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Experiments and simulations of tunnel-ionized plasmas
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The tunneling-ionization model predicts that fully ionized plasmas with controllable perpendicular
( Tj ) and negligible longitudinal temperature ( T~~ ) can be produced. The validity of these predictions has
been studied through experiments and supporting theory and simulations. Emission of odd harmonics of
the laser frequency, indicative of a stepwise ionization process, has been observed. X-ray measurements
show that the plasma temperature is higher for a circularly polarized laser-produced plasma compared
to when linear polarization is used. Analytically we find that the growth of the stimulated Raman (SRS)
and Compton scattering (SCS) instabilities are suppressed during the ionization phase. A higher T~~ than
expected from the single-particle-tunneling model was observed after the ionization phase through SCS
fluctuation spectra. The maximum achievable plasma density is found to be limited by ionization in-

duced refraction. One-dimensional (1D) simulations show that, after the ionization phase, the initial T~~

is low as expected from the single particle model and SRS density fluctuations grow to large values. In
2D simulations, however, T~~ at the end of the ionization phase is already much higher and only SCS is
seen to grow. The simulations indicate that stochastic heating and the Weibel instability play an impor-
tant role in plasma heating in all directions and in making the plasma isotropic. Two-dimensional simu-

lations also confirm that refraction plays a crucial role in determining the maximum electron density
that can be obtained in such plasmas.

PACS number(s): 52.40.Nk, 52.50.Jm

I. INTRODUCTION

In this paper we explore the plasma-physics aspects of
gases ionized via tunneling ionization through experi-
ments and supporting particle-in-cell computer simula-
tions. The continued increase in intensity of short-pulse
lasers has opened the possibility of creating a dense plas-
ma through tunneling ionization [1,2]. The electric field
of a high-intensity laser can become on the order of the
atomic field that binds an electron to the nucleus, allow-
ing the laser to ionize the atom. In principle this optical-
ly induced ionization must be modeled taking into ac-
count the quantum nature of the atom and the time vari-
ation of fields. According to Keldysh's theory, however,
in the limit where the Keldysh parameter
tc=(E;,„/24 )'r « 1, one can model the ionization as a
process in which the electron tunnels through the
suppressed Coulomb barrier of the nucleus, during a frac-
tion of a single laser cycle. Here E;,

„

is the ionization po-
tential and N the ponderomotive potential associated
with the laser fields. The probability of tunneling
through this suppressed barrier becomes significant when
the electric field of the laser normalized to the atomic
unit of the electric field is larger than about 0.01. Once
the electron is free, it is assumed to start at rest and its
subsequent motion can be determined by solving the
equation of motion in the presence of plane-wave elec-
tromagnetic fields [3—5]. In the plane-wave limit, con-
servation of the canonical momentum requires that the
velocity is composed of the electron quiver velocity v„,

in the laser field and a drift velocity. The magnitude and
direction of the drift velocity is dependent on the polar-
ization of the ionizing laser, which suggests that for
4y lrnc «1 and tt «1, plasmas with negligible longitu-
dinal temperature T~~ and controllable transverse temper-
ature Tj can be produced [5,6]. Here m is the electron
mass and c the speed of light.

In a recent experiment, Corkum et a/. have shown that
in the single-particle regime and the long-wavelength
(10.6-pm laser) regime the above description is indeed
valid [5]. Although "tunneling ionization" of single
atoms has been studied with both 10- and 1-pm laser
pulses, most of the work on tunneling ionization of gases
has been conducted in a very-low pressure gas, i.e., in the
single-particle regime [5,7—9]. High-density plasma pro-
duction using tunneling ionization has recently become of
interest for x-ray recombination lasers [6,10] and
plasma-based accelerators [11—13]. For an x-ray-
recombination laser, plasmas need to be produced with
densities n, up to 10 cm and temperatures below 20
eV. In plasma-based-accelerator schemes it is desirable
to have long regions of homogeneous plasma at fairly
high densities (10' —10' cm ). In such dense plasmas
space-charge effects cannot be neglected, thereby compli-
cating a simple extrapolation of the single-particle results
to predict the properties and behavior of macroscopic
plasmas. Plasma-physics issues need to be considered in
determining both the initial plasma characteristics and
the evolution of such a plasma. It is our goal to see if the
predictions of the tunneling-ionization model for a single
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particle can be extrapolated to a space-charge-dominated
plasma regime, and to address the plasma physics aspects
of such tunnel-ionized plasma [14].

As shown in Fig. 1, we divide the interaction of an in-
tense, short laser pulse with the gas target into four
different phases. In the first phase the laser intensity is
below the ionization threshold and hence no plasma will
be produced. The intensity can, however, be high enough
to generate harmonics of the laser frequency through the
nonlinear polarizability of the gaseous target. This effect
will be considered when analyzing the observed harmonic
emission in the experiment. In the second phase, the ion-
ization phase, the laser intensity has exceeded the ioniza-
tion threshold and the gas becomes ionized. We calculate
the time evolution of the plasma density and the electron
distribution functions using the Keldysh model of tunnel-
ing ionization. In this model the electron tunnels
through the suppressed Coulomb barrier of the nucleus
and then interacts classically with the applied elec-
tromagnetic fields. The key predictions from this model
are that a fully ionized plasma can be created with densi-
ty controlled by the fill pressure and with an anisotropic
electron-distribution function (T~ larger than Tl) con-
trolled by the polarization of the ionizing laser. Further-
more, when using linear polarization, harmonics of the
laser frequency could be generated through the stepwise-
ionization process. A stepwise increase in plasma density
is most pronounced when the laser intensity is slightly
above threshold and ionization occurs only during a
small part of a laser cycle. In this ionization phase, the
laser-plasma parametric instabilities such as stimulated
Raman scattering (SRS) and stimulated Compton scatter-
ing (SCS) are strongly affected by the rapidly varying
plasma density and rapidly evolving anisotropic plasma
temperature. Additionally, the maximum density of the
plasma can be clamped due to beam refraction. Refrac-
tion occurs because the tunneling-ionization rate is ex-
ponentially dependent on the laser field and this leads to
steep plasma-density gradients in the transverse or radial
direction.

In the third phase, plasma-physics issues resulting
from the continued interaction of the high-density laser
beam with the space-charge-dominated plasma have to be
considered. When electrons are created into nonplanar
waves the electric fields have a longitudinal component
(such as in the case of a focusing or a refracting beam),
resulting in a longitudinal drift velocity or a high T~~.

Also, electrons created at the same longitudinal but
different radial position will end up with a different drift
velocity magnitude due to the fields radial dependence
causing a smearing of the resulting distribution function.
Furthermore, the electrons, retained by the space charge,
keep interacting with the radial and longitudinal space-
dependent electromagnetic fields. Both effects give rise to
an effective stochastic heating [15].

As the plasma density saturates, the parametric insta-
bilities can start growing during this second phase. For
small k A,n, (high plasma density, low T~~), SRS can occur,
while for large kk,D„SCScan occur. Here k is the wave
number of the density fluctuation and A.D, is the plasma
Debye length. At the same time the anisotropic distribu-
tion function will relax due to instabilities such as the
Weibel instability [16], causing a continued increase of
T~~, which in turn influences the evolution of SRS and
SCS. On even longer time scales stimulated Brillouin
scattering (SBS) will grow and hydrodynamic effects such
as plasma expansion and/or ponderomotive blow out will
become important.

In the fourth and final phase, the laser intensity drops
below the threshold for the parametric instabilities, but
the isotropization due to the Weibel instability and the
plasma expansion can continue. Eventually the plasma
will recombine.

In this paper we describe some of the first experiments
that explore the physics issues unique to tunnel-ionized
plasmas as discussed above. In Sec. II theoretical con-
siderations relevant to the understanding of the experi-
ment are discussed. In Sec. III experimental results are
presented and in Sec. IV simulation results are shown
which have been used to explain the experimental results.

II. THEORETICAL CONSIDERATIONS

A. Tunneling-ionization model
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FIG. 1. Calculated evolution of the plasma density (norrna1-
ized to the neutral gas fi11 density) as a function of time for a
linearly (dashed line) and circularly (solid line) polarized laser
shot into argon gas. No plasma effects were taken into account.
The laser pulse had a 150-ps rise time and a 350-ps fall time and
a peak intensity of 2X 10' W/cm . The four different phases in
the interaction of a high-intensity laser beam with a gas con-
sidered in the paper are denoted by the point-dash lines.
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The characteristics of a plasma produced through ion-
ization of a gas by an intense laser are calculated using
the tunneling model [1]. First we calculate the plasma-
density evolution during the ionization phase and then
we calculate the resulting electron-distribution functions
at the end of the ionization phase. In tunneling ioniza-
tion, the rate at which the plasma density increases is
given, for singly ionized gases, by

dn(t) =w(t)[no —n(t)],
dt

where n (t) is the time-dependent electron plasma density,
no is the initial neutral gas density, and m(t) is given by

[1]
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Here EH and E, are the ionization potential of hydrogen,
the atom in question, g =E, /E(t) where

E, =m e /fi =5 2.1X10" V/m, is the atomic unit of
electric field, and E(t) is the amplitude of the applied
electric field; e is the electron charge and coo is the laser
frequency. In the "plasma regime" we expect that a
small fraction of electrons will leave the focal volume and
build up a space-charge potential. A simple estimate,
based on Gauss's law, shows that the space-charge poten-
tial reaches a large enough value to confine the bulk of
the remaining electrons when a charge imbalance 5n ex-
ists larger than

5n=
27Te iX

(3)

Uy +CKUz

Etrgg$ 2
(5)

The laser propagates in the x direction, v„,and v, are the
dc drift-velocity components in the transverse y and z
directions, respectively, and a is the degree of ellipticity
of the incident polarization. This drift velocity arises be-
cause the transverse canonical momentum of the electron
in a plane wave is a constant of the motion. This model
has been shown to predict the correct values of laser-
polarization-dependent anisotropic drift-energy distribu-
tions in an experiment in the single-atom regime by Cor-
kum et al. [5]. One-dimensional (1D) calculations using
the ionization probability from Eq. (2) and the energies
from Eq. (5) show that for the previously considered laser
parameters and using circularly polarized light, a ring
distribution with a major radius (transverse to the in-
cident laser-beam wave vector kc) of 2.5 keV and a minor
radius of 1 keV with Tt~ of only 4 eV is generated upon

Here cr is the radius of the plasma cylinder, defined as the
position where the laser intensity is at its threshold value
for ionization. For our experimental parameters 5n
needs to exceed 10' cm for space charge to retain the
electrons. The rate equation for the plasma density has
been verified experimentally and found to adequately
model the time evolution of the plasma density [17].

As an example, using a CO2 laser with a peak intensity
of 3X10' W/cm and pulse rise time of 150 ps focused
in hydrogen gas, we find from Eq. (1) that the density
builds up rapidly in about 20 ps once the laser intensity
exceeds 6X10' W/cm . For a given intensity, the ion-
ization onset occurs later with circular than with linear
polarization, since the field strength is &2 lower (Fig. 1).

In the absence of plasma effects, the evolution of the
electron energy distribution can be calculated assuming
classical interaction of the newly created electrons with
the ionizing electromagnetic fields [3,5]. Assuming that
the electron is created at rest in a specific phase of the
electric field, E=E sincuoty+aE coscootz, it can be shown
that its energy in the laser field is comprised of the quiver
energy

1 e E cos coot
E =—mvosc 2 Osc 2P2 No

plus translational drift energy

completion of ionization. This is shown in Figs.
2(a) —2(c). When using linearly polarized light an aniso-
tropic quasi-Maxwellian with Tj =150 eV and T~~ &(1 eV
is produced for linearly polarized light. This is shown in
Fig. 2(d). To summarize, from the tunneling-ionization
model one expects that when the laser intensity is above
the tunneling threshold but v, /c & 1, fully ionized plas-
mas with controllable T~ and negligible T~~ can be pro-
duced.

B. Stimulated Raman scattering in a time-varying plasma
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FIG. 2. (a) The calculated (single-particle regime) 2D
transverse-electron drift-velocity distribution f( v~, v, ) produced
by a circularly polarized laser with an intensity of 1.2X10'
W/cm, in argon gas. (b) Slice through (a) at v, =0, showing a
major radius of 0.065c and a minor radius of 0.006c. (c) Associ-
ated longitudinal drift-velocity distribution (10 times expanded
velocity scale). (d) Calculated (single-particle regime)
transverse-electron drift-velocity distribution f(v~ ) produced by
a linear polarized laser with an intensity of 1.2X 10' W/cm, in
argon gas. This quasi-Maxwellian distribution has a tempera-
ture Tj of about 150 eV. The longitudinal drift-velocity distri-
bution (not shown) is also quasi-Maxwellian with T~~ && 1 e&.

In the experiment, coherent Thomson scattering of
SRS- and/or SCS-driven high-frequency density fluctua-
tions is used to provide information on the evolution of
the plasma density and temperature. In a seminal paper
by Rosenbluth, the theory of three-wave parametric in-
stabilities for weakly inhomogeneous media was derived
[18]. Following a similar analysis we consider the effect
of time-varying plasma conditions on the growth of
electron-density fluctuations excited through stimulated
Raman or Compton scattering. The time dependence
comes about through ionization and/or plasma heating.
First we will analyze Raman scattering in a cold plasma
with a time-dependent density and/or pump strength.
Next we will include the effect of a time-dependent tem-
perature for the case of Compton scattering.

Let Eo(coo, ko) be the pump wave, E,(co„k,) the scat-
tered electromagnetic wave, and E(co, k ) the electrostatic
plasma wave. The plasma density n is assumed to be spa-
tially uniform but to vary as a function of time. In the
case of tunneling ionization the rate at which n changes is
given by Eq. (1), whereas for collisional ionization
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The continuity equation is modified for an ionizing plas-
ma through the addition of a source term S (t):

and will assume that R', X'p, and k& are slowly varying
amplitudes, i.e.,

an +V (nv)=S(t),
at

a', e «~a, e (15)

a, s+noV v=o, (8)

where we have left out the explicit time dependence in
the notation. The equation of motion of the density fluc-
tuations is modified by the tunneling ionization through
the addition of a damping term [19]

B,v+ —E= —V(vp vf )+A, 1 — v .
no

Taking the divergence of Eq. (9), the time derivative of
the continuity equation, and using Gauss's law

where S(t) is equal to the ionization rate. Denoting the
fluctuating density by n(t) we write the density as
n(t)=np(t)+n(t), where np(t) is the time-dependent
background electron density. Since the rate of plasma
production due to tunneling ionization only depends on
the available amount of neutral species N n(—t), there is
no change in the equation of continuity for the fluctua-
tions. However, for collisional ionization the rate is pro-
portional to the amount of free electrons. If there is an
electron-density fluctuation present in the plasma it
would imply that at local-density maxima a higher ion-
ization rate could enhance the density fluctuations. For a
propagating fluctuation, however, this local enhancement
smears out and since the newly created electrons do not
oscillate, the wave is actually damped. The equation of
continuity for n is then

and

B,E «cpB, P where j=0, 1 .

Applying the Fourier transform in space and using Eq.
(15), we can rewrite the coupled Eqs. (11) and (13) in the
slowly-varying-envelope approximation:

e'k'Pp
(v 2i—cp)B,Ri c'—pvR= —'n pP ", exp i f—hcp dt

m COOCO&

= —AE*, exp i f—hcp dt, (16a)

(v, +2ico, )B,E', +ico,v,E f = cp&R—Ep ex'p i f hcpdt

(16b)

Here v& is a phenomenological damping rate of
the electromagnetic wave, hco =coo

—co, —co, and
A =e k Pplmcopco, np Since .the plasma is assumed to
be homogeneous, there is no wave-vector mismatch, i.e.,
bk=kp —

k&
—k=0. Eliminating E' from Eqs. (16a) and

(16b), we obtain the following equation for R:

lcov + 1 1 + v 2lco

V 2l CO V& +2l COi V 2l CO

+8 +(b,co+i A /A )cpv cPcP&vvi I o

V 2lCO (v, +2ico, )(v 2i cp)—
V E= —4mne,

we obtain

(10) =0,
V 2lCO

B,n+vd, n+co (t)n =npV (vp vf)

describing the driven density fluctuations in an ionizing
plasma. Here v is the sum of a phenomenological damp-
ing rate and the damping rate due to ionization found in
Eq. (9),

eE
v = (j=0,1), (12)

mco.J
where Eo is the applied electromagnetic field at frequency
coo and E& is the backscattered electromagnetic field at
frequency co, . From Maxwell's equations we can also
derive the equation governing the behavior of the scat-
tered e.m. wave:

(c) +c V +co )E,= cp n *E—
where we have assumed that the electrons are created at
rest. We now write

n =& exp i kx — codt

c},h+B, h'['b, +, ]+6' ' + —
y =0 . (18)

Using

R' =n 'exp —— (i hcp+ v,ct)dt
1 (19)

Eq. (18) can be reduced to

v) v
a'n +n' ——hco ——i Ace+

2 4 2

(20)

where I p= Ace Pp =(e k Ep/mcppcp&)cp . Here I p is

the homogeneous growth rate for the time-independent
case [20] and the time derivative of A and cp is
denoted by an overdot. Let dc' =b,co+i ( A /A ),
v, /2=v, /2+cp/cp, v,tt=v/2+v, /2, and yp=l p/4cpcp, .
Assume v «co&, cp, then we can rewrite Eq. (14) as

Ep =Ep exp t kpx f cppd't ep

E& =E&exp i k &x
— co&dt e&,

(14) In general, the detuning Aco can be a complicated func-
tion of time. The rate at which the frequencies of the
electromagnetic waves change in time is given by
dcpj/dt =(cpz/cp )(dco /dt) where j =0, 1, and therefore
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can be neglected for an underdense plasma. It follows
that

where

S(v, t)=w(t}(No —n)5(v) . (28)
dcoo dco~

dt dt dt
dco p

dt
(21)

where co approximately equals co . To this point we have
been completely general in allowing for time dependence
of both Eo and no. In what follows we neglect the time
dependence of Eo (i.e., A), because for our experiment
the ionization time is much shorter than the laser-pulse
rise time. However, for ultrashort pulses this may not be
the case. To obtain an analytic expression for the
amplification of the density fluctuations due to Raman
scattering, we now linearize the detuning hco in time
around the point where hco=0, i.e., hco= —Bt. Using
Eq. (21) this implies that the density is assumed to in-
crease quadratically with time around t =0. We next as-
sume that the pump strength varies on a slower time
scale than the density and that the effective damping
v&

—v is small. Normalizing time to t =t'/B', Eq. (20)
becomes

afo
w—(i)no 1—

at
Wo

5(v)
no

(29)

and the first-order perturbation f, satisfies the equation

af i . e . vo'vf
+ik.vf, — —E+ik

at m m

afo
(30)

Letting

f, =j', exp ikx i J—hodr

n, =e, exp ikx i f~dr
(31)

The use of 5(v) explicitly demands new electrons to be
created at rest. The time evolution of the zeroth-order
distribution function is then determined by

T

B,.n'+ n'+ —— n'=0 .
4 2 B

An approximate solution for yo/B )0 is then
' 1/2

Xon'= n osinh — dt',
C

(22)

(23)

vo'v$ afo/av
, =i E+ik-

rn m co —kU„
(32)

and, integrating with respect to U, we find the fluctuating
density n

&
to be given by

and applying a spatial and temporal Fourier transform to
Eq. (30},we obtain

2 1/2
yo t'2rc=f '

4

2

dt'=77 Xo

B (24)

where we have neglected i in Eq. (22), since we assume
finite amplification larger than 1. The integration is car-
ried out to the turning points t, =2y o/&B . The net
amplification is then

. ke i, afo/»
n, =i E+—k (vo.vf ) d u .

km e '
co —kv„

We now define the plasma susceptibility X, as

41re uf 0
Xg km co —kv„

dU

(33)

(34)

and hence

2
Xon'= n oexp m B (25)

The time dependence of both the density and temperature
are contained in the expression for X, through its depen-
dence on fo. Fourier transforming Gauss's law [Eq. (10)]
we get

or
2

Yo 7o
n =noexp m — v, (26)

.k-E
n&= —i

4~e
(35)

The effect of the time-dependent density is therefore
equivalent to reducing the effective growth rate of SRS to

ff 1 o/&B and allowing growth only during a time
roughly equal to the turning-point time b, r = 2yol&B.

Using Eqs. (10), (34), and (35) we can rewrite Eq. (33) as

Xg
Eo A )E)

Xg
(36)

In the weakly damped limit Eq. (16a) can be rewritten as

C. Stimulated compton scattering
in a time-dependent plasma

V)
8 E& + E~ =in &E& =in&Eo A2 (37)

af e Qvo V1+v.Vf —E+-
at m m

a ==S(v, t ), (27)
Bv

To model stimulated Compton scattering in a plasma
with a time-dependent density due to tunneling ioniza-
tion, we start from the Vlasov equation with a source
tenn

Finally, combining Eqs. (36) and (37) and integrating with
respect to time we obtain

1 XeE, =E«exp — — —iEoA, A2 dt
2 1+X,

(38)

The density

fluctuations

will therefore have an
amplification factor given by
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2 Xe
exp 3, 32EpIm l+y,

v)
dt -.

2
(39)

1 L zp n

2LL, wpn,
(45)

'2
v0 ge(co, kA, De)

(40)

The associated spatial growth rate is then given by

The integration has to be carried out up to a time which
is the shorter of the laser pulse length 7

p ] and the time
it takes for the light wave to convect from the location of
the source (usually right-hand boundary of the plasma) to
the location of the observer. The convection velocity for
the Compton waves can be neglected, since these waves
are heavily damped.

If the plasma conditions and pump are time indepen-
dent, then Eq. (39) reduces to the usual time-independent
Compton growth rate [20] given by

where LD is the density gradient scale length normalized
to the beam size at the waist wp, and L is the path length
normalized to the Rayleigh range zp=mwz/k, with k the
wavelength of the laser.

We next derive a scaling law for intensity clamping due
to refraction for pulses longer than the Rayleigh length,
by incorporating the paraxial ray equation into Gaussian
beam optics. Initially, as the laser intensity increases
above the ionization threshold, plasma will be produced
in a small volume. Subsequent light rays entering the
plasma and converging towards the focus will now be
bent due to refraction. If the slope of the rays is zero at
the location where the laser intensity is just below thresh-
old, then further ionization will be prevented and the
plasma density will cease to increase.

The intensity profile for a Gaussian beam is given by

Vp
K =2

C

'2
0~0 y, (co, kA, D, )

Im
c 1+y, (co, k/L. D, )

(41)
exp[ —2(p/u) ]I s&P =Ipeak 2

U

where

(46)

where the group velocity of the light wave is assumed to
be c (underdense plasma).

v(s)= =(1+s )', s =z/20, p=, (47)
Wp Wp

D. Ionization-induced refraction

d0= ds,aa
Br

(42)

where Ag =g„„—g,~ and g„„andg,~, the index of re-
fraction of vacuum and the medium, respectively. The
index of refraction for electromagnetic waves in an un-
derdense plasma can be approximated as

ck 2 2 1/2 1 n(r)=(1—co /co )
/ =l ——

eo ~ 2 n,
(43)

where n, is the critical density and n (r} is the radial den-
sity profile. Substituting Eq. (43) into Eq. (42) we obtain

~ Bn/n,
dO= — ds .

2 Br
(44)

The total bending angle after traveling a distance L is
given by

B(n /n, )0=— ds
2 07

and scales as

Because the ionization rate [Eq. (2)] has a strong non-
linear dependence on the applied field, a plasma with
strong radial density gradients is formed when a Gauss-
ian transverse laser-intensity profile is used. This plasma
can then act as a negative lens and refract the laser beam,
causing the intensity to clamp close to the ionization
threshold thereby suppressing further ionization [21].

A simple estimate for the scale lengths associated with
refraction can be obtained as follows. In an inhomogene-
ous medium, one can calculate the path taken by a light
ray from the paraxial ray equation

and

dU $

(1+ 2)1/2
Gauss

(49)

Geometrically, (du /ds )o,„„

is just the beam convergence
(for s (0) or expansion (s &0) angle due to Gaussian
focusing. Refraction is going to change the spot size by
an amount

T

dU p 1 p B(n /n, )
ds .

Bp
(50)

Therefore the total rate of change of the spot size is pro-
portional to

dv dv du
(51)

The intensity remains constant, or reduces, when
(dv /ds )„„1~ 0, which gives

2
wp SLD

n/n, ds ~2
( 1+s2)1/2Zp

where ds is the path length in the plasma. Ionization will

be suppressed if the rate of beam size change is larger
than zero at a location s=s,h„,h, where the intensity
reaches the ionization threshold. In the absence of re-

with I
„„

the peak laser intensity. The rate at which the
intensity changes as a function of s is given by

BI(s,p) 2
exp[ —2(p/u) ]

1 2 / 2 dv

U

(48)
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with O'=Ip 1, /I&hr sh The radial density-gradient scale
length is roughly set by the width of the ionization
threshold intensity contour. To find the maximum width
of the ionization threshold contour we rewrite Eq. (46) as

1/2

(54)p=U —ln
2 v

fraction, s,h,~h is obtained from Eq. (46) (setting p=O)
and Eq. (47):

(53)

3WQ, .
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p.0
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-3 Wo.

-3 ZQ
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and take the derivative with respect to s:

Bp Bu 1

Qs ()s ~ 2

* 1/2

—ln
1

2

I/2 0 ~

(55)

Equation (55) is satisfied when Bu/Bs=O, which is true
for s =0, i.e., the beam waist location, or when
—,'In(%/u )=1, which implies u=v'4/e. Therefore a
second extremum occurs when &4 & e. At this transition
point the Gaussian contours for the ionization threshold
change from oval to dumbbell shape. The radial scale
length LD is then given by Ln =+—,'In+ for qi & e2 and

LD =&4/e for 4 & e . Equation (52) then becomes

' 1/2( 4A, in+
for %&e (58)

FIG. 3. (a) Plasma-density contours for a COq-laser-
(I~„„=1.2X 10' %/cm ) produced plasma. The box goes from—3zo to 3zo in the horizontal direction and from —3wo to 3wo
in the vertical direction. The highest density contour is 1 (nor-
malized to the neutral-gas density). The dashed contours in-
crease by 10% while the solid contours increase by 1%. The to-
tal plasma length with n /no = 1 is approximately zo, (b)
Plasma-density contours for a YAG-laser- (Ip k 2 X 10"
W/cm ) produced plasma (one quadrant). The box goes from
—24zo to 0 in the horizontal direction and from —24wo to 0 in
the vertical direction. The highest density contour is 1 (normal-
ized to the neutral gas density). The dashed contours increase
by 10% while the solid contours increase by 1%. The total
plasma length at n /no = 1 is approximately 16zo.

n/n, ds &2 WQ

Zp

2 1/2

for 'III &e (56)

and

n /n, ~ for 4 & e( 4A, 2

mezp
(59)

and

n/n, ds &2
'2 1/2

Wp

ZQ
2

for %&e (57)

To estimate the path length ds after which refraction
competes with the focusing of the beam, we used a simple
2D code to calculate the density profile produced
through ionization by a traveling laser pulse. The ioniza-
tion rate is given by Eqs. (1) and (2). The spatial beam
profile is prescribed by Gaussian optics and remains un-
changed in the calculation. In Fig. 3(a) the density con-
tours are shown for the case of a C02 pulse
(I „„=1.2X10' W/cm2) shot into hydrogen gas with
cr„„,/zo=12. In Fig. 3(b) the density contours (one
quadrant) are shown for a Nd: YAG (where YAG denotes
yttrium aluminum garnet) laser shot into helium gas
(I~„k=2 X 10' W/cm } with cr„„,/zo =0.28. It is
found that for the CO2 case, the plasma size is on the or-
der of zp, while for the Nd: YAG case, it is 16 zp. En ar-
der for the intensity to be below the ionization threshold
at the vacuum focus, the plasma needs to be dense
enough along a path length of roughly —,

' the size of the
plasma. Therefore, taking ds to be on the order of
(s,h„,i, /2)zo, we finally obtain an estimate for the max-
imum plasma density in the presence of ionization-
induced refraction

From this analysis it is clear that refraction-induced den-
sity clamping can be avoided in two ways: (a) by using a
high-intensity pulse with effective pulse length shorter
than the "refraction length" and (b) by reducing the
length of gas through which the laser has to propagate
when using a laser with a spatial pulse length c~p„1„long
compared ta the Rayleigh range.

III. EXPERIMENT

In the experiment, a GO2-laser beam (up to 100-J, 150-
ps rise time and 350-ps fall time) was focused into a vacu-
um chamber containing up to 5 Torr of Ar or Hz gas.
The measured spot size in vacuum was 2wp =340 pm and
the peak laser intensity in vacuum was around 3X10'
W/cm . At this intensity, an estiinate based on Eq. (3)
shows that, for fill pressures exceeding 1 mTorr, the
space-charge potential is large enough to confine most of
the electrons against the ponderomotive potential of the
laser. The space-charge-dominated plasma was produced
aver approximately two Rayleigh lengths, 2zp=1. 7 cm.
Since the laser pulse has a full width at half maximum
(FWHM) of about 350 ps, cr „i„/z0=12.The plasma
was diagnosed by (a} viewing the forward laser harmonic
emission; (b) collective Thomson scattering of a 0 5 pm. -
beam to probe 2ko density Iluctuations; and (c) by
measuring the x-ray emission from the plasma. Using the
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tunneling-ionization rate equation [Eq. (1)] and neglect-
ing any pump depletion, we found that in Ar gas full ion-
ization (to Z =1) is attained for our experimental param-
eters in approximately 25 ps once the ionization thresh-
old of 6X 10' W/cm is exceeded. As in the case of sin-

gle atoms [7], no significant plasma formation was detect-
ed either visually or on any of the above diagnostics,
below an average laser intensity of 6X10' W/cm .
Above this threshold, both line and continuum emission
were observed but always in the recombination phase of
the plasma, almost 5 ns after the laser pulse was over.
This supports the notion that collisional excitation and
ionization are relatively unimportant in our work.

A. Harmonic generation

P2r+ j

P)

12

2
COa 4

/exp
COL 3

mr (2r+1)

X ~ exp
—3r 2

r (r+1)
exp 3r+1

2

D, (60}

where 2r+1 is the order of the harmonic. Here D is the
detuning factor for a collimated beam given by

The evidence for plasma formation by tunneling comes
from odd-harmonic emission from the plasma. When
linear polarization is used the ionization proceeds in step-
wise fashion at twice the laser frequency generating a
nonlinear current J(lcoo, Iko }= evn—

„

I =3, 5, 7, . . .
which acts as a source term for odd harmonic emission
[22]. The frequency spectrum of the transmitted or
forward-scattered laser light was measured through
bandpass filters. The energy in the second harmonic and
third harmonic was measured using a spectrograph and
pyro-array detector combination allowing a direct mea-
surement of the linewidth of the radiation. The spectrum
was found to contain discrete lines at the second
(b A, /A, ( 10 ) and third (b, A, /A, ( 10 ) harmonic.
Moreover, a signal at the fifth-harmonic wavelength was
observed through bandpass filters and the use of a spec-
trograph and a liquid-helium-cooled Ge:Cu detector [Fig.
4(a)]. In Fig. 4(b) the harmonic signal level as a function
of the e11ipticity a is plotted for the second and the third
harmonic. As expected from the tunneling mechanism,
the third and the fifth harmonic (not plotted) were found
to decrease in magnitude as the ellipticity of the beam a
was increased. The second harmonic signal, however,
was found to be independent of polarization.

Since the harmonic infrared emission was not time
resolved, we can only put an upper bound on the pulse
length ~3„when we convert the measured amount of en-

ergy into peak pulse power. If the harmonics were gen-
erated by the tunneling mechanism they wi11 on1y be em-
itted during the ionization phase, i.e., &3„=25ps. The
maximum theoretical efficiency P2„+,/PI is given by [22]

sin (hkL/2)
(b,kL /2)

(61)

where L is the length of the medium and b k is the wave-
vector mismatch between fundamental and third harmon-
ic given by [22]

2

hk = —rk = —rkP
0 2 0

COp n,
(62)
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FIG. 4. (a) Ratio of harmonic power to laser power for
different harmonic numbers. To convert the measured amount
of energy into power we have assumed the light to be emitted in

a 25-ps-long pulse for all the different harmonics. (b) Measured
second- and third-harmonic signal level as a function of the el-

lipticity a of the polarization of the ionizing laser beam.

The value for g is calculated using the laser field strength
at the moment where the density is half its final value and
equals about 18. For our experimental parameters
n/n, =10,L= 1 cm, and ko=5. 9X10 cm ' so that
D=3.5X10 . The theoretical ratio P3/P& is then a
factor of about 5 above the measured value of 5X10
but the difference may be due to the uncertainty in ~3„
and in D. The theoretical ratio P5 /P3 is about i2o, which
is reasonably close to the experimental ratio of about —„',.

In addition to stepwise ionization, odd harmonics can
be generated through the nonlinear susceptibility g' ' of
the media [23] through which the laser beam propagates
and through relativistic effects inside the plasma [24].
Harmonic emission due to the y' ' process will follow the
laser pulse, while relativistic effects can only be important
close to the peak of the pulse. The background signal
level, with the chamber evacuated, can indeed be ac-
counted for by nonlinear processes in the NaCl windows
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and SF6 gas [25], which is used to suppress self-lasing.
Although the beam traverses neutral gas inside the target
chamber, it is well known that no third harmonic will be
generated for a strongly focusing beam when the medium
is infinitely long [23]. When the nonlinear medium is
finite in length (but still much longer than the Rayleigh
range) and extends symmetrically on both ends of best
focus, the ratio P3/P, is given by [26]

P3

Pi
(63)

1
. 2 exp( i b, kz )—dz . (64)

(zb+z)
1+i2

From Eq. (64) it is then found that y' ' effects are only
becoming important when the Rayleigh range is longer
than the length of the nonlinear medium (e.g., in a gas-jet
experiment).

The magnitude of y' ' was measured in argon gas at
relatively low laser intensity (I 10" W/cm ) using a
1.06-pm YAG laser, and atmospheric pressures [26]. To
first order, y' ' and the indices of refraction n &, n 3 can be
extrapolated to other wavelengths and pressures using
the relations given by Lehmeier et al. [26]. Since the
laser enters the experiment as a collimated (i.e., Rayleigh
range much longer than L), low-intensity (I (10"
W/cm ) beam before being focused, the contribution to
the third-harmonic signal along this path is given by Eq.
(62), where the detuning factor D is given by Eq. (61).
For our experimental parameters we then obtain
P3/Pi =1.04X10 ' and P3/P, =1.53X10 ' as contri-
butions of the high-intensity focusing beam and the col-
limated beam, respectively. Here we have taken a neutral
argon gas density of 1.8X10' atoms/cm and a funda-
mental power P, of 100 GW. Even if we assume the har-
monic emission to occur for the entire laser pulse, i.e.,
~~„1„=500ps, it is clear from Fig. 4(a) that the measured
third-harmonic eSciency is about five orders of magni-
tude larger than the theoretical contribution to harmonic
generation due to g' ' in the neutral gas. Thus it seems
unlikely that this mechanism can account for the ob-
served harmonic emission.

Relativistic effects are also unimportant for the param-
eter regime of this experiment. The ratio of the third
harmonic to the fundamental can be shown to be [27]

r 2 4 —3
P3 9 co „ao2a,41+ (65)

Here y' ' is the nonlinear third-order susceptibility of the
medium; n, and n3 are the index of refraction of the
medium at the fundamental and third harmonic, respec-
tively; ~3 is the frequency of the third harmonic; b =2zo
is the confocal parameter; zb is the offset of the center of
the nonlinear medium with respect to the Gaussian
beam-waist position (z=0); and I, is the peak laser in-
tensity. The detuning factor D for a Gaussian beam is
given by [26]

Here ao is equal to U, lc. In the experiment, the peak
value of ao and the plasma density were 0.1 and 10 n„
respectively. The calculated efficiency is then more than
six orders of magnitude below the measured level. Fur-
thermore, the theoretical power ratio of the fifth to the
third harmonic scales like third to fundamental. This is
in even larger discrepancy with the measured eSciency
for the fifth harmonic. In summary, both the nonlinear
polarizability and the relativistic effects are therefore rel-
atively unimportant in our experiment.

The second-harmonic emission observed in the experi-
ment was found to be nearly independent of polarization,
but cannot be explained by any of the above mechanisms.
Simulations show that the second-harmonic emission
originates from the edges of the plasma, where the densi-

ty gradients are the steepest, suggesting that the source
for the even harmonics are nonlinear currents due to
transverse intensity or density gradients [28].

B. Time-resolved Thomson scattering

Our main density and Tii diagnostic is based on the
detection of electron-density fluctuations with k =2ko
excited by the laser beam through either SRS [29] or SCS
[30]. If the tunnel plasrnas have very low values of Tii, as
the single-particle model suggests, then kA, D, «1 and
SRS should have a very large growth rate, whereas for
large Tii and kkD, on the order of 1, SCS may occur. The
scattered light from 2ko density fluctuations was wave-
length (0.2-A resolution) and time resolved (10-ps resolu-
tion) with a spectrograph —streak-camera combination.
However, it is not possible to follow the time evolution of
the ionization process using this technique since the ion-
ization rate is comparable to the homogeneous, time-
independent growth rate for the Raman-Compton insta-
bility [20). In Sec. II it was found that the homogeneous
growth rate for SRS yo is effectively reduced to
y, tt=yo/&B and that the growth time is limited by the
smaller of the convection time or the "detuning time"
At =2yo/&B. Here B is the rate with which the plasma
frequency varies as a function of time. For our experi-
mental conditions, the SRS amplification factor for
thermal density fluctuations equals about two "e fold-
ings" of gain, so that the Thomson-scattered signal
remains below our detection threshold during the ioniza-
tion phase.

Experiments show that the high-frequency 2ko density
fluctuations have a broad frequency spectrum consistent
with Compton rather than Raman scattering. The evolu-
tion of one such spectrum from a plasma produced in a
static fill of 1.1 Torr of H2-gas is depicted in Figs. 5 and
6(a). At early times [Fig. 6(a)], the spectrum can be fitted
quite well applying the stimulated Compton scattering
theory [20,30]. In this second phase of the interaction of
the laser with the plasma, we assume that the density and
temperature are evolving on a slow enough time scale jus-
tifying the use of the time-independent growth rate for
the stimulated Compton scattering instability. Further-
more, the driven fluctuations are assumed to grow from
thermal noise. The scattered power in the noise spectrum
PN(co, t =0) is given approximately by [31]
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FIG. 5. (a) Streak camera image of the Thomson-scattered
probe beam in a hydrogen plasma. The fill pressure was 1.1
Torr. Although not shown here, there was no blue shifted spec-
tral feature visible in the original data. The white bar at the top
indicates the location of a 100X attenuator for SBS. (b) Line
outs of the streak data taken along the direction of the arrows in
(a).
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FIG. 6. (a) Plot of first three line outs and fitted curves; (b)
time-resolved frequency spectrum of 2kp electron-density Auc-

tuations. Wavelength shift increases upwards and time in-

creases to the right. The feature near zero shift is from ion
waves. The electron plasma wave feature due to SCS ranges

0 0
from 0—15 A. The feature at around 8 A is the beat wave

response of the plasma. The laser beam contained both a 10.3
and a 10.6-pm line, requiring a resonant density of 8X10"
cm . (c) Time integrated streak camera images of the
Thomson-scattered probe beam in hydrogen plasmas (fill pres-
sure of 1.1 Torr) for different degrees of ellipticity a of the laser
polarization (tan ' a =45 for circular polarization).

where co is the frequency shift of the scattered light,
s=(1+y, ), f, (f,. ) is the electron (ion) velocity distribu-
tion function, and C is a constant dependent upon geome-
trical factors. The spatial growth rate ac(co, kA, D, ) for
backscattering modes with k=2kc is given by Eq. (41).
Equation (41) is valid away from the strongly coupled re-
gime (i.e., ac «co~/c}, which, for our densities and laser
intensities at early times during the interaction, is
satisfied [20,32]. Also, since the SCS fluctuations propa-
gate in a direction normal to the incident laser electric

field, i.e., k.vo=0, the expression for y, (bco, kAD, ) is
thought not to be affected for the case where vo & v„
where U, =(KT, lm)'~ is the electron thermal velocity
[33]. The scattered CO2 power P, (co,L) is given by
P, (co,L)=P~exp(~L ), where L is the length of the con-
vective amplifier. Since the Thomson-scattering probe
measures the density fluctuations associated with the CO2
laser backscatter at one point in space z', the spectrum is
then of the form

P»(~, t)=SP„(~,kAD„t=0)exp[~(~, kAD, )ct]

for t & T (67a)

=SP&(co,k AD„t=0)exp[~(co, k A, D, )cT ]

for t ) T, (67b)

where we have assumed the group velocity of the light
wave to be c for the underdense plasmas, T is the transit
time of the scattered wave to the point z', and S is a
fitting parameter. The effect of increasing kA.D, beyond
about 0.3 in Eqs. (67a) and (67b) is to significantly
broaden the range of frequency shifts co which have
significant growth, leading to scattered spectra with
widths becoming on the order of the maximum shift. In
the fitting procedure we adjust kA, D, and the plasma den-
sity so that both the position of the peak and the width of
the main spectral feature of the calculated spectrum
agrees with the experimental data. The parameters S and
v„,/c are adjusted so that the calculated and measured
amplitudes of the background noise level and the main
spectral feature agree.

Fitting the theoretical spectrum to the first line-out
from Fig. 6(a) gives n =3.5 —6 X 10' cm and

T~I =40—75 eV, the higher temperature correlating with
the lower density. This temperature is already much
higher and the density much lower than predicted by the
single-particle model. At later times the spectrum devel-
ops structure and broadens to both higher and lower fre-
quencies. Applying the same fitting procedure at these
times does not result in a good fit to the data [Fig. 6(a)].
About 140 ps after the onset of SCS, the spectrum resem-
bles incoherent Thomson scattering from a thermal plas-
ma rather than from a collective mode. These are still
driven fluctuations as evidenced from the absence of scat-
tered light on the blue side. The spectra possibly have
evolved into the strongly coupled regime due to a de-
creasing plasma density caused by thermal expansion
and/or ponderomotive blowout. This issue, however,
clearly needs further theoretical attention. The most
probable cause of the frequency broadening of the spec-
trum is a continued increase of T~~. As will be seen later,
this is believed to be due to the Weibel instability.

Even at higher fill pressures, the SCS spectra indicated
very low peak densities with n ~10 n, . At these low
densities, collisional processes should be relatively unim-
portant on the time scales of the laser pulse. Also, at the
higher pressures a significant amount of the laser energy
was found to be refracted out of the original cone angle of
the laser beam. We take this as evidence of density
:lamping due to ionization-induced refraction. This
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To obtain an independent estimate of the plasma tem-
perature and to explore the possibility of plasma tempera-
ture control through polarization of the ionizing laser
light, soft-x-ray emission above 800 eV was measured us-
ing a silicon surface-barrier detector with Be and Mylar
filters. Figure 7(c) shows three sets of data: linear polar-
ization with the detector looking (i) along and (ii) trans-
verse to the electric field, and (iii) circular polarization.
A significant difFerence in x-ray flux was seen between
linear and circular polarization, as expected from the
tunnel-ionization model. However, no significant
difference was seen between looking transverse to and
along the electric field for the linear polarization.

To model the x-ray data we have measured that the x-
rays are emitted by an isotropized Maxwellian, for both
linear and circular polarization. The spectral distribution
of the bremsstrahlung intensity from a Maxwellian distri-
bution is given by [36]

S(co)=nSoe G

with

(6&)

6+ tlZ
nSO =

l?l C

2 3 1/2e~ 16 2wm

4~co 3 3k~ T (69)

prevents the laser intensity from being significantly above
the ionization threshold for a suScient duration to fully
ionize the gas. This will be discussed in more detail in
Sec. III D.

As an independent density diagnostic, we have also at-
tempted to excite a plasma wave using a laser beam con-
taining two different frequencies [13]. This process is
known as beat-wave excitation [34,11] and relies on the
fact that if the difFerence frequency of the two laser lines
is close to the plasma frequency, a plasma wave will be
resonantly excited. When the CO2 laser was made to os-
cillate simultaneously on a 10.6- and a 10.3-IMm line, re-
quiring a plasma density on the order of 8X10' cm, a
signature of the long-wavelength plasma wave mode-
coupled to an SBS-excited ion wave [35] was seen on the
Thomson-scattering diagnostic [Fig. 6(b)]. However,
when using the line pair 10.6 pm-9. 6 pm, which requires
a plasma density of 1.2 X 10' cm, this feature was nev-
er seen. This confirms independently that the density is
much lower than 10' cm

We also explored the possibility of laser-plasma insta-
bility control by varying the polarization of the laser
beam. The main effect of changing the laser polarization
is to drastically alter the initial transverse distribution of
electron energies. If these distributions isotropize rapidly
then kk,D„and therefore the damping rate for high-
frequency electron fluctuations, can be varied. As we in-
creased a the fluctuations due to SBS were unafFected,
whereas the high-frequency fluctuations became weaker
and were eventually completely suppressed for a&0.6
[Fig. 6(c)]. These observations are consistent with an in-
crease in T~i in going from linear to circularly polarized
light. However, the inferred values for Tii are still anom-
alously higher than the single-particle predictions.

C. X-ray emission
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FIG. 7. Calculated volume factor as a function of laser inten-
sity for calculating x-ray yield from an argon plasma produced
with a (a) linearly and a (b) circularly polarized beam. (c) The
x-ray emission from argon plasma (fill pressure of 280 mTorr) as
a function of laser energy for different polarizations. (d) x-ray
yield from (c) adjusted for the volume factor as a function of
laser energy for linear polarization (detector looking horizontal-
ly and vertically) and circular polarization.

and 6 is the Maxwell-averaged Gaunt factor. The in-
crease of x-ray flux with laser energy can simply be attri-
buted to the increase of plasma volume at higher laser in-
tensity. As seen from Eq. (69) the x-ray etnission is pro-
portional to the amount of ions and electrons. Using a
2D numerical ionization code we calculated the amount
of electrons and ions produced through ionization for
different laser intensities. The result is shown in Figs.
7(a) and 7(b). Taking this factor into account for the ex-
perimental data we found the x-ray signal to become
roughly independent of laser energy as shown in Fig. 7(d).
The spread in the data for circular polarization is mainly
due to the uncertainty in the peak laser intensity. Since
the exact pulse shape varies from shot to shot and a low-
intensity pedestal can be present, an uncertainty in the
peak laser intensity is introduced when converting the
measured energy to power. As seen in Fig. 7(b) the slope
of the volume factor curve for circular polarization is
very steep in the range of l —2X10' W/cm, thereby
magnifying the uncertainty in the x-ray yield.

The bremsstrahlung spectrum from a Maxwellian plas-
ma, with T as parameter, is then multiplied by the filter
transmission spectra and the detector sensitivity curve.
Integrating the resulting spectra gives the total amount of
energy captured by the SSB detector. Experimentally we
measured the x-ray flux through two different filter com-
binations (25-pm Be only and 25-pm Be plus 6.3-pm My-
lar foil), keeping the laser energy and gas pressure con-
stant. From the ratio of the x-ray yield for the two filters
we obtain a plasma temperature for circular polarization
of around 450+150 eV. Plasmas produced with a linearly
polarized laser produced on average ten times less signal
(taking the volume factor into account), so that their tem-
perature is typically about 180+50 eV. These tempera-
tures are within a factor of two of the Ti's that might be
expected from a laser beam which has its intensity
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clamped close to the ionization threshold due to refrac-
tion.

D. Ionization-induced refraction

The clamping of the maximum density due to refrac-
tion was investigated by measuring the amount of laser
light outside the original cone angle of the beam, as a
function of fill pressure [Fig. 8(a)]. In Ar, as the fill pres-
sure was raised beyond 200 mT, a sudden onset of refrac-
tion was seen. This corresponds to a density of around
0.7X10' cm . In H2, refraction was found to be a
more gradual function of pressure. On the laser-pulse
time scale the Ar ions are relatively immobile and the ra-
dial density gradients are "frozen in, " whereas in H+
plasmas the ions can radially move during the laser pulse
and relax the density gradients and thus reduce the de-
focusing. This conjecture was supported by the observa-
tion that the refraction effects could be reduced by using
circularly polarized light (presumably higher Ti) instead
of linearly polarized light [Fig. 8(b)].

In the experiment the ratio 4 of laser intensity to
threshold intensity was varied from 2 to 5, 2zQ =1.7 cm,
and 2tuo =340 lcm. Using Eq. (56} we obtain
n ln, ds ~3X10 (6.4X10 ) for 4=2 (5). From the
density scaling law [Eq. (58)] we find that the maximum
obtainable density for our experimental conditions is
below 6.3X10 n„which is in good agreement with the
experimental observations.

0.3

IV. SIMULATIONS OF TUNNEL-IONIZED PLASMAS

A. Refraction

ZQ
R(z) =(z —z, ) 1+

z z
(70)

and z, was chosen such that in vacuum the beam was fo-
cused in the middle of the simulation box (i.e.,
x =100c/coo}. The laser pulse had a rise time of 750cuII '

and a fall time of 1250coQ '. The contour plot of the E,
field for a vacuum test run is shown in Fig. 9(a). Beam
refraction is illustrated in Figs. 9(b) and 9(c), where the
E,-field contours and the plasma-density contours are
shown at T=900coQ '. %ith plasma the contour of

Ionization-induced beam refraction in tunneling-
ionization produced plasmas was simulated using the
two-dimensional particle-in-cell code wAvE [37]. The re-
sults were compared to the scaling laws obtained in Sec.
II D.

The simulations were done on a grid of 200c/coo along
and 125c/~Q transverse to the laser propagation direc-
tion. All frequencies were normalized to the laser fre-
quency of a 10.6-IMm CO& laser. A neutral gas density of
0. 1n, was chosen and only singly ionized ions were al-
lowed. The ionization rate in Eq. (2) was used and elec-
trons were added with an initial thermal velocity
(u„,u~, u, ) of 10 c (essentially at rest). The laser electric
fields was S polarized (z direction) and launched from the
left-hand boundary. The curvature of the phase fronts
was given by
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FIG. 8. (a) Ratio of the laser energy refracted outside of the
original cone angle of the beam to the incident laser energy, in
H& and Ar plasmas, as a function of neutral gas fill pressure for
linearly polarized light. (b) Ratio of the laser energy refracted
outside of the original cone angle of the beam to the incident
laser energy, in H2 plasmas, as a function of the ellipticity a of
the polarization. The pressure was kept constant at 1.2 Torr.
The energies are measured by two cross-calibrated calorirneters.
The saturation of the refracted energy at 30% of the incident
laser energy is consistent with the solid angle of detection of the
calorimeter measuring the refracted beam energy.

0 I I I
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FIG. 9. (a) and (b) Calculated contour plots of E, field and (c)
of the plasma density from WAVE simulation at time step
T=900cop '. The simulation box is (200c/cop X 125c/cop). The
incident laser field is launched from the left-hand boundary into
vacuum in (a) and into a plasma with peak density n =0.1n, . In
case (b) strong field refraction has occurred as seen from the E
field peaking of axis at x =150c/cop and the plane of highest in-
tensity having moved backwards. Notice also in (c) how the lo-
cation of the plasma is not centered on the box. (d) CCD cam-
era image of the visible radiation given off by the plasma. The

scale lengths in the experiment are different than in the simula-

tion.
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highest intensity has moved backwards, the minimum
waist is wider, and the plasma is formed closer to the
left-hand side of the simulation box. The formation of a
ring-shaped beam profile is consistent with the experi-
mental observation that, in the strong refraction regime,
a significant amount ( )30% ) of the beam energy is mea-
sured to be outside the original cone angle of the beam.
Furthermore, a 2D image [Fig. 9(d)] of the visible radia-
tion given off by the plasma when strong refraction
occurs is remarkably similar to that of a plot of plasma-
density contours obtained from the simulations [Fig.
9(c)], including the formation of a narrow region of plas-
ma just to the right of the focus.

As seen in Figs. 9(a)—9(c), rays entering the simulation
box at y=72c/cop (edge of plasma) make an angle of
about 0.22 rad; the radial density-gradient scale length is
approximately 10c/cop and the peak density is 0. 1n,
From Eq. (45) we then find that the ray propagates paral-
lel to the axes after a distance l. =44c/rop, which agrees
remarkably well with the simulation.

To verify the scaling law for the density clamping due
to refraction we carried out a simulation in which the
laser intensity was chosen so that according to Eq. (58)
the density should stay below 0.9n0, where no is the neu-
tral gas density. When the simulation was run it was
found that the maximum obtained density was 0.92n0,
which is in good agreement with the predicted value.

B. Stochastic heating

To understand the origin of the initial T~~ and its fur-
ther increase with time, 2D simulations were carried out.
In all cases a circularly polarized beam was launched
from the left-hand boundary with a peak U„,/c=0. 1.
Ionization in linearly polarized beams leads to artificially
large electron temperatures due to numerical phase er-
rors. When a new electron and ion are created they are
injected with an isotropic velocity of 10 c.

As a check we compared the electron-distribution
functions obtained from the simulations and from the an-
alytic model for extremely low densities, n/n, =10
They were found to be in excellent agreement [Figs. 10(a)
and 10(b)]. Simulations with a fully ionized density of
10 n, and a laser rise time of 750co0 ' were done to iso-
late the high-frequency instabilities (SRS and/or SCS). In
1D, SRS was seen to grow to large levels (5n/n =0.3)
because of a very low initial Tl (kA, D, « 1), and saturate
due to particle trapping. The incident and backscattered
co spectrum is shown in Fig. 11(a).

In 2D, however, where the beam was focused into the
middle of the simulation box, SRS was suppressed be-
cause T~~ at the end of the ionization was already large.
Instead, SCS occurred at a reduced level, consistent with
experimental observations. This is shown in Fig. 11(b).

This high T~~ at the end of the ionization phase may
have the following origins: (a) the electrons are created
with a longitudinal drift-velocity component; (b) even
when created with only a transverse drift-velocity com-
ponent, electrons require a longitudinal drift-velocity
through subsequent interaction with the electromagnetic
fields. For the former case, electrons can be created at
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(b)
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v„/c 0.25
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0.25 (d)
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FIG. 10. Transverse (vy v, ) and longitudinal (v„,v„)velocity
space without [(a) and (b)] and with "plasma" efFects [(c) and
(d)]. In (a) and (b) the simulation was done on a 1D grid. The
maximum density was n/n, =10 '. The laser rise and fall time
was 500cop . The major (minor) radius of the ring corresponds
to a "temperature" of 1 keV (20 eV). In (c) and (d) the simula-
tion was done on a 2D grid (200c/copX125c/cop). The peak
density was 4X 10 n, . The laser beam was collimated and had
a Gaussian transverse profile with a beam diameter of 30c/cop.
The peak field strength corresponded to 0.1 v„,/c for both the
1D and 2D simulations. The transverse (longitudinal) tempera-
ture at T= 1200cop ' is =500 eV (50 eV).

positions where electric fields, for small-f-number focus-
ing and/or strong refraction, have a substantial longitudi-
nal component. This in turn results in a significant longi-
tudinal drift-velocity component (i.e., Ti) of the elec-
trons. The variation of the field strength will result in
broadening of the drift-velocity distribution, since parti-
cles born at different radial locations will end up with a
different drift velocity. In the latter case the electrons,
retained by the ion space charge, continue to interact
with both the applied electromagnetic fields and the
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FIG. 11. (a) co spectrum at the left-hand boundary of the in-
cident electric-field component E~ for a 1D simulation. The
plasma density at the end of the ionization was 10 n, . The in-
cident field strength was equivalent to v„,/c =0.2. (b) co spec-
trum of the backscattered electric-field component E~ leaving
the left-hand boundary, showing a narrow feature shifted by
coso [Eq. (2.1)]. (c) co spectrum at the left-hand boundary of the
incident electric-field component E~ for a 2D simulation. The
plasma density at the end of the ionization was 4X 10 n, . The
incident field strength was equivalent to v„,/c=0. 2. (d) co

spectrum of the backscattered electric-field component E~ leav-
ing the left-hand boundary showing a broad spectral feature in
contrast with the spectrum of (b).
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C. Weibel instability

To explain the further increase with time of T~~, we
considered the effect of the isotropization of the trans-
verse distributions through the Weibel instability. A1-
though it can be shown that the obtained distribution
functions are stable to electrostatic perturbations along
the x direction using the Penrose criterion [38], they are
unstable to electromagnetic perturbations. In Sec. IVB
we found that the transverse distribution function in a
space-charge-dominated plasma is much more filled in
than the 1D ring distribution obtained in the single-
particle regime. We will therefore use the expression for
the maximum theoretical growth rate for the Weibel in-
stability in a bi-Maxwellian plasma given by [38]

I 7- ' 7-
'

7-

V Weibel P 2 7 7le C

8

2777

(71)

The mode of the magnetic field with the maximum
growth rate has a wave number k~ given by [38]

3/2
cop Tyk~=

3 c Tll
(72)

The electron-cyclotron frequency co„corresponding to
the saturation value of the magnetic field for the mode
with the maximum growth rate is given by [39]

' 1/2
3 V Weibel

cc) —4
2 coP

2

SP (73)

space-charge fields. Their phase-averaged guiding-center
energy can increase in a stochastic fashion leading to
hotter plasmas.

To investigate the importance of stochastic heating, a
2D simulation was carried out using a collimated beam
and a density n /n, =4X 10, too low for the parametric
instabilities or refraction to occur. It was indeed found
that at the end of the laser pulse, the plasma had a higher
T~~~than expected from the single-particle model (50 eV vs
2 eV in the 1D computations) [Figs. 10(c) and 10(d)]. Us-
ing a focused beam, electrons with a longitudinal drift ve-
locity were generated at the edge of the plasma where the
light rays make the largest angle. When the density was
increased to n/n, =0.1, strong refraction of the beam
was observed, leading to large phase front curvature and
further heating of electrons. We note that since the ex-
periments were carried out at low density, collisional
effects are relatively unimportant. For high-density plas-
mas, however, collisional heating will become important
as an additional heating mechanism.
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FIG. 12. (a) Theoretical Weibel instability growth rate as a
function of T, for a tunnel-ionization-produced plasma. (b), (c)
The time evolution of B~ and T~~ starting after the end of the
ionizing laser pulse and the k spectrum of B„atT=1950cop ',
from a 1D WAvE simulation. The plasma had a peak density
n =5X10 'n, and was created by a circularly polarized laser
pulse with U„,/c =0.2 and a rise and fall time of T=SOOcop '.
The feature with mode number around 100 in (c) corresponds to
the wave number kp of the laser. The feature with mode num-
ber around 20, i.e., k& =0.2kp, is due to the Weibel instability.

Vy +Uz
U

c
(74)

The isotropization of the electron-distribution func-
tions due to the Weibel instability was isolated by run-
ning a 1D simulation with n /n, =5 X 10 and a short
laser pulse (1000coo ) to suppress parametric instabilities.
Both the measured growth rate of the long-scale-length
magnetic field characteristic of the Weibel instability and
the wave number of the mode were in reasonable agree-
ment with the theoretical predictions of y=2X10
and kg 0.2cop/c, respectively. The time evolution of the

By component of the magnetic field and of T~~ are shown
in Fig. 12(b), and the k spectrum of B~ is shown in Fig.
12(b). It can be seen from Fig. 12(b) that temperature iso-
tropization occurred over a slower time scale roughly
given by r =(~/2'„),where co„is given by Eq. (73). Us-
ing the theoretical growth rate for our experimental pa-
rameters we find that the Weibel instability will com-
pletely isotropize the electrons in roughly 75 ps (180 ps)
for circular (linear) polarization. This is consistent with
the observed broadening of the SCS spectrum [Fig. 5(b)]
discussed earlier (Sec. III B). Although the simulations
discussed here were carried out with a circularly polar-
ized beam, similar effects occur with a linearly polarized
beam.

In Fig. 12(a) we show the theoretical Weibel instability
growth rate [Eq. (71)] as a function of T~. In calculating
this growth rate we have used the assumption from the
tunneling model that the transverse drift velocities
(v~, v, ) and the longitudinal drift velocity v) (and hence,

T~~ and T~) are related through

V. CONCLUSION

The properties of tunnel-ionized plasmas have been
studied through experiments and particle simulations.
Odd-harmonic emission characteristic of stepwise tunnel
ionization and density clamping due to ionization-
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induced refraction were observed. Qualitative evidence
for plasma temperature control by varying the laser po-
larization was obtained through measurements of the
SCS instability spectra and x-ray emission. Furthermore,
longitudinal temperatures were higher than those expect-
ed from a single-particle model. Simulations indicated
that stochastic heating and the Weibel instability play an
important role in plasma heating and isotropization. The
maximum obtainable density was found to be limited by
ionization-induced refraction. A simple scaling law for
the density clamping was derived by blending concepts

from the paraxial-ray approximation with Gaussian op-
tics and was confirmed by simulations.
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