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The closed set of general-relativistic hydrodynamical equations describing a strongly magnetized col-
lisionless plasma with an anisotropic pressure tensor is derived. Consideration is based on the "3+1"
formulation of magnetohydrodynamics and the orthonormal tetrad technique. The model is the further
generalization of the theory of Chew, Goldberger, and Low [Proc. R. Soc. London Ser. A 236, 1204
(1954)] for the general-relativistic case. In ultrarelativistic limit the equations of state are obtained,
which differ noticeably from those known previously.
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I. INTRODUCTION

It is widely accepted that the study of the hydro-
dynamics of collisionless plasma in strong magnetic fields

is important for a wide class of astrophysical objects, in-

cluding relativistic pulsar winds and powerful jets in ac-
tive galactic nuclei and quasars. Due to the high com-
pactness of the central engines in these objects (rapidly
rotating neutron stars and supermassive black holes),
general-relativistic effects become important and must be
taken into account. At the same time, it is known that in

magnetohydrodynamics, consideration of relativistic
effects becomes necessary not only due to the high veloci-
ties of plasma macroscopic motion, but also when the ve-

locities of the plasma particles' microscopic motions are
high enough, i.e., when the temperature of plasma be-
comes relativistic.

Relativistic magnetohydrodynamics for the medium
with isotropic pressure was considered in Refs. [1,2]. In
the most general form, the closed set of molecular hydro-
dynamic (MHD) equations for relativistic collisionless
plasma may be derived on the basis of the relativistically
invariant Vlasov kinetic equation. In Ref. [3] by means
of the formalism developed in Ref. [2] from kinetic equa-
tions, the closed set of relativistic MHD equations was
obtained.

When formulating the system of hydrodynamic equa-
tions, first will appear the problem of the definition of
macroscopic parameters describing the state of the medi-
um (such as particle number density, hydrodynamical ve-
locity, the temperature" corresponding to each plasma
component, etc.). These definitions must be made in the
rest frame of the given plasma component, i.e., macro-
scopic parameters must be introduced by means of the
corresponding integration of the distribution function of
plasma particles in the phase space of chaotic momenta.
In nonrelativistic theory, this requirement is satisfied by
means of the usual Galileo transformations for particle
velocities. In the more general, special-relativistic case, it
seems more correct to define the main macroscopic pa-

rameters of plasma on the basis of Lorentz transforma-
tions for particle energy and momentum. Such an ap-
proach was developed in Ref. [4], where the closed set of
relativistic MHD equations was obtained for strongly
magnetized collisionless plasma.

It is known that synchrotron-radiation losses consider-
ably change the properties of the strongly magnetized
collisionless plasmas of pulsar winds or jets in such a way
that their temperatures become highly anisotropic. In
this case, the plasma pressure is no longer a scalar and
thus its consideration must be based on the hydrodynami-
cal model of relativistic plasma with the anisotropic pres-
sure tensor. Pressure anisotropy leads to the changes of
the overall properties of such a medium. In particular,
new types of magnetohydrodynamical instabilities may
appear as well.

In the present paper, we formulate a hydrodynamical
model for general-relativistic, strongly magnetized col-
lisionless plasma. The model is the further generalization
of the special-relativistic model outlined in Ref. [4],
which in turn has generalized the Chew, Goldberger, and
Low model [5] for a nonrelativistic plasma.

We present our model based on the "3+1"formalism
of Thorne and Macdonald [6,7]. The plasma is assumed
to exist in a space-time described by the standard metrics
of a rotating body; we do not account for the self-gravity
of the matter.

II. MAIN CONSIDERATION

Hereafter we shall use the following notations: (i)
greek indices will range over t, r, 0, $ and represent
space-time coordinates, components, etc. , (ii) latin indices
will range over r, 0,y and represent coordinates in three-
dimensional "absolute" space, and (iii) we shall use
geometrical units, so that 6 =c= l.

The rotation of the central object (for example, a rapi-
dily rotating neutron star or Kerr black hole) introduces
off-diagonal terms g, in the metric so that the space-time
generated by a rotating object is represented by the
metric
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ds = d—r =g„dt +2g, dt dip+g„dq&

+grrdl +good 0 (2.1)

with the metric coefficients independent of t and y. In
3+1 notations, (2. 1) may be rewritten as

aree[k]=(g;;) ' . Note that e[&]e r =5[&I and

e[']=a
7

e[q]=p (g )
—&&2

t q qq

e[']=Qg

(2.11a)

(2.11b)

(2.11c)
ds =g &dx dx~= ad—t +r,k(dx'+f3'dt)

X (dx "+P"dt ),
where a is the so-called "lapse function" defined as

2
gty gtt g qya =

(2.2)

(2.3)

P V 4= —qF Ppp
ac

'p (2.12)

where V is Cartan's covariant derivative operator,
defined as

Inserting (2.8) into (2.5), we get a kinetic equation in
the covariant form

y, k is three-dimensional "absolute" space metric tensor
(with nonzero components g„„,gzii, and g+&), and

r

&; =rikP" (2.4)

The microscopic state of the collisionless electron-ion (or
electron-positron} plasma can be described by means of
the relativistic distribution function of plasma particles
4(x,p ~). The function satisfies the kinetic equation

V.= —rrpPP-=a a
Bx gpr

If we introduce the distribution function f (x,p') defined
in seven-dimensional phase space according to the ex-
pression

4(x,p~) =f(x,p')5(( g&—p p~)'~ m}—e(p'),

(2.13)

B4 dx B4 dp
d ap d

(2.5)
where 8(p ') = 1 when p

' ~ 0 and is equal to zero when
p'(0 when using the fact that

where p are contravariant components of the plasma
particles' four-momentum defined as

F'~u&=r(E, v)/a,
F'~u&=r[E+(v XB)—P(E, v)/a],

(2.14a)

(2.14b)

mdx
p —=mu

d~
(2.6) we can write down the kinetic equation for the function

f (x, p) in the following fashion:

In 3+1 notations, components of 4-velocity u may be
expressed through 3-velocity v components in absolute
three-dimensional space in the following way:

u =— —;—(av —P)a-
a 'a (2.7a)

u —=y[ —a+(P, v);v], (2.7b)

md
d~

P — Pcx p Pp r +qF QPp
p ' (2.8)

where y =—(1—r;kv'v") '~ is the Lorentz factor corre-
sponding to 3-velocity v. The equation of motion for
plasma individual particles may be written as

P VJ = —aq [E+v X B—(P/a)(E, v) ]V+ . (2.15)

It is well known that from kinetic equations (2.12) or
(2. 15), one can obtain the system of transport equations
for the macroscopic parameters of plasma (such as proper
particle number density n, or the mean thermal energy
mW). But it should be emphasized that all these quanti-
ties must be defined in the rest frame of the medium —in
the reference frames co-moving with the fluid. For the
metric (2.2), it is possible to introduce such orthonormal
tetrads in each point of space-time. Hereafter, we shall
call them general co-moving frames (GCMF). Below we
write down all nonzero components of these tetrads:

P=e EP—eP E +e P ~e
[ t] [ t] r[tl (2.9)

Here F p is a general-relativistic tensor of the elec-
tromagnetic field. In 3+1 formalism the tensor may be
expressed by means of spatial vectors of electric E and
magnetic B fields in the following way:

e t
(t)

e'„, =y(v" —P"/a)(g, , )

(2.16a)

(2.16b)

(2.16c)

where E =Ep=8 =Bp=0, er[, ] =gree[, ], and

e [,]
=

[ I /a; —P/a j . (2.10)

v[~]v[k]
+(y 1)YP[][lc](g)1!2

v

Note that e[,]
in general are the components of ortho-

normal tetrads known in the mathematical theory of
black holes as locally nonrotating frames (LNRF's) [8],
zero-angular-momentum observers (ZAMO's) [7], or sim-

ply Bardeen tetrads. Other nonzero components of e[p]

e,'"=r[a (P,v)], —

e(i) y [i]+13[i]+( 1) (P~v [i]
2

(2.16d)

(2.16e)

(2.16f)
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e( ) — yQg U(i]

V t. i)V fkl
(k) Q (i](k]+ (

V

(2.16g)

(2.1611)

J =0

7 aP qy a]gJ
;P P~

M~. =q(F T~ F~T'). —
&1 7 1

(2.17)

(2.18)

(2.19)

All quantities appearing in these equations may be split
on their components in GCMF's. For example, for
current four-vector J we have

J —e( )

I' '= ' '4'd 0' = —n4
——ng

J =nu

(2.20a)

(2.20b)

(2.20c)

For energy-momentum tensor T ~, similarly we have

T P—e eP II( )(P)
(~) (p)

II"""=mn( W+—1)= fp'" @'dQ4,

g(i)(t) II(t)(i) — (i) (i) (t)@~d/~
4

11(')(")=fp( )p(")q) dt's'4 ~

As for M ~~, we can write

e(I.)e( )e(n)

(2.2 la)

(2.21b)

(2.21c)

(2.21d)

(2.22a)

Note that for GCMF tetrad indices we use parentheses,
while for LNRF tetrad indices we use square brackets.

In the case of the Kerr metric, if v
' has only one az-

imuthal nonzero component, (2.16) tetrads reduce to so-
called "orbiting systems" [9]. When all U('] =0 it, in turn,
reduces [i] to Bardeen tetrads. It must also be noted that
in the absence of gravitation, these tetrads reduce to plain
Lorentz transformations which, in turn, further reduce to
usual Galileo transformations in nonrelativistic limit (as
it should be). As far as at each point of space-time by
means of (2.11) and (2.16), we can define two instant local
Lorentz reference frames, it is obvious that transition be-
tween them occurs due to ordinary Lorentz transforma-
tions with the velocity v t'j. It may easily be proved by
simple algebraic calculations.

GCMF appear to be useful tools for the derivation of
the transport equations that we mentioned earlier. In
particular, they may be used to generalize the method
used in Ref. [4] (see also Ref. [10], where the analogous
problem is solved in the three-formalism approach}. The
transport equations may be obtained directly similar to
the approach used in Ref. [4]. But these equations may
be simply written if we apply general covariancy princi-
ples to special-relativistic transport equations presented
in Ref. [4]. According to the principle (see Ref. [11]),
correct general-relativistic equations may be obtained by
replacement of ordinary derivatives by covariant ones
and of Lorentz metric tensors g~ j~~j by the metric tensor
of curved space-time g ~. This means that we get the fol-
lowing set of equations:

N""'""=m n V= '" N'd 0'
4

~(i)(t)(t) —
2m (i) (t) (i)q)~d g~

4

~(i)(k)(t) — (i)(k) f' (t) (i) (k)@~d~~
4

~( i)( k)( 1)— g( i)( k)( 1) (i ) ( k) (1)(p~d gl
4 ~

(2.22b)

(2.22c)

(2.22d)

(2.22e)

In Eqs. (2.20) —(2.22) all quantities with primes are
defined in GCMF's or in the rest frames of plasma parti-
cles. All quantities defined in (2.20)—(2.22), n, IV, V,
II'" ' p'" ' g" q" and g'" ""may be rewritten more
conveniently by means of a three-dimensional distribu-
tion function in the following way (see for comparison
Refs. [5,10]):

n = ff'dQ'i, (2.23a)

8'—: f e'f'dQ3 1, —
mn

V= (nm ) —' f e' f'dQ'i,

q( )= fp( )f dt's

(i) = f (')f dt's'
2m

( i) (k)
g(i)(k) —t P I

3E'

p(()(k) fp(()p(k)f &dQ~
m

(i) (k) (I)

7l
(i)(k)(l) — /' P P P fIdQI

(2.23b)

(2.23c}

(2.23d)

(2.23e)

(2.23f}

(2.23g)

(2.23h)

E'=y(E+vXB) —(y —1} ' v,(v, E)
V2

B'=y(B—vXE) —(y —1) ' v,(v, B}
V

2

E=y(E' —vXB') —(y —1) ' v,(v, E'}
V

2

(2.24a)

(2.24b)

(2.24c)

Here all integrals are also taken in GCMF's. Introduced
tensor and vector quantities have concrete physical
meanings of their own. In particular, II"" ' is the viscous
stress tensor, q" the heat flux density. It can be seen that
in the nonrelativistic limit (e'=m), p'""'~II"" ', and
the vector g" reduces to q". Therefore p'" ' may be
called the modified stress tensor and g" may be called
the modified heat flux tensor. The g"" ""are the third-
order moments. They, in turn, may be expressed via
fourth-order moments, and in such a way we arrive at the
infinite set of interlinked equations. To make the system
solvable it is necessary to close the system somehow. For
this purpose one can, for example, neglect the third-order
moments g""""".This can be justified by the fact that
the higher-order moments arise due to the higher-order
deviation of the macroscopic system from equilibrium
than that of the lower-order moments.

Let us assume that in GCMF's the electric field is
equal to zero. General connections between the B—=B ',
E—=E~' and B'=8 ', E' —=E ' vectors may be written in
the following way:
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B=y(B'+vXE') —(y —1} ' v .(v, B'}
U2

(2.24d}
PII—,'d 03,

E
(2.33b)

Based on the assumption E' =0, one gets from (2.24)

E= —yvXB'= —vXB . (2.25)

1
p).= fp). f d&3 i

2m
(2.33c)

Obviously, the assumption demands that ElB and
IBI ) IEI. Using (2.24) and (2.25) once again, we come to
the following connection between LNRF and GCMF
components of the magnetic field

(2.26)

(2.33d)

Based on these definitions and using the fact that

(2.34)

we get for the energy-momentum tensor the following im-
portant expression:

Here e [k] are the components of the tensor that describes
the Lorentz transformation between the LNRF and
GCMF tetrads in the same point of space-time. The
components of this matrix are

(2.27a)

T ~= [mn ( W+1)+Pi ]u ~u t'+ pig tt

+(P(( P, }+—At'b b (2.35)

e (i) —e (t) „,g [i]
[ t] [i] f

v [']U [k]
&( ) —e(k) —b

(2.27b}

(2.27c)

The combination B —E is the relativistic invariant
and hence B' =B E. It le—ads [together with (2.26)] to
the expression that connects B' with B,

I I [,+ ~(„b)z]i'mB (2.28}
r

where b—:B/I BI is the unit vector in the direction of the
magnetic-field vector.

In the forthcoming analysis, we shall assume that the
three-dimensiona1 distribution function may be expressed
as

5 +uu
A

[1+y (v b)~]'i
(2.36)

yF

and define a new four-vector h via the expression

h:—F Pup.

(2.37}

(2.38)

It is worthwhile to note here that Maxwell equations

F p. +Fp . +Fy .p=0

The last term in (2.35) may be rewritten more convenient-

ly if we introduce the following kind of electromagnetic
tensor:

f':f'(t, x',pi2, (p',—B')), (2.29) may be written by means of F ~ and h as [3]

11(i)(k)=p b(i)b(k)+ p (
(i)(k) b(i)b(k) }J g (2.30)

where pi is the transversal in respect to the B' com-
ponent of particle momentum. In Ref. [4] it is argued
that when the distribution function is of the form (2.29)
and q=g=0, the tensors II"" ' and p"" ' may be written
in the following way:

FP. =0,;p

(u h~ —u~h ). =0 .
7

(2.39a)

(2.39b)

The four-vector h is orthogonal to the vector of 4-
velocity h u =0. It is easily expressed through the
three-dimensional vector of magnetic field B as

(i)(k) — b(i)b(k)+ (
(i)(k) b(i)b(k))Px '9

Here b" are defined as

(2.31)

Bm
h = (5 +u u ),

Ih I =(B/y) +(»B)',

(2.40a)

(2.40b)

b(i) —B(i)/IB
I

e(i)bk[1+y2(v b) ]
—/ (2.32) and hence we arrive at the following important formula:

and PII, ply and Pi, pi are parallel and transverse pressure
and modified pressure, respectively, defined as

/:b-=h /lhl . (2.41)

&2

p. =--, ", dQ:. (2.33a)

Neglecting third-order, purely spatial moments g'" ""
from the definitions (2.22) and taking into account (2.41),
we get for M p~

M ~r=m (mnV+3p )u urdur+ (u h~hr+u~h~h +urh h~)+p (u g~r+u~g r+u~ ~)VII Px
u g (2.42)
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III. DISCUSSION

First, let us write the continuity equation. It may
directly be rewritten in 3+ 1 notations so we may obtain
[12]

B(mny )+div[mny(av P—)]=0,
where the divergence operator is defined as

div A—= (y) ' [(y)' A'], ,

(3.1)

(3.2)

and y =det(y, k) is the determinant of three-dimensional
spatial inetric y, k from (2.2). Let us write now the equa-
tion of energy conservation. Generally, it may be written
as

We see that for the hydrodynamical description of the
relativistic collisionless plasma in the strong magnetic
field the set of macroscopic parameters n, W V, P~~~, P~,
p~~, and p~ should be introduced. In the next section we
try to write down general transport equations
(2.17)—(2.19), taking into account the concrete features of
their ingredients.

p))+ 2p j.V= +const.
mn

(3.12)

From (3.9) and (3.10), we can also find one interesting
expression for

p~~
and pj. If we combine these equations

in such a way that the terms containing ~h
~

are neglected,
then we get

=const. ,n' (3.13)

together with the equation of motion

ing necessary simplifications. Equations (3.6) and
(3.8)—(3.10) may easily be written in 3+1 notations if we
introduce the notion of the so-called hydrodynamical
derivative, defined as

D c}=(u /y) =(1/a)[B, +(av —P)V] . (3.11)
D~ ()x

Equation (3.8) says that V is not the independent charac-
teristic parameter of the macroscopic state of the medi-
um, but may be expressed through p~~

and p~ in the fol-
lowing way:

uPT ..=0.p;a (3.3) (5 + u u ) T~r =0, .p p (3.14)
Taking into account (2.35) and (2.41), we can write it as

mnu (W+pi/mn) —u pi&+ h h u .
&

.

and the modified equation for energy momentum

u M Or =q(F OTv Pr T~n)u
p p p ' (3.15)

(3.4)

The last term in (3.4) may be rewritten in a more con-
venient form. In particular, if we use the continuity
equation in the form (2.17) and Maxwell equations in the
form (2.39b), we can get the following important formula:

1
h h~u . =u [ln(/h[ n/)]

7
(3.5)

and hence Eq. (3.3) may be written as

mnu ( W+pi /mn ) u~pi &—

+(Pll Pi)u [ln(~h ~/—n)] =0 . (3.6)

g pM p~. =0, (3.7a)

Let us now turn our attention to Eq. (2.19). U»ng
various methods of projection, we can obtain the follow-
ing three independent scalar equations:

which we will not write here in an extended form, then
Eqs. (3.1), (3.6), and (3.8)—(3.10) constitute the closed set
of hydrodynamical equations for the general-relativistic
collisionless plasma in the strong magnetic field. Note
that (3.15) connects ordinary (Pll and Pi) and "modified"

(pll and lui) pressure. If the Chew, Goldberger, and Low
theory [5] is written for the nonrelativistic, strongly mag-
netized plasma and the model [4] is valid for the special
relativity, then the equations obtained in the present pa-
per may be viewed as the further generalization of the
latter theory, since it may be attributed to the various
kinds of astrophysical flows where general-relativistic
effects must be taken into account.

At the end of the paper it will be worthwhile to exam-
ine various concrete consequences of general equations
(3.6) and (3.9)—(3.10). First of all, let us consider the non-
relativistic case, when e'=m. From the definition of W
(2.23b), it is easy to find that

u u MP&. =0
p ~

y

hhM». =0.a p;y
(3.7b)

(3.7c)

P~ P
mn 2mn

(3.16a)

Equation (3.7a) leads to the following simple one:

u [V—(pll+2pi)/mn] =0 . (3.8)

and noting that relativistic enthalpy is defined as
cr = [Pi+mn( W+1)]/n, we immediately get the follow-

ing result:

(3.9)

Equations (3.7b) and (3.7c) lead to the following ones:

" lull, (lMII n)u n +2pllu [ln(Ih l/n)] =0,
2P, Pii

O. =m+ +
mn 2mn

(3.16b)

u pi —(2@i/n)u n —piu [ln(~h
~ /n)] =0 . (3.10)

Deriving (3.8)—(3.10) we once again use (3.5) for mak-

which coincides with the result contained in the literature
[13]. Note that in this limit pi~Pi and tull~Pll, so that
from (3.9) and (3.10) we obtain two state equations,
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P~
const.

P// [h

n
=const. ,

(3.17a)

(3.17b)

which also coincide with the well-known equations of
state for nonrelativistic collisionless plasma in a strong
magnetic field [13]. On the other hand, if plasma pres-
sure is isotropic (P~~ =P~), then from (3.13) we get also
the well-known result

P =const.
71

(3.18)

Now let us consider the ultrarelativistic case (when
e' —~p ~). Taking into account definitions of P~ and Pl
and Eq. (2.23b), we get for relativistic enthalpy

Pii+3Pi0'— (3.19)

and for 8'

Pi~i+2Pi —1
mn

(3.20)

P
4 /3 const .

n
(3.21)

Now, let us consider the case P~~ &&mn &&P~. Such a
situation is, as a rule, realized in pulsar winds where, be-
cause of radiative losses in the strong magnetic field, the
transverse particle momentum p~ is noticeably reduced
[13]. For such a case, the same equations lead to the fol-
lowing equation of state:

Using (3.19) and the general equation (3.6) we can consid-
er various interesting cases. For example, if plasma pres-
sure is isotropic then we immediately get a well-known
result for ultrarelativistic fluids,

=const. (3.22)

Finally, we can examine the opposite case, when

P~ ))mn )&P . Such an assumption seems to be reason-
II

able for hypothetical cosmic pinches, the formation of
which should probably be preceded by the state of gradu-
al plasma plunging into a cylinder [14,15]. Thus for the
latter case we get

p2 =const.
n'/h

/

(3.23)

Equations (3.22) and (3.23) noticeably difFer from the
ones known earlier [5,13]. This circumstance may play
an active role in the explanation of actual processes tak-
ing place in relativistic MHD flows with the anisotropic
pressure tensor. It must be emphasized once again that
all results obtained in this section are valid for the
general-relativistic collisionless plasma that is strongly
magnetized. It is obvious that they may easily be applied
to various kinds of astrophysical flows where the pres-
ence of a medium with similar properties is proved in one
way or another.

We did not take into account the influence of radiation
or pair-production processes on the flow dynamics.
However, we believe that under proper conditions in as-
trophysical problems mentioned in the Introduction,
these aspects may be relatively unimportant. For exam-
ple, in relativistic pulsar winds, pressure anisotropy due
to synchrotron-radiation losses is established on charac-
teristic time scales to=3m c l2e B [13]. On larger
time scales (t to) infiuence of radiation becomes negligi-
ble and relativistic, collisionless, magnetized plasma may
be described by the MHD theory discussed above. It was
not our aim to discuss the reasons of pressure anisotropy.
In particular, inclusion of radiative effects needs separate
consideration and is beyond the scope of this paper.
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