [ aze B 05K). (28
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Thus the longitudinal coupling impedance in Eq. (2.5)
can be written as

1 .
jkz .
5750 bQ//dSe E,(b,0, 2 k),

where the integral extends only over the inner surface of
any openings in the beam pipe, such as a hole. The task
is to obtain E, from the source fields.

We now assume that the hole is small enough that
the field components E, and Hp in the beam pipe are
well approximated by Eq. (2.4). Furthermore, we use
the quasistatic solutions for the field components in the

Zy(k) = (2.9)
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vicinity of the hole for hole dimensions small compared
to the wavelength 27 /k. With these approximations one
can express the surface integral as [6]

/ / dS e™* E,(b,6, z; k) = jk(pr — Zomg),  (2.10)

where p, and my are the induced electric and magnetic
dipole moments at the inner surface of the hole. These
are induced by the values of E, and Hy existing in the
absence of the hole, and can be written as

Z
pr = 0Q(xs +Xa)

(2.11)
Zomg = %—%(% + Ya)e,

where g, %4, Xs, Xo are the symmetric and antisymmet-
ric susceptibility (in the 8 direction) and polarizability of
the hole. (The s and a subscripts relate to the solutions
of the symmetric and asymmetric potential problems in
the vicinity of the hole [6].) Thus,

Z) (k)
Eo 87l'2b2 ("/)m Xin)

(2.12)

where ¥in, = ¥s + ¥, and Xin = Xs + Xo are the inside
susceptibility and polarizability of the hole. For a circular
hole of radius a in a wall of zero thickness

8

Yo =30, Yo =0,
(2.13)
Xs %as ) Xa =0,
so that
—Z—I—lz(—okl = g:;; (circular hole in a thin wall), (2.14)

a result which agrees with Kurennoy [5]. In the present
calculation we have avoided the infinite-mode sums
needed in his analysis and do not assume a vanishing
wall thickness.

III. TRANSVERSE COUPLING IMPEDANCE

The calculation of the transverse coupling impedance
proceeds in a similar manner. We start with the def-
inition of the x component of the transverse coupling
impedance

Zz(k) =

Q]Az /;oo dz ejkz[Ez(Z;k) — ZoHy(2; k)]::g
(3.1)

in units of Q/m (of transverse displacement), where the
source field comes from a test charge Q traveling with
v™catz=A;, y=0. The Panofsky-Wenzel theorem
[7] corresponds to the simplification of Eq. (3.1) that
comes about by using the Faraday law
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and leads to the alternate expression
1 & - OF
- jkz [ Y&z
2.0 = ~ i /_w dze ( i )::g' (3.3)

Once again we use the form in Eq. (2.2) for E,, but this
time we extract the n = +1 terms, using J1(Kr) = Kr/2
for small r, to obtain

(38) - [ qewEAG s A0
Oxr )==0 oo 2J1(Kb) ’
where

An(g) = ymos / / dS el tin®E (b,0,2;k).  (3.5)

(3.4)

The transverse coupling impedance can therefore be writ-
ten as

2m
T kQAb
The source fields can be obtained as solutions of the

transverse Laplace equation for the dipole term, multi-
plied by exp(—jkz) . For this case we find

Zy(k) = — 757 [A1(k) + A-1(R)]. (3.6)

EC)(r,0,2;k) = ZoHS (1,0, 2; k)
__ZOQ zcos0(1 + 1)6'-”"”, (3.7

b2
E(®)(r,0,2 k) = (38)
and Eq. (3.5) yields
—jketi®Z,QA, cos b
Agy(k) = ZIRET 200820080 ) ) (39)

873b3
Our result for the transverse impedance is therefore

Zs(k) _ jcos20(¢(9)
Zo 2772b4

For a circular hole of radius a located at an azimuth 6 in
a wall of zero thickness, we have

Z,(k) J2a cos? @
Zo 7r2b4 ’
a factor of 2 smaller than Kurennoy [5]. We believe that

he has incorrectly eliminated the term involving the elec-
tric polarizability.

Xin)- (3.10)

(3.11)

IV. EFFECT OF SLOT SHAPE AND FINITE
WALL THICKNESS

For a zero thickness wall, analytic results are available
(8] for an elliptical hole. In this case one has the relation

¥
v+

where ( is the susceptibility in the axial direction. Thus

X = (4.1)
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TABLE 1. Polarizability and susceptibility of a circular
hole in a thick wall.
t/a 3¢in/80° 3xin/8a® 3(%in — Xin)/4a®
0 1.000 0.500 1.000
0.1 0.871 0.459 0.824
0.3 0.778 0.438 0.680
0.6 0.732 0.431 0.602
1.0 0.715 0.430 0.570
> 20 0.710 0.429 0.562
¢2

for a hole where the major axis is parallel to z. If the
semimajor and minor axes are a, and ag, and if the ellipse
is elongated such that a, > ag, then

2mal/3
[In(4a/ag) — 1]
and the longitudinal and transverse impedances will be
further reduced to

Zy(k) _ jk a5 [, 4da: ,
Zo 9mb2? a, ag

2
¥ Zaa} ¢ >v,  (43)

(4.4)

Z(k) ., jcos®6aj mie
Zo - 37l'b4 a; [n ag )

The polarizability and susceptibilities of a rectangular
slot do not satisfy Eq. (4.1) exactly so the estimate of
the reduction in Eq. (4.4) is only approximate. Nor is
Eq. (4.1) satisfied for a circular or any other shaped slot
in a thick wall, but a similar reduction is anticipated.

Finally, accurate values of the “inside” polarizability
and susceptibility for a circular hole of radius a in a wall
of thickness t can be calculated from a variational for-
mulation for these quantities [6]. Table I for selected
values of t/a is given below. The coupling impedance
falls quickly with wall thickness, reaching a value for an
infinite thickness which is 56% of its value for zero thick-
ness.

V. MEASUREMENT OF POLARIZABILITY
AND SUSCEPTIBILITY OF A HOLE

We denote the fields in the absence of the hole as
E;,H;. We neglect radiation through the hole and take
H to be 90° out of phase with E in time, and use
G1 = ZoH;, G2 = ZgH,, so that E and G have the
same units. The corresponding resonant frequencies are
wp = klc, wo = kgc.

Starting with [dvV - (B2 x G; — E; X G2) one can
obtain a simple formula for the frequency change ko — k1,

den-E2XG1

b= e Byt [ G Gy

(5.1)

where the surface integral is over the inner wall surface
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of the hole. For a small hole one may approximate E,
and G, by E; and G; in the denominator, which then is
directly related to the stored energy in the cavity. At the
same time, the numerator is closely related to surface in-
tegral considered in Eq. (2.9) and expressed in Eq. (2.10)
in terms of the inside polarizability and susceptibility of
the hole. Specifically, using a rectangular coordinate sys-
tem (z,y,z) at the hole with z being perpendicular to
the wall, we have

/dS n- E2 X G1 = / dzr dy[szGly — EzyGlz].

(5.2)

The technique for evaluating such integrals is detailed
elsewhere [9]. In essence, if we use the static approxi-
mation for E; and Gy, Eq. (5.2) vanishes. A first-order
Taylor expansion of G; in the vicinity of the hole and
a static approximation to E; leads to the electric dipole
moment contribution. A static approximation to G; and
use of the Faraday law V x E; = k3G, leads to the mag-
netic dipole contribution. After some algebra, one finds
for the detuning of the cavity

ko — k1 o~ Y(BZxin — ZEHZYE, — ZEHZYY,) (5.3)

kq [ E2dv = Z¢ [ H?dv ’

where = and y are chosen along the principal axes of
the inside hole susceptibility. The field components
E,, H;, H, are those present in the absence of the hole.

It is therefore a simple matter to measure the inside
polarizability and susceptibility of the hole by measur-
ing the detuning of the cavity caused by the hole. In
fact, one can also measure the “outside” susceptibility
and polarizability (Yout = ¥s — Ya » Xout = Xs — Xa)
by determining the fields induced in an adjacent cavity
tuned to a different frequency.

VI. SUMMARY

We have obtained expressions for the longitudinal and
transverse coupling impedance of a hole in a beam pipe
in terms of the inside polarizability and susceptibility of
the hole. For a hole of given cross-sectional area, the
impedance can be reduced by elongating the hole parallel
to the axis of the pipe. The modification due to the wall
thickness is tabulated for a circular hole.

The inside polarizability and susceptibility can be eas-
ily measured by determining the change of resonant fre-
quency caused by a hole of the same geometry in a cavity
whose field solutions are calculable.
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