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Two functions built from the spherically averaged atomic density, i.e., f(r)=p(r)+p'(r)/(2Z) and
g(r)=p,(r)+p'(r)/(2Z), are studied in the Hartree-Fock framework for atoms in the range Z =2-54
and in their ground state. These studies and previous ones show that f(r) is a positive function for all
these atoms, and g (7) is also a positive function for all atoms whose least-bounded electron is s type. For
these atoms the upper bound p(0)<Z({r~2?) /27, which improves the accuracy of the bound of
Hoffmann-Ostenhof, Hoffmann-Ostenhof, and Thirring [J. Phys. B 11, L571 (1978)], is found. In addi-
tion we obtain sharp lower bounds to p(0) and inequalities between total and s-state radial expectation

values, (7%) and (r?),, respectively.

PACS number(s): 31.10.+z, 31.90.+s

1. INTRODUCTION

The information about the single-particle density p(r)
of an atom in its ground state is very important for the
understanding of the atomic structure and properties,
which, as the density-functional-theory [1] states, can all
be expressed as functionals of p(r). Also, relations
among density-dependent quantities are useful for the
knowledge of the atomic properties when p is unknown.
Results of this type are frequently found in the recent
literature (see Refs. [2—-8]). In particular, the radial ex-
pectation values {7?) defined by

(r"‘)=fr“p(r)dr (1)

play a special role [2,3,6—10], some of them being related
to fundamental and/or experimentally measurable aver-
aged atomic quantities.

In a previous work [11], it was conjectured that the
function (atomic units are used throughout)

s )
f(n=p(r+ 27 ()
where p(r) is the spherically averaged single-particle den-
sity of a neutral atom of nuclear charge Z in its ground
state, and p’ denotes its first derivative is positive for any
value of r, which can be considered as a spatial generali-
zation of Kato’s cusp condition [12]:

p'(0) _
p(0)+ 27 0. (3)

From this spatial property, interesting inequalities be-
tween p(0) and some radial expectation values (%), and
among {r%) values themselves, were found. In the
present work a more detailed study of f(r) is done.

The following relationship [13] for closed-shell atoms
in a bare Coulomb field is also known:

p'(r) _
ps(r)+ 27 0. 4)

Here, p(r) denotes the contribution from the s-type elec-
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trons to the spherically averaged density

py()= SN, b, ()%, (5)

N, being the number of electrons in the ns state. Equa-
tion (4) suggests the study, in a more realistic model, of
the function

y+ 2) ©)

g(r)=py(r 27

Some applications of the properties of these functions will
produce interesting inequalities involving the atomic den-
sity at the nucleus, p(0), radial expectation values {r®)
and s-state radial expectation values {7®), defined by

(r"‘)s:fr“ps(r)dr . (M

The structure of this paper is the following. In Sec. II
some results about the f(r) function are presented. A
lower bound to p(0) will be found in Sec. III. The func-
tion g(r) will be studied in Sec. IV, and some relation-
ships between p(0), (%), and {r*), values will be found
in Sec. V. Finally, some concluding remarks will be
made.

II. STUDY OF THE FUNCTION f(r)

Here we shall be concerned with the properties of the
function f (r) defined by Eq. (2) for atoms in their ground
state. In a previous work [11] several results concerning
f(r) were shown. The main conclusion was the conjec-
ture f(r) 20 everywhere for real atoms (this is true in the
Hartree-Fock framework). This property allowed us to
obtain several accurate inequalities among p(0) and radi-
al expectation values (r®), by applying a Stieltjes
theorem [14].

We have studied the shape of f(r) by using the
Hartree-Fock data mentioned above [15]. This is illus-
trated in Figs. 1(a) and 1(b) for two representative atoms.
We have found that for all atoms f(r) has only one max-
imum except in the cases Z=4 and 11, where two maxi-
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ma appear. The magnitude of the absolute maximum in

all cases is much smaller than the maximum of p(r), i.e.,

p(0), the ratio between them being of the order of 1072,
From the differential equation (2) we can write that

p(r)=p(0)e 2 +2Ze 2% [ e f(1)dt . (8)
And because of f(r) >0 one can obtain
p(r)=p(0)e 227 | 9)

a result previously checked by Tal and Levy [3].

A more detailed study of f(r) can be made by means of
the contributions from the nl orbitals to this function,
i.e., by studying the functions defined by

Pt (1)
fur)=p,(r+ 2z (10)
where
pulr)= 5= [ Nulgu(0l2de (1

Using the Hartree-Fock data of Clementi and Roetti [15],
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FIG. 1. Plot of the function f(r) defined by Eq. (2) for (a) the
neon atom and (b) the xenon atom, both evaluated from the
Hartree-Fock wave functions of Ref. [15]. A small negative
zone at the origin appears in (a) because of the error of this
model in the verification of the cusp condition.

we have found that the functions f,,(r) for all n,/ have
similar properties for all atoms in our range of study
(Z=2-54). These are the following: (a) For all n, /50,
Su(r) =0 everywhere except small regions far from the
origin, where it takes insignificant values; (b) f,(7)20
everywhere except small regions far from the origin; (c)
for all n>1, f,(r)<0 for small values of r. These
features are illustrated in Fig. 2 for Z =36, where the
special behavior of f; is noticeable.

The contributions near the origin can be explained
from the noninteracting electrons or bare-Coulomb-field
model. In this model we find, from the hydrogenic-type
wave functions [16]:

h(rn=o0, (12)
B VAR 1 2
f,,s(r)=—ﬁe ron 1—; r+0(r?)

mn
ifn>1, (13)
and
2z |77 21
Ern=c, [_r e 22r/n = +0(r) (14)

for I >0, where C,; is a positive constant.
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FIG. 2. Plot of the single-orbital contributions to f(7) for the
krypton atom evaluated from the Hartree-Fock wave functions
of Ref. [15].



T -r-lnnuu_

'lllﬁllllllllllll
N
A,

fu(r) 3
400 — /

200 H

-200

N I B B B

0.1 0.16 0.2 0.25 r 0.3

FIG. 3. Comparison between the bare-Coulomb-field values
(BCF) and the Hartree-Fock values (HF, from Ref. [15]) of the
single-orbital contributions f,,(r) and f,,(r) for the krypton
atom. The smoothing effect of the Coulombic repulsion can be

noticed.
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Therefore, for small values of r, f,ﬂ(r)SO (n>1),
fE(r)>0 (I1>0), and fZ(r)=0 everywhere. Then we
find that the Hartree-Fock values of f,,(r), which will
also be called fH(r), do not present qualitative discrepan-
cies for r—0 with those of fZ(r) except in the case ls,
where f4(r) take values above zero. For all values of r,
and except in the case of l1s, f, ,{{ can be seen as a smooth-
ing of f5, which is illustrated in Fig. 3 for two represen-
tative orbitals (2s,2p) of the krypton atom. All these
effects can be qualitatively explained if we think that the
electronic repulsion (which is taken into account in the
Hartree-Fock calculations) produces a dispersion on
p.(r) along space.

What can we say about the comparison between both
models for the total f(#)? For small-Z atoms, where the
effect of the 1s states is important for f (r), we expect fH
to be greater than f2 near the origin (which is the region
where it is more important) because of the effect of the
electronic repulsion on the 1s state noted above. Howev-
er, for high-Z atoms where the contribution of the 1s or-
bital is less important, the opposite can be expected. This
is so because of the smoothing on f,,(#) produced by all
the states different from 1s, which would imply that

This fact is numerically found to happen

L
[ 1 H
Z=5 (a) ] fmax = ?nax' . - !
() 050 . for Z=7. In Figs. 4(a) and 4(b) the two main behaviors
. BcF 1 are illustrated, for Z =5 and 11. The interesting effect of
i o HF . the electronic interaction that, although f2(r) can take
0.25 T -] important negative values for some atoms, f(r) is al-
....... ] ways positive, can also be seen.
0.00 a III. A LOWER BOUND TO p(0)
. !.ii ] In a previous work [11], the positivity of f(r) allowed
oz [+ ] us to find inequalities among its moments,
i ] o= [ "k (ndr
080, — ols ' ‘ 1| — 115 : -2
r ' L) plO) g =
5 4 27
AU I M I = . (15)
AN ® ] Ly~ 2y | ifkz
tr) "' "\‘_ z=u . 4m 2Z
10— ,.’ "\.‘_ """"" BCF Now we will perform another application of this property
[ N HF ] which will lead to a lower bound to the atomic density at
L Y ] the origin p(0). We start from a lower bound [8] to the
L} K ) maximum value of any positive function defined in
51 A -] [0, 0 ):
I .'V "'\, T 2
[ i max{f(r)} > 1% . (16)
i > 1 2 v
o T ‘ ; """""" I Using Eq. (15) for the moments, we can bound the max-
0 0.25 05 075 N imum of f(r), f .- After some manipulation we find
r 172
FIG. 4. Comparison between the bare-Coulomb-field values (0)>2Z (r72) |1 (r1) (r72)
(BCF) and the Hartree-Fock values (HF, from Ref. [15]) of the PV = 41 2ar r Y/ S max

function f(r), (a) for the boron atom, for which the HF max-
imum is greater than the BCF one, and (b) for the sodium atom,
which is representative for all Z =7, for which the HF max-
imum is smaller than the BCF one, and the smoothing effect

mentioned in the text is noticeable.

=L, . 17

For high-Z atoms (Z > 7) we have seen that fZ__is small-
er than f3 which can be expected theoretically. When
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TABLE 1. Values of the different lower bounds to p(0), i.e., L,, L,, and L; given by Egs. (17), (18), and (41) compared to those of
p(0) by means of their respective ratios R; =L, /p(0), R,=L,/p(0), and R3;=L;/p(0) for several atoms in the range Z =2-54. All

B

these quantities are calculated from the Hartree-Fock wave functions of Clementi and Roetti [15], and the values of f,, have been
calculated numerically from the hydrogenic-type wave functions. The values of L; have been displayed only for those atoms for
which g(r) is numerically found to be positive everywhere (see text for further details).

4 p(0) S max fax L, R, L, R, L, R,
10 620.146 3.503 10.77 612.295 0.987 576.022 0.929

11 833.833 4.696 14.42 825.361 0.990 775.218 0.930 799.76 0.959
12 1093.73 6.834 18.87 1079.30 0.987 1016.92 0.930 1044.58 0.955
18 3840.22 35.53 81.01 373591 0.973 3500.48 0911

19 4538.46 43.80 95.35 4408.21 0.971 4139.50 0.912 4304.38 0.948
22 7133.88 75.55 149.1 6889.19 0.966 6496.52 0.911 6755.01 0.947
25 10559.5 119.1 221.0 10144.8 0.961 9584.45 0.908 10015.70 0.948
28 14942.5 176.5 313.4 14290.3 0.956 13510.8 0.904 14 193.99 0.950
30 18448.6 223.6 388.0 17588.1 0.953 16 637.9 0.902 17 545.50 0.951
36 32228.2 422.0 728.5 30520.7 0.947 28718.0 0.891

37 35023.8 468.6 791.3 33131.1 0.946 312227 0.891 33250.10 0.949
40 44 466.8 607.8 1004 41968.2 0.944 39596.9 0.890 42160.96 0.948
43 55451.6 777.8 1253 52183.3 0.941 49290.1 0.889 52 686.94 0.950
45 63716.0 907.4 1441 59833.2 0.939 56 560.4 0.888 60565.98 0.951
48 77 609.1 1129 1757 72 668.5 0.936 68761.8 0.886 73 696.69 0.950
54 111 164 1682 2601 103 567 0.932 97 814.5 0.880

Z increases, the difference is so high that we expect the  everywhere.

exact f ... to be smaller than f3_ which leads us to
write the weaker bound

1/2
<r¥2> 1 -1 <r‘2> B
0)22Z{———— | — -
pl0) 47 27 (rmh 2Z max
=L, (18)
valid for Z = 7.

Now, this bound only involves the values of (r2) ,
(r~1),and £, and the latter can be calculated exactly
from the Hydrogenic-type wave functions. These bounds
are found to be very sharp, when tested by using
Hartree-Fock values of { ~2), (r '), and p(0), as illus-
trated in Table I by means of the ratios R; =L, /p(0) and
R,=L,/p(0). We can notice how, although f .. can be
much smaller than f2 , the bound does not lose much
accuracy. The improvement of the bound given by (18)
with respect to previous lower bounds [8,17] is important.

The bounds given by Egs. (17) and (18) have a similar
structure to those found by King [18]. The first term is
the upper bound of Hoffmann-Ostenhof, Hoffmann-
Ostenhof, and Thirring [2] and the second a slight nega-
tive quantity.

IV. STUDY OF THE FUNCTION g (r)

The result given by Eq. (4) for closed-shell atoms in a
bare Coulomb field suggests the interest of the study for
more realistic atoms of the function defined by

_ p'(r)
gry=p,(r)+ 27 (19)
The first conclusion we can extract is that
g(r)=f(r) (20)

Some properties of this function can be obtained from
the properties of f(r). For one-electron atoms, we have

gr)=f(r)=0. (21)

From Kato’s cusp condition, and p(0)=p,(0), we also
know that

g(0)=,(0)=0. (22)
In addition, for small values of r, one has
g(r=f(rn+o(r? . (23)

We have studied the positivity of g (r) with the Hartree-
Fock data of Ref. [15] for atoms in the range Z =2-54
finding that g (7) is positive everywhere for all of them ex-
cept those with Z=6-10, 13-18, 31-36, 46, and 49-54,
i.e., those whose least-bounded electron is not s type, with
the exception of boron (Z =5). For these atoms g (r) is
positive except for large values of r, where it takes nega-
tive values, very small in magnitude, up to infinity.

This asymptotic negative behavior can be explained by
means of the theoretical results of Handy, Marron, and
Silverstone [19] and Handler, Smith, and Silverstone [20]
which predicts, for the atoms whose least-bounded elec-
tron is of s type,

g(r)~ 1—‘/—221 P2 —2V2r>( (24)
and
g(r)~—‘—/§1—r2ﬁe*2m'so . (25)

when the least-bounded electron has / > 0.
Nevertheless, the negative part of g (#) for these atoms
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is found to have very little importance compared to the
whole function. For a given number of np subshells in
the atom it is found that the negative part of g (r) is more
important when the number of electrons in the last p sub-
shell is greater. In addition its importance decreases
when the number of np subshells increases. Then the
most unfortunate case is Z =10, for which the ratio be-
tween the minimum of the negative part and the max-
imum of the positive part is ~10™*. For the atom whose
negative part is the least important (Z =49) this ratio has
the value of 107 !2. Also, if we estimate numerically the
contribution of the negative part to the integral

I= fo g(ridr (26)
which will be called

I_=— fr:g(r)dr 27

[here r, denotes the point from which g(r)<0], we find
that I_ /I ~5X10"*for Z=10 and 3X 107" for Z=49.

The shape of g (r) is illustrated in Fig. 5 for a represen-
tative atom (Z =54), for which g(r) is negative from
r=6.5, which cannot be seen in the plot. The main re-
sult of this study is that g(r) =0 in the zone where it is
most significant in the range Z=2-54 and everywhere
for the atoms whose least bounded electron is of s type.

For closed-shell atoms in a bare Coulomb field it was
shown by March [13] that g(#)=0. Then, for a real
closed-shell atom, this function must carry the informa-
tion about the importance of the Coulombic repulsion
among the electrons. We have studied this function for
the isoelectronic series of two and ten electrons. One can
expect that when Z increases the effect of the Coulombi-
an repulsion must decrease when compared to the nu-
clear attraction. This fact can be observed in Fig. 6
where we have plotted, for the sequence of ten electrons,
the values of the function g(r)/p(0), which become
smaller when Z increases.
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FIG. 5. Plot of the function g(r) defined by Eq. (19) for the
xenon atom evaluated from the Hartree-Fock wave functions of
Ref. [15].
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FIG. 6. Plot of the function g(r)/p(0) for some ions in the
isoelectronic sequence of ten electrons, evaluated from the
Hartree-Fock wave functions of Ref. [15].

V. RELATIONSHIPS INVOLVING p(0)
AND RADIAL EXPECTATION VALUES

The observed fact that g (r) is positive everywhere for
some atoms and nearly positive for the rest of them
makes interesting the application of the following
Stieltjes theorem: if g(r) is a positive function, the fol-
lowing inequalities hold:

Vi Vi+1 Vk+m

o Vi+1 Vi+2 Vik+m
A= . . . . >0 (28)

Vi+m Vik+m+1 Vi +2m

for any kK =20 and any m =0, v, being the kth-order mo-
ment of g (7), i.e.,

Vi = fomrkg(r)dr

(r=2) (0)
47 27 if k=0
= . X (29)
k—2y _ k=3y | e >
yy (rk=2), 2Z(r Y| ifk>1.

For m =0, the inequalities obtained by Eq. (28) only
mean the positivity of the moments v,

Vi >0 (30)

for any k = 0.

Inequalities (28) and (30) are verified for those atoms
whose least-bounded electron is of s type. For the rest of
the atoms g () is not positive for all , but we can expect
that inequalities (30) also hold for small values of k be-
cause the contribution of the negative part of g (r) to the
integrals (29) is insignificant. This is not the case for
large values of k. Then for all atoms we can expect that
the following result holds, obtained by (30) with k£ =0:
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(O)<Z(r_2>s _p 3

P = Py =by, (31)
which improves the accuracy of the upper bound of
Hoffmann-Ostenhof, Hoffmann-Ostenhof, and Thirring
[2] to p(0), also obtained by means of the positivity of

f(n[11]:

<Z(r™?)

p(0) -

=Byo - (32)
The goodness of these upper bounds to p(0) is illustrated
in Table II for 16 atoms. The improvement mentioned
above can be noticed. In addition, the tightness of the
bound given by Eq. (31) increases with Z.

Also we can expect inequality (30) to hold for k£ =1,
because the effect of the negative part of g (r) is found to
be less than 0.5%, obtaining

-2
<r”‘)sz%531 . (33)

This inequality, which improves the one obtained by
means of the positivity of f(r) [11],

(r~1)2_<"_2__22_> (34)

is a particular case of the inequalities (30) valid for atoms
whose least-bounded electron is of s type, i.e.,
at2

57 (re1) (35)

(re) =
for @ = — 1. One interesting particular case is

(r~')<ZN,=B,, (36)

where N, = (%) is the number of s electrons. It also im-
proves the accuracy of the analogue result

(r71)y<z? (37)

found by using f(r)=0 [11].

The accuracy of the bounds B, and B, is displayed in
Table III for neutral atoms. The tightness of the relation-
ship (33) can be noticed.

Relationships including a greater number of expecta-
tion values can be obtained from Eq. (28). In particular,
setting m =1 and k =0 in this equation, we find

V4
< =
p(0) = e

(r 2)—

((r ) —(r0) 227 | _
N,—{(r ')/z e
(38)

For m =1 and k =1, the following inequality is obtained:

(N,—(r~1)/z)?

(r),—3

(r=2y<2z |[{r 1), =4,. (39

These relations, which are equalities for closed-shell
atoms in a bare Coulomb field and rigorous upper bounds
for Clementi and Roetti’s Hartree-Fock values for all
atoms whose least-bounded electron is of s type, are
found to be very approximate for all atoms in the range
Z =2-54, as we can see in Table IV, where we compare
the values of 4, and 4, to those of p(0) and {r ~2), re-
spectively. We also give the ratios p(0)/A4, and
(r=2)/4,.

Another application of the positivity of g(r) for the
atoms mentioned above can be performed in the same
way as done for f(r) in Sec. III. This leads to a lower
bound B; for p(0):

TABLE II. Test of the upper bound B, given by Eq. (31) to p(0) in terms of {7 ~?),, when the values
of this quantity and those of p(0) are calculated from the Hartree-Fock wave functions of Ref [15]. A
comparison with the Hartree-Fock values of the upper bound of Hoffmann-Ostenhof, Hoffmann-
Ostenhof, and Thirring [2], Byo [Eq. (32)], is also included.

Z p(0) B, Byo p(0)/By, p(0)/Byo
2 3.60 3.82 3.82 0.942 0.942
6 127.56 130.82 132.52 0.975 0.962

10 620.15 631.13 660.33 0.983 0.939

12 1093.73 1111.55 1174.22 0.984 0.931

14 1765.71 1791.67 1907.82 0.986 0.926

18 3840.22 3887.55 4196.94 0.988 0.915

22 7133.88 7210.88 7859.21 0.989 0.908

26 11911.58 12023.07 13209.51 0.991 0.902

30 18 448.59 18 605.66 20588.32 0.992 0.896

34 27060.83 27275.62 30372.14 0.992 0.891

38 38008.70 38312.68 42901.04 0.992 0.886

42 51612.88 51993.22 58503.72 0.993 0.882

46 68 128.53 68 594.17 77525.70 0.993 0.879

48 77 609.10 78 112.54 88455.89 0.994 0.877

50 87898.96 88460.34 100 366.72 0.994 0.876

54 111163.94 111 834.82 127 351.77 0.994 0.873




-

For Hartree-Fock values of p(0) and B; we obtain for all
atoms between Z=2—54 that B; /p(0)>0.975, which

TABLE III. Hartree-Fock values (calculated from Ref. [15]) of the lower bound B, [Eq. (33)] com-
pared to those of {7 ~'), for some atoms in the range Z =2-54 and values of the upper bound B, [Eq.
(36)] compared to the Hartree-Fock values of {r ~!) for some atoms for which g(r) is found to be posi-
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tive everywhere (see text).

z (r7'), B, B, /(r ), (r71) B, (r~')/B,
2 3.375 2.998 0.888 3.38 4 0.84
6 13.122 11.564 0.881

10 22.501 20.745 0.922

12 28.210 25.618 0.908 39.92 72 0.55

14 33.549 30.580 0.912

18 44.140 40.695 0.922

22 55.535 51.013 0.919 91.42 176 0.52

26 66.242 61.389 0.927 115.66 208 0.56

30 76.922 71.867 0.934 142.06 240 0.59

34 88.130 82.541 0.937

38 99.922 93.336 0.934 196.57 380 0.52

42 110.925 104.192 0.939 225.52 378 0.60

46 121.775 115.101 0.945 255.90 368 0.69

50 134.005 126.125 0.941

54 145.593 137.204 0.942

—2 (r=2)

r s > s

p(0)22Z yym pl0)22Z 4
12 —

| Ly e ] ] _l_l_ (r1y, =S 2
21r s 27 max 2T 27
=L,
=B, . (40)

shows the tightness of this relationship.

Using the fact that g . <f max> a0d f oy < f 2.4 for

Z =7, we can write

111

l/2l

(41)

for atoms whose least-bounded electron is of s type and
Z 27. This bound is found to be very tight when tested

with Hartree-Fock values of p(0), {r %), (r~?), and
(r~1), calculated from Ref. [15], improving the accura-

cy of the bound L, [Eq. (18)] and even of L, [Eq. (17)] for

R;

high-Z atoms, as illustrated in Table I by means of
=L;/p(0).

TABLE IV. Comparison between the Hartree-Fock values of p(0) and {7 ') to those of 4, [Eq. (38)] and A4, [Eq. (39)], respec-

tively.
z p(0) Ao (r2) A4, p(0)/ 4, (r=2)/4,
2 3.597 3.673 11.992 12.395 0.979 0.968
6 127.555 129.321 138.773 144.425 0.986 0.961
10 620.146 625.603 414.900 423.677 0.991 0.979
14 1765.707 1783.759 856.227 898.880 0.990 0.953
18 3840.215 3871.556 1465.009 1519.531 0.992 0.964
22 7133.884 7192.254 2244.585 2370.278 0.992 0.947
26 11911.575 11 995.633 3192222 3354.866 0.993 0.952
30 18 448.586 18 568.276 4312.007 4512.831 0.994 0.956
34 27060.826 27219.844 5612.758 5832.216 0.994 0.962
38 38008.696 38258.334 7093.557 7446.281 0.994 0.953
42 51612.876 51909.746 8752.136 9129.739 0.994 0.959
46 68 128.534 68460.367 10589.311 10 862.655 0.995 0.975
50 87 898.961 88 344.612 12 612.454 13 115.467 0.995 0.962
54 111 163.943 111687.797 14 818.052 15350.114 0.995 0.965
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Finally, let us think again about an isoelectronic se-
quence of closed-shell electrons. As we said above in Sec.
IV, we expect g(r)/p(0) to be less important when in-
creasing Z. This suggests that the ratio v,/p(0) will also
decrease and the bound given by Eq. (31) will be more ac-
curate when increasing Z. This is found when we test Eq.
(31) by using Hartree-Fock values of p(0) and {r %), for
the sequence of ten electrons, for which the ratio v,/p(0)
increases monotonically from 0.982 for Z=10 to 0.994
for Z =54.

VI. CONCLUSIONS

A numerical study of the functions
f(N=p(r)+p'(r)/(2Z) and g (r) =p (r)+p'(r)/(2Z), by

using Hartree-Fock data, shows that the former is posi-
tive for all atoms in the range Z =1-54 and the latter is
positive for the atoms whose least-bounded electron is of
s type. The application of the positivity of f(r) or g(r)
allows us to find tight lower and upper bounds to p(0)
[Egs. (18), (31), (38), and (41)] and relationships between
radial expectation values of p(r) and p (r) [Egs. (33), (36),
and (39)].
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