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We present results from a self-consistent Monte Carlo simulation of the cathode fall (CF) of a dc glow.
The simulation consists of following electron and ion trajectories under the influence of the electric field

which is calculated from Poisson s equation using the ion and electron densities. The collision cross sec-
tions are greatly simplified in order to facilitate understanding of the physical mechanisms which dom-

inate the CF. With this aim, we explicitly sample the electron distribution function and discuss its prop-
erties. We also show that it is feasible to simulate the CF in isolation from the negative glow (NG) as

long as backscattering from the NG is accounted for. Finally, we take into account the plasma (trapped)
electrons in the NG, and formulate a model of the CF-NG boundary region through use of the plasma-
sheath equation. We find that the length of the boundary region grows with the NG density, and that
there is a corresponding increase in the fraction of the ion flux which enters the CF as opposed to being
created in it. For reasonable values of the NG density, we find this fraction to be as high as 25%.

PACS number(s): 52.80.Hc, 52.65.+z, 52.40.Hf

I. INTRODUCTION

Low-pressure, low-temperature plasmas are used ex-
tensively in the fabrication of integrated circuits. A
prominent characteristic of processing plasmas is their
nonequilibrium nature, which makes them difficult to an-
alyze. A major cause of the departure from equilibrium
is the presence of strong, spatially varying sheath electric
fields. In dc glow discharges, much of the discharge volt-
age is dropped across the cathode fall (CF). Much of the
nonequilibrium behavior observed in dc glow discharges
therefore originates in the CF.

The CF is an important region of the glow discharge
because it sustains the glow. Positive ions created in the
CF by electron-impact ionization stream towards the
cathode under the inhuence of the strong electric field in
the CF. The energy gained by the ions from the electric
field is transferred to the cathode and causes secondary
emission of electrons from the cathode into the CF. The
emitted electrons are accelerated across the CF towards
the negative glow by the CF electric field. Electron ac-
celeration in the CF leads to an electron "avalanche, " as
electron-impact ionization in the cathode fall creates
more electrons in the CF, which in turn are accelerated
and cause more ionization [1].

The nonequilibrium nature of the CF necessitates a
knowledge of the electron distribution function (EDF) in
the CF. Previous theoretical studies of the cathode fall
which have accounted for the nonequilibrium EDF can
be categorized as either Boltzmann-equation solutions
[2—8] or direct Monte Carlo simulations [9—13]. Howev-
er, the two approaches are very closely related; Monte
Carlo simulation can be regarded as one way to solve the
Boltzmann equation for the EDF.

In addition to the work cited above, a wealth of litera-
ture also exists on studies of electron transport and

avalanches that occur during electrical breakdown in
gases [14—19]. The distinguishing feature of the CF stud-
ies is that the CF is characterized by a spatially varying
electric field, which precludes the use of ionization and
mobility data obtained from equilibrium swarm experi-
ments.

All the Monte Carlo work cited above was performed
under the assumption of a specified electric-field profile in
the CF. In the majority of cases, the field was assumed to
be a linearly decreasing function of distance from the
cathode, down to some small field value (arbitrarily
chosen) which represented the negative-glow (NG) field.
The typical field configuration used is shown in Fig. 1

(the value of the NG field is exaggerated for clarity). For
such a field Boeuf and Marode [9] calculated the angular
and energy distribution of electrons in the CF of a helium
glow discharge. They showed by comparison to a previ-
ous study [20] that angular scattering had an appreciable
effect on CF properties. Ohuchi and Kubota [10]
modified the linear-field assumption by using a quadratic
field near the NG to account for the increase in electron
density at the edge of the CF. They computed the
electron-energy distribution in the CF as well as swarm
parameters such as the ionization coefficient. Sato and
Tagashira [11] examined the effect of the nonuniform
(linear) electric field on the electron-energy distribution
function (EEDF) compared to the EEDF computed from
a swarm experiment. Moratz, Pitchford, and Bardsley
[12] examined the applicability of swarm data (local-field
approximation) to electron behavior in a linear field.
Moratz [13] has also simulated the CF in a neon glow
discharge.

The present work is based on a self-consistent calcula-
tion of the electric field based on electron as well as ion
motion in the CF. In this respect, our work is closer to
the work of Sommerer, Hitchon, and Lawler [2] than the
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FIG. 1. "Typical" electric-field profile used in previous work.

II. IDEALIZED CF MODEL

We present below a model of the CF by which we hope
to capture much of the nonequilibrium physics of the CF.

other Monte Carlo studies. Sommerer, Hitchon, and
Lawler used a weak constant NG field (as in Fig. 1), with
the self-consistent calculation being done only over the
nonuniform part of the field. The transition between the
CF field and the weak NG field approximated the point
in the discharge where the electric field (and the ion
current) vanishes. This assumption was based upon ex-
perimental evidence for a field reversal near the CF-NG
boundary which has been reviewed by Den Hartog,
Doughty, and Lawler [21]. A field reversal in the NG
has also been reported in a recent dc-discharge modeling
study [22]. The scope of the self-consistent solution in [2]
therefore did not include the CF-NG boundary.

In Sec. II, we present our physical model of the
cathode fall. While the computer code has heen written
to accept general, velocity-dependent, differential cross
sections, for this study we have assumed a "model" gas
with the minimum of collision physics necessary to
represent the CF. We describe a few details of the simu-
lation in Sec. III. In Sec. IV, we simulate the behavior of
the model gas with the configuration used in [2], i.e., a
constant, weakly positive NG field with the ion current
vanishing at the field-transition point ("extended"
domain). Along with the CF properties (which are in
good qualitative agreement with the results in [2]), we
study the effect of the value of the assumed field on the
EDF in the NG. We also show that results obtained
from a simulation domain that extends only as far as the
CF-NG boundary (the field-transition point) are in excel-
lent agreement with those obtained from the extended
domain calculation, as long as electrons backscattered
from the NG are explicitly accounted for. We develop
the framework under which the CF-NG region can be
analyzed in Sec. V. In Sec. VI we include the NG elec-
trons in the simulation by replacing the fixed NG field
approximation by an assumed distribution function for
the NG electrons which diffuse into the CF.

f '(v, z ) =f '(v„ui,z ), (2)

where v, and U~ are the axial and perpendicular com-
ponents of the velocity vector.

We are interested in the steady-state behavior of the
CF for which we may begin with the time-independent
Boltzmann equation, shown below for electrons:

e
v.V„f'+ a'.V„f'=

ou

We consider three different species in the CF: neutral
atoms of the background gas, singly ionized atoms of the
same gas, and free electrons. Electrons are emitted
through secondary processes on the cathode surface
(z=d ). Previous studies have assumed various forms of
the distribution of emitted electrons and, furthermore,
have shown that the effect of the assumed form does not
propagate very far into the CF [9,21]. We use a Maxwel-
lian electron-energy distribution with a standard devia-
tion corresponding to an energy of 2 eV. The angular
distribution of the emitted electrons is assumed to be iso-
tropic within a hemisphere. Emitted electrons are ac-
celerated by the CF field towards the discharge. As they
traverse the CF, they suffer collisions with neutral gas
atoms, elastic as well as inelastic (excitation and ioniza-
tion). Ionization in the CF creates an electron avalanche
as newly created electrons are themselves accelerated by
the CF field and undergo ionization collisions. Ions pro-
duced by ionization on the cathode side of the field-
reversal point stream towards the cathode in the CF field.
(The field-reversal point is denoted by z = —xo, and the
field value is equal to a threshold value, Eo, at z=0. )

Ions also collide with neutral gas atoms, resulting in
momentum transfer to the neutral atom in either an elas-
tic or a charge-exchange collision. Energy gained by the
ion from the CF field is transferred to the cathode, result-
ing occasionally in the emission of an electron. The
discharge is therefore self-sustaining. The electric field is
created by the space charge in the CF.

This model is considered to be idealized for reasons
which include the following. Metastable species and
their effects are not considered; ionization is assumed to
occur only from electron impact on ground-state neutral
atoms. Collision processes have been greatly simplified as
discussed below.

Given the nonequilibrium character of the CF, a dis-
cussion of the CF should be based upon the Boltzmann
equation. Before commencing, we introduce the
definition of the distribution function (one each for ions
and electrons):

dn'=f'(v, z)d v,
where the superscript refers to electrons, n' is the elec-
tron number density at position z, f (v, z) is the distribu-
tion function, v is the electron velocity, and z is defined
on a coordinate axis parallel to the electric field. The ion
distribution f ' has an analogous definition. The
geometry is assumed to be plane parallel, implying an ax-
isyrnmetric distribution function which we write as
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where a' is the acceleration of electrons due to the CF
field. Since the CF is assumed to be axisymmetric, we
can reduce Eq. (3) to

Bf' qE df' 5f'
' Bz m Bv, 5t

(4)

A. Collision processes

A major source of difficulty in solving the coupled sys-
tem formed by Eqs. (4), the analogous equation for the
iona, and Eq. (5) is the collision integral terms in the elec-
tron and ion equations. While it is possible to account
for elastic as well as inelastic collisions in the collision in-
tegral [19,23], evaluation of the collision integral requires
a priori knowledge of the distribution function. Since we
use the Monte Carlo simulation to obtain the distribution
function, the collision processes are described in the con-
text of the Monte Carlo simulation.

Two types of ion-atom and three types of electron-
atom collisions are included in the model. Interactions
between charged particles besides the effect of the space-
charge field are not included. The model gas is "argon-
like"; the mass of the neutral and ionic species is 40 amu.
However, while the numbers for the various collision
cross sections have been chosen to reflect cross sections
measured in Ar, the collision physics have been greatly
simplified.

Electron-atom collisions fall under elastic, excitation,
and ionization categories. Figure 2 shows the cross sec-

el
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An analogous equation for the ion distribution function
(with a positive acceleration term) is coupled to Eq. (4).
The coupling between the ions and the electrons occurs
through two mechanisms. One is through Poisson's
equation for the electric field:

dE a
(n ' n'), —

dz Ep

where the electron and ion densities are obtained by in-
tegrating Eq. (1) and its analog. The second coupling
occurs through the ionization part of the collision in-
tegral, written above as (5f'l5t)„ii for the electrons.
Collisions are discussed below.

tions used for the collisions. Energy dependences of the
cross sections have been neglected, except for the thresh-
old behavior of the inelastic processes (12 and 18 eV for
excitation and ionization, respectively). Furthermore,
angular dependences have also been ignored in favor of
an isotropic scattering model for all collisions. In ioniz-
ing collisions, all allowed energy distributions between
the ionizing electron and the progeny have equal proba-
bility. The values for the cross sections in Fig. 2 are
based upon [24—26]. We use the null collision technique
to account for the ionization and excitation threshold.

Collisions between ions and neutral atoms are either
charge-transfer collisions or elastic collisions. Charge ex-
change is modeled as an "identity switch" between the
ion and neutral atom with no further interaction, result-
ing in a new ion with an initial velocity corresponding to
a neutral atom. The newly created "hot" neutral atom is
not followed, and is assumed not to alter the neutral-
atom distribution significantly. While this is a possible
source of error [21], we regard it as a second-order effect
for the purpose of this study. Elastic collisions are
modeled after hard-sphere interactions. The cross sec-
tions for the ion-atom collisions are 30 A (charge ex-
change ) and 10 A (elastic). The numbers are based upon
experimental measurements of Ar+-Ar collisions [27],
but variations with energy and scattering angle have been
neglected. The neutral gas is assumed to follow a
Maxwellian distribution with a temperature of 350 K.

While the collision models adopted here are crude, we
show that much of the CF behavior seen in previous
studies is reproduced by this model. Furthermore, the
simplicity of the collision processes aids our understand-
ing of this behavior.

B. Flux boundary conditions

In previous studies of electron avalanches in the CF,
boundaries of the simulation have been physical elec-
trodes, typically regarded as being absorbing [2,9,10].
Electron reflection from solid surfaces is ignored here as
well. Electrons are emitted at the cathode through
secondary processes initiated by ion, neutral-atom,
and/or photon impingement. In a fixed-field simulation
of electron transport, it is possible to specify the electron
flux at the cathode (or at any other place) as a sufficient
boundary condition. In self-consistent simulations, how-
ever, it is necessary to use a relationship between the elec-
tron and ion currents. We use the concept of a current
balance at the cathode, studied by Doughty, Den Hartog,
and Lawler [28]. The ratio of the electron current to the
ion current at the cathode is defined as y

j,(d)
j;(d)

12 18
c (eV)

FIG. 2. Cross sections for electron-atom collisions.

300 where j, and j; are the electron and ion currents, and d is

the position of the cathode. It is important to note that y
is not the secondary yield per impinging ion; the condi-
tion is on the flux of particles. This condition has also
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been used in [2].
At the field-reversal point in the NG (z = —xo), we as-

sume that the current is carried exclusively by electrons.
This assumption is derived from Sommerer, Hitchon, and
Lawler [2] and Den Hartog, Doughty, and Lawler [21].
It follows that the net ion flux across this boundary is
zero. The ion flux is primarily due to field-induced drift

[22], and therefore vanishes at the field-reversal point.
An alternative expression for y in terms of electron-
current amplification is

j=j,(d) 1+—1
r

where j is the total discharge current. In the extended
domain simulations, the field-reversal point is approxi-
mated by the transition from the CF field to the fixed NG
field (xo =0).

III. MONTE CARLO SIMULATION

The Monte Carlo simulation consists of following tra-
jectories of individual particles. The scope of the simula-
tion includes ion trajectories between their creation in the
CF from electron-impact ionization and their ultimate
absorption by the cathode, as well as the electron
avalanche resulting from the secondary emission of elec-
trons from the cathode. This work is based largely on an
earlier Monte Carlo simulation of ion transport [29]. The
reader may refer to [29] for more details of the simula-

tion.
Figure 3 shows a flow chart of the overall simulation.

Input data consist of initial guesses for the electric field,
the electron-density profile, and the ionization profile in
the CF (usually results from a previous run). Ion trajec-

Initial guess

E(z), v; (z), pe(z)

ion Simulation

tories are followed from their starting position until they
cross the plane of the cathode. From the averaged
motion of a specified number of test particles, the ion-
density profile in the CF is computed. Through Poisson's
equation, Eq. (5), a new electric field is calculated.
Poisson's equation is integrated using a straightforward
finite-difference scheme; particle densities are not
smoothed or filtered prior to the integration. The L,
norm of the difference between the new and old field
profiles is computed and compared to a specified toler-
ance value. If the difference is too large, a new set of ion
trajectories is generated. This procedure is repeated until
the electric-field profile converges.

The converged electric field is then used to generate
the electron avalanche. A specified number of test parti-
cles representing electrons are started from the cathode.
Trajectories of these as well as of electrons generated in
the CF are averaged to obtain the electron-density and
ionization profiles in the CF. The newly generated ion-
ization profile is compared to the previous ionization
profile to test for convergence. If the error is larger than
the specified tolerance, the new electron-density and ion-
ization profiles are used in the ion simulation to generate
a new electric field and the process is repeated. The use
of the ionization profile as the error criterion allows us to
test the convergence of a specific part of the electron dis-
tribution (the high-energy tail) as a function of position in
the CF. The price we pay (over testing, for instance, a
macroscopic average such as the drift velocity) is com-
puter CPU time since we need to run a large number of
particles to populate the high-energy tail of the distribu-
tion to obtain reasonable statistics.

For a given set of collision cross sections, there are
four parameters which characterize this problem. They
are the discharge current (j ), the CF thickness (d ), the
CF potential (V), and the cathode current balance [y
from Eq. (6)]. In a self-consistent solution, two of these
parameters can be set independently. Sommerer,
Hitchon, and Lawler [2] used j and y as the independent
variables and calculated V and d as dependent variables.
We find it more convenient numerically to fix j and d and
calculate Vand y.

p.
,
(z)

Poisson Equation

E(z)

No No Sampling of the electron distribution function

Converged?

Yes

Electron Simulation

v, (z), p (z)

Converged?

Yes

Solution

FIG. 3. Algorithm for self-consistent Monte Carlo calcula-
tion.

We sample the electron distribution function more ex-
tensively than the ion distribution. The discussion in this
section, however, applies to ions as well as to electrons.

The EDF and its moments are sampled at constant
time intervals before each integration step. The spatial
extent of the domain is discretized into X, "space bins"
of equal size such that each bin is smaller than the mean
free path (b,z =d /N, «A, ). The moments of the distri-
bution function (e.g., the drift velocity ( v') ) are calculat-
ed by first adding the sample of the relevant quantity
(e.g. , the velocity component v, parallel to the field) to a
cumulative sum, and then dividing by the number of sam-
ples in the cumulative sum [29]. In terms of the distribu-
tion function, this amounts to calculating the drift veloci-
ty as
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ff'v, d'v
(u') =

ff ed3„ (8)

where f' is the EDF. By inference, the sample count (the
number of samples taken) is related to the electron densi-

ty [the denominator in Eq. (8)]. Since trajectories are
sampled at constant time intervals, this is consistent with
previous sampling techniques employed [16]. It is also
intuitive, since a slow electron which contributes more to
the density is sampled more often than a fast electron.
Other moments of the distribution function calculated
the same way as Eq. (8) are the variance of the axial and
perpendicular velocity components ((u, —(v')) ) and

((ui) ), used to assess "temperatures" and pressure gra-
dients in the parallel and perpendicular directions.

As discussed in [29], the Monte Carlo simulations must
be interpreted as modeling events which occur in a fixed
time interval. By this interpretation, the number of elec-
trons which cross a hypothetical plane are representative
of the jfux at that plane. Therefore the flux at a point is
calculated by counting the number of times each electron
crosses that point and normalizing the count as

F'(u„z)=f f'v, du, , (10)

G'(ui, z)=ui f f'du, ,

H'(e, z)= f f'(e, 8,z) sin8d8,

where f' is related to f' in Eq. (12) through a (phase-
space) coordinate transformation

' —3/2

(12)

f'( „vs,z)= 2

me
f'(e, 8,z) (13)

the velocity or energy of the particle. If the count is
"binned" by velocity (energy), this yields the velocity (en-
ergy) distribution of the electrons. The binning method is
very simple; every time a particle is sampled, the ap-
propriate velocity (energy) bin for that sample is calculat-
ed based upon the current velocity (energy) of the parti-
cle. That particular velocity (energy) bin is incremented
by one. It is possible by this method to calculate the full,
exact distribution function f (v„vi,z), but the statistical
requirements prove too demanding of CPU time. There-
fore we restrict ourselves to computing the following dis-
tributions:

C, (z }
Je( } JC ( )e &O

and c, L9 have the conventional definitions
—1/2

2 cos0, (14)
where j,(z ) is the electron current (flux) and C, (z) is the
net particle-crossing count for a plane at position z. The
discharge current j is carried exclusively by electrons at
the field-reversal point (z = —xo). In the extended
domain simulation, x0=0. This method of counting the
flux is based upon the same line of argument used in [9].

Equations (8) and (9) are two different methods of ar-
riving at the same information. For instance, the
numerator in Eq. (8) is the definition of the flux and we
obtain that directly as an intermediate step in the drift-
velocity calculation. We have confirmed that the two
methods give the same results. Our reason for choosing
Eq. (9) over Eq. (8) for the flux calculation is that the
agreement between the ion flux and the electron flux at
each position (they must add to a constant value) shows
less statistical variation by Eq. (9).

On the other hand, the method of Eq. (8) is preferable
for the calculation of the distribution function. In order
to calculate the distribution function through the flux

[Eq. (9)] it is necessary to estimate the time that each
electron spends in each spatial bin. For curvilinear tra-
jectories in arbitrary electric fields, this calculation is not
possible analytically. In a previous application of this
method, Boeuf and Marode [9] used a first-order approxi-
mation for At by assuming that acceleration of the elec-
tron over the extent of a single spatial bin was negligible.
The method of Eq. (8), outlined below, is free of this as-
sumption. However, the trajectory integration scheme
used here (which allows us to use either method) is more
CPU intensive than that used in [9].

As stated above, the denominator in Eq. (8) (the densi-

ty, by definition) is directly proportional to the total num-

ber of samples taken (as a function of position) from all

particles. The sample count is made without regard to

me

—1/2
2E,

sin8 .
me

(15)

The distributions given by Eqs. (10)—(12) are normalized
through the electron density n' as

j,(z)
n'(z)= ' = f F'du, = f G'dud= f H'dc,

q(u')
(16)

where j, is given by Eq. (9) and ( u') is from Eq. (8).

IV. EXTENDED-DOMAIN SIMULATION

In order to compare the calculation of the electron
properties with previous work [2,9,22], we present some
properties of the EDF in Fig. 4, along with the (self-
consistent) electric field by which the results are generat-
ed. As indicated in Fig. 4, the domain for this calculation
is extended to the anode (z= —d). The electrodes are
equidistant from the CF-NG boundary (z=0). A weak
NG field (Eo = 10 V/cm) pointing towards the cathode is
assumed, following [2] and [9], and the self-consistent
field calculation is done only for z )0. The EDF is nor-
malized everywhere by equating the electron current at
z =0 to the specified discharge current [Eq. (9)].

The parameters used to generate the results in Fig. 4
are d =4 mm and j=2 mA/cm . The simulation yields
the CF voltage V=305 V and electron- to ion-current ra-
tio at the cathode y =0.045.

The electric field shown in Fig. 4 is from the self-
consistent motion of ions and electrons in the CF (z & 0}.
Ion behavior is discussed below. The field shows nearly
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FIG. 4. EDF properties from extended-domain simulation.

linear behavior in the CF, consistent with the known be-
havior of the CF [21]. The drift-velocity and density
profiles may be compared directly with results from [2,9].
It is apparent through such comparison that the behavior
is qualitatively similar to that reported earlier, the crude
collision model notwithstanding. We discern three dis-
tinct regions in the CF. Very close to the cathode, the
drift velocity increases (density drops) as the low-energy
emitted electrons are accelerated away from the cathode.
In the bulk of the CF, the velocity is determined by the
local field value in a balance between the momentum
gained from the field and the randomizing effect of isotro-
pic collisions. As the field decreases towards the NG, the
drift velocity therefore drops and the density increases.

The third region is marked by the sharp decrease in the
drift velocity which occurs at z/d =0.2. This region of
the CF is affected by the NG; the observed drop in the
drift velocity is due to electrons being backscattered from
the low-field region. This feature, though visible, is not
so pronounced in the model results of [2], presumably be-
cause of the anisotropic scattering functions and the
greater number of scattering processes included in [2].
The backscatter from the NG may be construed as a
pressure gradient which the electrons must overcome as
they "flow" from the cathode to the anode, and which be-
gins to play a large retarding role in the momentum bal-
ance at roughly z /d =0.2 [30].

The drift velocity in Fig. 4 rises smoothly from the
CF-NG boundary towards the absorbing anode due to
the decreasing number of backscattered electrons. It is
interesting to note that with the isotropic scattering mod-
el used here, the effect of the absorbing anode is felt at
least as far away as the CF-NG boundary. This effect is
not so strong in studies using anisotropic scattering [2,9]
and the anode is completely decoupled from the system in

the limit of pure forward scattering [20].
The electron density, calculated according to Eq. (16),

varies with position due to two mechanisms. The elec-
tron flux increases from the cathode towards the anode,
causing the density to increase proportionately. In the
CF, the decrease in the drift velocity enhances this effect;
from the correspondence of the velocity and density
profiles, it is clear that this is not an insignificant contri-
bution. However, the density is plotted on a logarithmic
scale in Fig. 4, and the effect of the flux amplification can-
not be discounted. In the NG, the flux amplification and
the drift-velocity gradient work against each other to
produce a density profile more constant than the drift-
velocity profile in the same region.

The ionization rate v; shown in Fig. 4 is indicative of
the growth of the electron flux (qv;= —dj, /dz). The
profile is qualitatively similar to those shown in [22],
peaking close to the CF-NG boundary. Since the ioniza-
tion rate is dependent upon the average electron energy
(which peaks inside the CF) and the electron density
(maximum in the NG), it is not surprising that the posi-
tion of the maximum rate is near the CF-NG boundary.

It is of interest to examine the behavior of the high-
energy component of the EDF as a function of position.
In Fig. 5 we show the absolute densities of electrons
above the ionization and excitation potentials, as well as
the fraction of the total density residing above the inelas-
tic potentials. The logarithmic scale in Fig. 5(a) notwith-
standing, the ionization rate profile in Fig. 4 closely fol-
lows the density of electrons above the ionization thresh-
old. Comparison between the two curves in Fig. 5 shows
immediately that the drop in the fraction [Fig. 5(b)] at
z/d =0.2 to due to the rise in the total density, since the
absolute densities in Fig. 5(a) show qualitatively different
behavior. As in the drift-velocity discussion above, this is
the effect of the low-field region of the discharge on the
density of the low-energy electrons (see Fig. 7 and discus-
sion below).

10'
(o)

10

I

106
X

10'—

—ionizati
——excitat

"- 050—

0.25—

0.0
—1.0 0.0

z/d

0.5 1.0

FIG. 5. (a) Absolute and (b) relative densities of electrons
above ionization and excitation potentials.
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FIG. 6. EEDF as a function of position.

Before proceeding to the results of the ion calculations,
we show the EEDF [from Eq. (12)] as a function of posi-
tion in the CF in Fig. 6. The vertical scale of Fig. 6 has
been expanded to show the structure adjacent to the
cathode. Those electrons which have not undergone any
inelastic collisions are clearly visible as the curved ridge
near the cathode. Electrons which have collided inelasti-
cally and secondary electrons from ionization add to the
growth of the low-energy electron density away from the
cathode.

Figure 7 shows the EEDF at the edge of the CF (z =0)
for three different values of the weak NG field. The ener-

gy scale is truncated at 50 eV to show the structure at
low energies. The value of the NG field (we used 10, 1,
and 0.1 V/cm) affects only the low-energy part of the dis-
tribution; the high-energy tail (which extends, with slight
positive curvature on the logarithmic plot, to the sheath
potential of 300 eV) is unaffected. Therefore ionization

and excitation rates are independent of the NG field. At
low energy, the ionization and excitation energy loss can
be seen clearly in Fig. 7. The effect of the inelastic col-
lisions is to remove electrons from energies higher than
the respective potentials and add them to the distribution
at lower energy: hence the sharp steps visible in Fig. 7 at
12 eV (excitation threshold) and 18 eV (ionization thresh-
old). At lower values of the NG field, the density of the
low-energy electrons (and the total electron density) rises,
as expected.

Turning our attention now to the ion calculation, we
present the drift-velocity, the density, and the flux profile
in Fig. 8. The electron density (from Fig. 4) and the elec-
tron flux are also shown. As noted before, the ion trans-
port calculation is performed only in the CF (z )0) since
the weak NG field actually approximates a reversed field
in the NG and ions produced in the NG drift towards the
anode. The ion drift velocity is seen to increase as the
field strength increases. Consistent with the near-linear
electric-field profile in Fig. 4, the variation of the ion
density in the CF is small compared to the electrons.
However, it is apparent that the maximum ion density is
found inside the CF; the density of ions decreases towards
the NG. Such a profile seems nonphysical since the ion
density is higher in the NG than in the CF [22]. While
not obvious in the figure, the ion density at the edge of
the CF is only 40% of the maximum ion density. Since
the electric-field calculation is dominated by the ion-
density profile (n' n' fro—m Fig. 8 is quite large), this
could affect the electric field significantly.

Lawler [31] has shown by analyzing the Boltzmann
equation for the ion drift that the ion velocity inside the
CF is close to the equilibrium drift velocity, except in the
"equilibration" region close to the NG. This conclusion
has been utilized in two previous studies to approximate
ion motion in the CF [2,22]. Through swarm simulations
in constant electric fields, we have calculated the ion
mobilities at different field strengths in the range of the
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FIG. 8. Ion and electron behavior from extended-domain
simulation.
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FIG. 10. Axial velocity distributions obtained from
extended- and shortened-domain calculations.

CF electric field. The mobilities thus found conform well
to the functional form suggested by Frost [32]

Pop= +1+aE/ns
(17}

ES'ect of backscattering from NG

In Fig. 10, we show the axial velocity distribution of
the electrons [F'(v„O)from Eq. (10)] calculated from the
extended simulation at the CF-NG boundary. On the

with the mobility p approaching @0=7350 cm /Vs at
low field due to the gas temperature and showing the in-
verse square-root dependence on E/ng at high field
(a=0.036 Td ', 1 Td=10 ' Vcm ). Figure 9 shows
the ratio of the drift velocity from the simulation to the
equilibrium drift. The two drift velocities are also shown.
The results are consistent with Lawler's conclusion that
the equilibration distance (defined as the distance over
which the ions achieve 90% of the equilibrium drift} is on
the order of 5 mean free paths. While Lawler considered
only charge-exchange collisions, we observe qualitatively
similar behavior from ions which undergo hard-sphere
elastic collisions with neutral species of the same mass.

We retain the ion-transport simulations for two
reasons. First, we are interested in the CF-NG boundary,
the equilibration region, where the fractional discrepancy
between the equilibrium and true drift velocities is large.
Note that use of the higher equilibrium velocity in this
region drives the ion density lower at the CF-NG bound-
ary, worsening the discrepancy in the ion density dis-
cussed above. Second, the ion calculation is computa-
tionally inexpensive compared to the electron calculation.

The flux profiles in Fig. 8 reflect the ionization profile
in Fig. 4 (dj;/dz= —dj, /dz=qv, . by continuity). The
total discharge current is 0.2 mA/cm, and it is assumed
in the model that the current is carried totally by elec-
trons at the edge of the CF (z=O}. The ion current is
therefore assumed to vanish at this point.

same plot, we show the axial velocity distribution ob-
tained by simulating only the CF. The lack of back-
scattering from the NG (the CF-NG boundary is treated
as a virtual anode) creates a one-sided distribution and
reduces the density as well. Also the value of y rises
from 0.045 to 0.055, indicating that the backscattered
electrons contribute to ionization as well as to the densi-
ty. To confirm this mechanism, we introduce particles at
the CF-NG boundary with axial velocities corresponding
to the v, )0 (reentering the CF) portion of F'(v„O).Per-
pendicular velocities of the backward-going particles are
distributed according to the perpendicular velocity distri-
bution G'(vj, O) [Eq. (11)] from the extended solution.
The resulting axial velocity distribution, shown in Fig.
10, compares very favorably with the distribution from
the extended domain simulation, as does that the perpen-
dicular velocity distribution. The value of y also returns
to its extended domain simulation value of 0.045. It
should be noted that the application of Eqs. (10}and (11}
to determine the velocity di.stributions of the backward-
going particles assumes that the distribution function
f'(v„v~)is separable. From Fig. 10, the error due to the
assumption appears to be small.

V. TREATMENT OF NEGATIVE GLOW

In the results shown in Fig. 4 as well as in [2], the rise
in the electron density towards the NG is not sufhcient to
account for the observed NG density of 10" cm [21].
Also, the ion-density profile peaks inside the CF (Fig. 8},
contrary to experimental observations [21] and full
discharge simulation results [22]. This reduces the
overall accuracy of the self-consistent electric-field calcu-
lation. As pointed out in [2], the rigorous solution to this
problem would involve an electrode-to-electrode simula-
tion, including the reversed field, which would be compu-
tationally expensive. Therefore we use a model of the
CF-NG region to find appropriate boundary conditions
for the Monte Carlo simulation.

Experimental measurements of the EEDF in the NG
indicate that electrons may be classified into two groups,
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trapped (plasma} electrons and a high-energy group re-
ferred to here as a beam [33,34]. (In [33], "beam" elec-
trons refer to those electrons which pass through the CF
without a single inelastic collision; under our simulation
conditions, very few electrons escape inelastic collisions
in the CF. We use "beam" to refer to the high-energy
tail of the distribution shown in Fig. 7, even though the
electrons in question are not necessarily directed towards
the anode. ) Figure 7 shows that the beam electrons are
satisfactorily described in the NG by the simulation of
the extended domain using a constant, weakly positive
NG field. The trapped plasma electrons are described
phenomenologically as Maxwellian, with a parametrized
density and an assumed teinperature (0.25 eV [21]).

Since the temperature of the plasma electrons is low
compared to the ionization and excitation potential, they
only affect the system through the electron density. For
this purpose, it is convenient to express the density of the
plasma group directly as a function of position instead of
actually injecting particles in the Monte Carlo simula-
tion. Therefore the density of plasma electrons is given
analytically by

V(z ) /T,
n '(z ) =n~ (0)e (18)

where V(z) is the potential in the CF ( V=O at the field-
reversal point) and T, is the electron temperature in eV
(assumed 0.25 eV}. The density at the field-reversal point
is represented symbolically by n'(0). The total electron
density is given by the sum of the plasma component [Eq.
(18)] and the beam component (from the simulation) of
the EDF.

The CF-NG boundary is most conveniently analyzed
in terms of the plasma-sheath equation, which was first
formulated by Tonks and Langmuir [35] and has subse-
quently received attention from a number of researchers
[36—38]. Although the equation is usually written for a
symmetric discharge, its use here is consistent with the
assumption that there is no net ion transport across the
boundary where the field vanishes. It is convenient to use
the potential at the field-reversal point as the reference
(zero) potential. Ignoring the low density of beam elec-
trons, the plasma-sheath equation takes the form

~o d~V v(, z)/Tf '(v, z )dv n'(0)e-
q dz' (19)

where f' is the ion distribution function. In order to
proceed with the analysis, it is necessary to specify a form
for f . Previous applications of this equation have been
mostly restricted to a collisionless plasma [35,36] or to a
highly collisional plasma [35]. However, ions under these
conditions are not collisionless and the results in Fig. 9
confirm Lawler's finding that ions in the CF-NG region
are not in equilibrium with the field [31].

For preliminary analysis, we consider the ionization
rate v; due to the beam component of the EDF to be uni-
form. For the case of only charge-exchange collisions be-
tween ions and cold neutral atoms it is possible to relate
f ' to the potential V as follows [39]:

f'du =
2q

1/2 —(z —g)/k,
v;e

&V(g) —V(z)
1+ d g, (20}

C

where m, is the ion mass, k, is the mean free path for
charge exchange, z is independent coordinate variable,
and dg is the region around g where the ions arriving at z
either (i) underwent their last charge-exchange collision
or (ii) were created before arriving at z before colliding.
Substituting Eq. (20) into (19) we can write in nondimen-
sional form:

d 2 —(s —a)/I

I. ds o gs —g cr

0'
1+—do. —e

l
(21)

L =2.2 X 10 ' n (0) mm, (22)

showing that the length of the region between the field-
reversal point and the CF is proportional to the NG den-
sity. Of more interest is the variation of the ion flux
entering the CF (j ") with the NG density:

j,'"=v;soL = 1.8 X 10 "n '(0)so mA/cm (23)

Substituting 10' cm as a "typical" n'(0} and setting
so =0.25 as an order-of-magnitude estimate yields

j,'"=0.045 mA/cm, over 20% of the total discharge
current (the discharge current j is set at 0.2 mA/cm in
this study). While the picture is admittedly crude, we ex-
pect to see a significant ion flux entering the CF at NG
densities of 10' cm and higher. Since the above
description of the ion description function [Eq. (20)] is
limited by the assumptions regarding ion-atom collisions,
we treat the CF-NG region as follows.

From the extended simulation, we obtain the beam-
electron behavior (ionization rate) in the discharge using
the weak NG field of 10 V/cm. The CF-NG is defined as
the region between the field-reversal point
(z = xo, E =0 V/cm) —and the CF (z =0,E = 10 V/cm).
While it is possible in principle to use the Monte Carlo
simulation to calculate the self-consistent space-charge
density and electric field in the CF-NG region, we find in
practice that the low-field values present numerical
difficulties associated with noise in the density profiles.
Therefore we use a linearly varying electric field between
the field-reversal point and the CF. In contrast to the ex-
tended domain simulation in which ions created only at
z )0 move towards the cathode, the linear field between

Here, AD = [eoT, /qn~(0)]' is the Debye length,
L =(2qT, /m;)' n'(0)/v; is a characteristic length scale
of the problem, g= —V/T, is the nondimensional poten-
tial, and s =z/L, o =g/L, l =A,, /L.

A formal solution of Eq. (21) is outside the scope of
this paper. However, it is possible to gauge the extent of
the CF-NG boundary by considering that the plasma
solution [obtained by setting the left-hand side of Eq.
(21) to zero] is valid over a range given by soL where so is
a dimensionless number (independent of L, as long as I is
small [37]) on the order of 0.5 [35,36]. Assuming an aver-
age ionization rate of 5X10' cm s ' [Fig. 4(d)], we
can write
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xp (z (0 pushes the ions created there as well towards
the cathode. By trial and error, we find the minimum xo
such that the ion density resulting at the sheath edge
(z=0) is greater than the plasma electron density at
z =0. The quantities adjusted at each trial value of xo are
the potential at z =0, which affects the electron density
through Eq. (18), and y, which is adjusted such that the
electron flux at z = —xo (from the extended domain simu-
lation) is equal to the total discharge current [Eq. (7)]. It
is necessary at this stage to ensure that the CF field which
results is close to the one used in the extended domain
simulation to generate the ionization rate.

A complete model of the CF-NG region, along the
lines of solving Eq. (21), would yield a value for the
space-charge density (or, equivalently, dE/dz ) at the CF
edge [37]. By finding the minimum xo that gives a posi-
tive space charge, we enforce a weaker condition that
dE/dz at the CF edge be positive. Further effects of the
simplistic linear-field assumption are possible since the
ion distribution is dependent on the field profile [e.g., Eq.
(20)] and the electron density also depends on the voltage
at the edge of the CF [Eq. (18)]. We test the sensitivity of
our results to the assumed field by repeating the calcula-
tions using a parabolic field in the CF-NG region.

It should be noted that the minimum xo corresponds to
the minimum ion flux (j ") entering the CF. We show
that, counter to the argument presented in [21], this
minimum ion flux is necessary at the CF edge to ensure a
positive space charge at the boundary. Furthermore, we
show that the amount of the ion flux which enters the CF
(as opposed to being created in it) grows with the plasma
electron density in the NG, as suggested by Eq. (23).

VI. EFFECT OF NEGATIVE GLOW ELECTRONS

A sampling of the results we obtain is presented in Fig.
11, for an assumed plasma electron density of 5X10'
cm . We find for this density that the separation be-
tween the CF edge and the field reversal xo is 0.92 mm.

Figure 11 shows the ion and electron densities obtained
by allowing ions created up to z = —0.92 mm to move to-
wards the cathode under the assumed linear field between
z= —0.92 and 0 mm. The electron density shown in-
cludes the plasma electron density, attenuated by the po-
tential at the CF edge. Therefore the numbers are much
larger than the beam electron density shown in Fig. 8.
Also, comparison between the ion density shown here
and in Fig. 8 shows the clear need for a finite ion flux
entering the CF, since the ion density must be higher
than the electron density at the CF edge. Note that qual-
itatively the density profiles agree with those in [22],
whereas those in Fig. 8 do not. Figure 11 also shows the
flux of ions and electrons in the CF. The value of j " at
this plasma density is 0.046 mA/cm, 23%%uo of the
discharge current. Finally, Fig. 11 shows the electric
field obtained self-consistently from the density profiles.
For comparison, the field from Fig. 4 is reproduced. The
change in the field appears negligible and, in fact, the CF
voltage increases only by roughly 10%; therefore the ion-
ization profile from Fig. 4 used to produce the flux and
density profiles in Fig. 11 is not expected to be altered by
the new field.

In Fig. 12, we present the results of our parametric
study of the effect of the plasma electron density. We
show the variation in the length of the CF-NG boundary
region and the corresponding flux of ions entering the
CF. Both quantities increase monotonically with the
plasma electron density, as expected from the crude mod-
el behind Eqs. (22) and (23). The trend shows that the ion
flux entering the CF approaches a limiting value at
higher density. The deviation from the linear behavior
predicted by Eq. (23) at higher values of the plasma elec-
tron density is not surprising, considering that neither the
spatial variation in the ionization rate (Fig. 4) nor the
effect of elastic collisions on the ion distribution were
considered in the formulation of Eq (23). Fitting a line
through the origin and the first three data points of Fig.
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12(b) and comparing the slope of the fit with Eq. (23)
yields a value for so of 0.12, which is not unreasonable.

Figure 12 also shows the values of y which correspond
to the xo values shown in the figure. The change in y
with the NG density is entirely an artifact of our solution
scheme which keeps the sheath thickness d constant.
Therefore, the trend in y represents the tendency of the
CF to shrink (if y were held constant instead of d ) as the
NG density increases.

The data shown in Fig. 12 suffer from the uncertainty
of the spatial discretization (or "binning") of the Monte
Carlo sampling. This uncertainty is indicated in the
figure. The values of xo are good to within +0.04 mm,
and the corresponding uncertainty in the values of j " are
shown with the individual points. Also shown in Fig. 12
are results (indicated by triangles) obtained at two values
of the plasma electron density using a parabolic field
profile in the CF-NG region. As expected, the actual
values of xo and j " are sensitive to the field in the CF-
NG region, but the trends in the data are not. In fact,
the results from the parabolic field (which is more realis-
tic in the sense that dE/dz increases along with the field
towards the CF edge [37]) indicate that the true field
profile may yield even larger values of xo and j,'" than
shown in Fig. 12.

VII. SUMMARY

Through the use of a self-consistent Monte Carlo simu-
lation of ion and electron trajectories, we have studied

the electron distribution function and the factors which
affect it. The EDF near the CF-NG boundary region was
shown to be affected greatly by backscatter from the NG.
In spite of this coupling, it is possible to construct a
separate model of the NG and apply it effectively at the
edge of the CF without 1oss of accuracy. The use of such
a model including trapped electrons in the NG, hereto-
fore ignored, has shown that the region between the CF
edge (defined by a threshold field value) and the field-
reversal point in the NG has an important effect on CF
characteristics.

Specifically, we have shown with the aid of the
plasma-sheath equation that a significant and critical
fraction of the ion flux must enter the CF from the NG.
This fraction grows with the NG density. The exact
amount of the ion flux at the CF edge depends upon the
gas (the collision frequencies, etc.), the conditions
(discharge voltage and current), and upon the interelec-
trode spacing (which affects the length of the NG and its
density). No attempt has been made here to study this
dependence, since we have used idealized cross sections.
However, it is clear from this work that ionization in the
NG does contribute directly to the ion density in the CF.
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