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Spatial generalizations of Kato's cusp condition for atoms: Applications
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Two functions built from the spherically averaged atomic density, i.e., f(r)=p(r)+p'(r)/(2Z) and

g (r) =p, (r)+p'(r)/{2Z), are studied in the Hartree-Fock framework for atoms in the range Z =2—54
and in their ground state. These studies and previous ones show that f (r) is a positive function for all

these atoms, and g (r) is also a positive function for all atoms whose least-bounded electron is s type. For
these atoms the upper bound p(0) (Z ( r ), /2m, which improves the accuracy of the bound of
Hoffmann-Ostenhof, Hoffmann-Ostenhof, and Thirring [J. Phys. B 11, L571 (1978}],is found. In addi-
tion we obtain sharp lower bounds to p(0) and inequalities between total and s-state radial expectation
values, (r ) and (r )„respectively.

PACS number(s): 31.10.+z, 31.90.+s

I. INTRODUCTION

f(r)=p(r)+ p'(r)
2Z

(2)

where p(r) is the spherically averaged single-particle den-
sity of a neutral atom of nuclear charge Z in its ground
state, and p' denotes its 6rst derivative is positive for any
value of r, which can be considered as a spatial generali-
zation of Kato's cusp condition [12]:

p(0)+ =0 .
p'(0)

2Z
(3)

From this spatial property, interesting inequalities be-
tween p(0) and some radial expectation values (r ), and
among ( r ) values themselves, were found. In the
present work a more detailed study off(r) is done.

The following relationship [13] for closed-shell atoms
in a bare Coulomb field is also known:

p, (r)+ =0 .
p'(r)
2Z

(4)

Here, p, (r) denotes the contribution from the s-type elec-

The information about the single-particle density p(r)
of an atom in its ground state is very important for the
understanding of the atomic structure and properties,
which, as the density-functional-theory [1] states, can all
be expressed as functionals of p(r). Also, relations
among density-dependent quantities are useful for the
knowledge of the atomic properties when p is unknown.
Results of this type are frequently found in the recent
literature (see Refs. [2—8]). In particular, the radial ex-
pectation values (r') defined by

(r )= f'r p(r)dr

play a special role [2,3,6—10], some of them being related
to fundamental and/or experimentally measurable aver-
aged atomic quantities.

In a previous work [11], it was conjectured that the
function (atomic units are used throughout)

trons to the spherically averaged density

(5)

g(r) =p, (r)+ p'(r)
(6)

Some applications of the properties of these functions will

produce interesting inequalities involving the atomic den-
sity at the nucleus, p(0), radial expectation values (r )
and s-state radial expectation values ( r ')„defined by

( r ), =f r p, (r )dr .

The structure of this paper is the following. In Sec. II
some results about the f(r) function are presented. A
lower bound to p(0) will be found in Sec. III. The func-
tion g(r) will be studied in Sec. IV, and some relation-
ships between p(0), (r ), and (r'), values will be found
in Sec. V. Finally, some concluding remarks will be
made.

II. STUDY OF THE FUNCTION f ( r)

Here we shall be concerned with the properties of the
function f (r) defined by Eq. (2) for atoms in their ground
state. In a previous work [11]several results concerning
f (r) were shown. The main conclusion was the conjec-
ture f (r })0 everywhere for real atoms (this is true in the
Hartree-Fock framework). This property allowed us to
obtain several accurate inequalities among p(0) and radi-
al expectation values ( r ), by applying a Stieltjes
theorem [14].

We have studied the shape of f(r) by using the
Hartree-Fock data mentioned above [15]. This is illus-
trated in Figs. 1(a}and 1(b) for two representative atoms.
We have found that for all a,toms f(r) has only one max-
imum except in the cases Z =4 and 11, where two maxi-

X„, being the number of electrons in the ns state. Equa-
tion (4) suggests the study, in a more realistic model, of
the function
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From the differential equation (2) we can write t at

2zr+ 2Z Zzr e zzsf ( r)drp(r) =p(0)e e

And because off(r) & 0 one can obtam

p(r) & p(0)e

reviously checked by Tal and Levy [3].

the contributions from thehe nl orbitas to is
i e., by studying the functions defined by~ ~ p

we have found that the functions I(r} for all n, l have
fo all atoms in our range of studysimilar properties for a .

( ) F ll n I@054). These are the following:
t small regions far from t e(r) & (} everywhere excep™
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f from the origin; (c)everywhere except sma gall re ions ar
f T. These(r) &0 for small values ofor all n &

& &&
' . 2 for Z=36, where thefeatures are illustrated in Fig. 2 or

specia beha ior o is noticeable.

from the noninterac ing
the h drogenic-typemodel. In this model we find, from t e y

wave functions [16]:

p'„I(r)
f„,(r)=p„,(r)+

where

(10)
f„(r)=0,

—2Zr/n
4f (r)=-

37Tn
1 ——r+O(r )

(12)

p (r)= fN„, i ts„s, (r)i dQ .PnI T
4

-F k data of Clementi and Roettt [15],Using the Hartree- oc a a
and

if n &1, (13)

a ~ ss a s ~

I
~ ~ s

2/ —1

2zr ln +—O( &)e (14)

~ ~

for l )0, where C„I is a positive constant.
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FIG. 3. Comparison between the bare-Coulomb-field values
(BCF) and the Hartree-Fock values (HF, from Ref. [15]) of the
single-orbital contributions f2, (r) and f,~(r) for the krypton
atom. The smoothing effect of the Coulombic repulsion can be
noticed.

Therefore, for small values of r, f„,(r)~0 (n &1),
f 1(r))0 (I &0), and f t, (r)=0 everywhere .Then we

find that the Hartree-Fock values of f„&(r), which will

also be called f„~(r), do not present qualitative discrepan-
cies for r ~0 with those of f„I(r) except in the case is,
where f t, (r) take values above zero. For all values of r,
and except in the case of ls, f„I can be seen as a smooth-

ing of f„i, which is illustrated in Fig. 3 for two represen-
tative orbitals (2s, 2p) of the krypton atom. All these
effects can be qualitatively explained if we think that the
electronic repulsion (which is taken into account in the
Hartree-Fock calculations) produces a dispersion on
p„t(r) along space.

What can we say about the comparison between both
models for the total f (r)? For small-Z atoms, where the
effect of the ls states is important for f (r), we expect f
to be greater than f near the origin (which is the region
where it is more important) because of the effect of the
electronic repulsion on the 1s state noted above. Howev-
er, for high-Z atoms where the contribution of the 1s or-
bital is less important, the opposite can be expected. This
is so because of the smoothing on f„t(r) produced by all
the states different from 1s, which would imply that

fm,„~f,„. This fact is numerically found to happen
for Z )7. In Figs. 4(a) and 4(b) the two main behaviors
are illustrated, for Z =5 and 11. The interesting effect of
the electronic interaction that, although f (r) can take
important negative values for sotne atoms, f (r) is al-
ways positive, can also be seen.
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~ gg III. A LOWER BOUND TO p(0)

In a previous work [11],the positivity of f (r) allowed
us to find inequalities among its moments,

Vk = J r "f(r)dr
0

(r 2) p(0)
4m 2Z
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(rk —2) (rk —3) if k )
4a 2Z

(15)

max r 1 o

2 vi

Now we will perform another application of this property
which will lead to a 1ower bound to the atomic density at
the origin p(0). We start from a lower bound [8] to the
maximum value of any positive function defined in
[0, 0o):

0
a ~ ~ s I ~ a a ~ I a a a a I ~ ~ ~ ~ I ~ a ~

0.85 0.5 0.75 1

FIG. 4. Comparison between the bare-Coulomb-field values
(BCF) and the Hartree-Fock values (HF, from Ref. [15])of the
function f (r), (a) for the boron atom, for which the HF max-
imum is greater than the BCF one, and (b) for the sodium atom,
which is representative for all Z~7, for which the HF max-
imum is smaller than the BCF one, and the smoothing effect
mentioned in the text is noticeable.

Using Eq. (15) for the moments, we can bound the max-
imum off(r),f,„. After some manipulation we find

1/2 '1, (r 2)
2Z fmaxZ ( )

4m:—Li. (17)

For high-Z atoms (Z )7) we have seen that fH,„is small-
er than f,„,which can be expected theoretically. When
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TABLE I. Values of the different lower bounds to p(0), i.e., L „L2,and L3 given by Eqs. (17), (18), and (41) compared to those of
p(0) by means of their respective ratios R

&
=L

& /p(0), R2 =L2/p(0), and R3 =L3/p(0) for several atoms in the range Z =2—54. All
these quantities are calculated from the Hartree-Fock wave functions of Clementi and Roetti [15],and the values off,„have been
calculated numerically from the hydrogenic-type wave functions. The values of L3 have been displayed only for those atoms for
which g(r) is numerically found to be positive everywhere (see text for further details).

Z

10
11
12
18
19
22
25
28
30
36
37
40
43
45
48
54

p(0)

620.146
833.833

1 093.73
3 840.22
4 538.46
7 133.88

10 559.5
14 942.5
18 448.6
32 228.2
35 023.8
44 466.8
55 451.6
63 716.0
77 609.1

111 164

fmax

3.503
4.696
6.834

35.53
43.80
75.55

119.1
176.5
223.6
422.0
468.6
607.8
777.8
907.4

1129
1682

8f max

10.77
14.42
18.87
81.01
95.35

149.1
221.0
313.4
388.0
728.5
791.3

1004
1253
1441
1757
2601

Ll

612.295
825.361

1 079.30
3 735.91
4 408.21
6 889.19

10 144.8
14 290.3
17 588.1

30 520.7
33 131.1
41 968.2
52 183.3
59 833.2
72 668.5

103 567

Rl

0.987
0.990
0.987
0.973
0.971
0.966
0.961
0.956
0.953
0.947
0.946
0.944
0.941
0.939
0.936
0.932

L2

576.022
775.218

1 016.92
3 500.48
4 139.50
6 496.52
9 584.45

13 510.8
16 637.9
28 718.0
31 222.7
39 596.9
49 290.1

56 560.4
68 761.8
97 814.5

Rq

0.929
0.930
0.930
0.911
0.912
0.911
0.908
0.904
0.902
0.891
0.891
0.890
0.889
0.888
0.886
0.880

L3

799.76
1 044.58

4 304.38
6 755.01

10015.70
14 193.99
17 545.50

33 250.10
42 160.96
52 686.94
60 565.98
73 696.69

R3

0.959
0.955

0.948
0.947
0.948
0.950
0.951

0.949
0.948
0.950
0.951
0.950

Z increases, the difference is so high that we expect the
exact f,„ to be smaller than f,„, which leads us to
write the weaker bound

everywhere.
Some properties of this function can be obtained from

the properties off (r). For one-electron atoms, we have

(r ')
p(0) ~2Z.

4m:—L2

(.-')
2Z f max

1/2

(18}

g(r) =f(r) =0 . (21)

From Kato's cusp condition, and p(0)=p, (0), we also
know that

valid for Z ~7.
Now, this bound only involves the values of (r ),

(r '), and f,„, and the latter can be calculated exactly
from the Hydrogenic-type wave functions. These bounds
are found to be very sharp, when tested by using
Hartree-Fock values of ( r ), ( r ' ), and p(0), as illus-
trated in Table I by means of the ratios R, =L, Ip(0) and

R2 =Lzlp(0). We can notice how, although f,„can be
much smaller than f,„, the bound does not lose much
accuracy. The improvement of the bound given by (18)
with respect to previous lower bounds [8,17] is important.

The bounds given by Eqs. (17) and (18) have a similar
structure to those found by King [18]. The first term is
the upper bound of Hoffmann-Ostenhof, Hoffmann-
Ostenhof, and Thirring [2] and the second a slight nega-
tive quantity.

IV. STUDY OF THE FUNCTION g(r)

g(0) =f(0)=0 .

In addition, for small values of r, one has

g(r)=f(r)+O(r ) .

(22)

(23)

We have studied the positivity of g (r) with the Hartree-
Fock data of Ref. [15] for atoms in the range Z =2—54
finding that g (r) is positive everywhere for all of them ex-

cept those with Z =6—10, 13—18, 31—36, 46, and 49—54,
i.e., those whose least-bounded electron is not s type, with
the exception of boron (Z=5). For these atoms g(r) is
positive except for large values of r, where it takes nega-
tive values, very small in magnitude, up to infinity.

This asymptotic negative behavior can be explained by
means of the theoretical results of Handy, Marron, and
Silverstone [19] and Handler, Smith, and Silverstone [20]
which predicts, for the atoms whose least-bounded elec-
tron is of s type,

The result given by Eq. (4) for closed-shell atoms in a
bare Coulomb field suggests the interest of the study for
more realistic atoms of the function defined by

and

g(r)- 1— z r e2P —2+2Ir & ~ (24}

g(r)=p, (r)+ p'(r }
2Z

The first conclusion we can extract is that

(19) 2P —2v 2Ir (0Z'' (25)

g(r) ~f (r)
when the least-bounded electron has I & 0.

Nevertheless, the negative part of g (r) for these atoms
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z&r
p(0) & =80,

2
(31) (

—1) &z2 (37)

Z(r ') :—BHo .2' (32)

which improves the accuracy of the upper bound of
Hoffmann-Ostenhof, Hoffmann-Ostenhof, and Thirring
[2] to p(0), also obtained by means of the positivity of
f(r) [»]:

found by using f(r) )0 [11].
The accuracy of the bounds B, and B2 is displayed in

Table III for neutral atoms. The tightness of the relation-
ship (33) can be noticed.

Relationships including a greater number of expecta-
tion values can be obtained from Eq. (28). In particular,
setting m = 1 and k =0 in this equation, we find

The goodness of these upper bounds to p(0) is illustrated
in Table II for 16 atoms. The improvement mentioned
above can be noticed. In addition, the tightness of the
bound given by Eq. (31) increases with Z.

Also we can expect inequality (30) to hold for k =1,
because the effect of the negative part of g (r) is found to
be less than 0.5%, obtaining

z, ((.-'), —(.-'& i2z)'
p(0) & (r ),—

N, —(. ')rz =AD .

(38)

—2

2Z
(33)

For m = 1 and k = 1, the following inequality is obtained:

This inequality, which improves the one obtained by
means of the positivity off (r) [11],

(N, —(.-' & rz)'
r 2Z (r

2

(39)

(,)) (r ')
2Z

(34)

is a particular case of the inequalities (30) valid for atoms
whose least-bounded electron is of s type, i.e.,

+' &«--')
s 2Z

for a ~ —1. One interesting particular case is

(35)

(r-') &ZN, —=B, , (36)

where N, = ( r ), is the number of s electrons. It also im-

proves the accuracy of the analogue result

These relations, which are equalities for closed-shell
atoms in a bare Coulomb field and rigorous upper bounds
for Clementi and Roetti's Hartree-Fock values for all
atoms whose least-bounded electron is of s type, are
found to be very approximate for all atoms in the range
Z =2—54, as we can see in Table IV, where we compare
the values of Ao and 2, to those of p(0) and (r ), re-
spectively. We also give the ratios p(0)/Ao and
&.-'&r~, .

Another application of the positivity of g (r) for the
atoms mentioned above can be performed in the same
way as done for f (r) in Sec. III. This leads to a lower
bound BL for p(0):

TABLE II. Test of the upper bound Bo given by Eq. (31) to p(0) in terms of (r ')„when the values

of this quantity and those of p(0) are calculated from the Hartree-Fock wave functions of Ref [15]. A

comparison with the Hartree-Fock values of the upper bound of Hoffmann-Ostenhof, Hoffmann-

Ostenhof, and Thirring [2] BHp [Eq. (32)], is also included.

Z

2
6

10
12
14
18
22
26
30
34
38
42
46
48
50
54

p(o)

3.60
127.56
620.15

1 093.73
1 765.71
3 840.22
7 133.88

11 911.58
18 448.59
27 060.83
38 008.70
51 612.88
68 128.53
77 609.10
87 898.96

111 163.94

Bo

3.82
130.82
631.13

1 111.55
1 791.67
3 887.55
7 210.88

12 023.07
18 605.66
27 275.62
38 312.68
51 993.22
68 594.17
78 112.54
88 460.34

111834.82

BHo

3.82
132.52
660.33

1 174.22
1 907.82
4 196.94
7 859.21

13 209.51
20 588.32
30 372.14
42 901.04
58 503.72
77 525.70
88 455.89

100 366.72
127 351.77

p(0)/Bo

0.942
0.975
0.983

0.984
0.986
0.988
0.989
0.991
0.992
0.992
0.992
0.993
0.993
0.994
0.994
0.994

p(0) /BHo

0.942
0.962
0.939

0.931
0.926
0.915
0.908
0.902
0.896
0.891
0.886
0.882
0.879
0.877
0.876
0.873



46 SPATIAL GENERALIZATIONS OF KATO'S CUSP CONDITION. . .

TABLE III. Hartree-Fock values (calculated from Ref. [15])of the lower bound B, [Eq. (33)] com-

pared to those of &r '&, for some atoms in the range Z=2-54 and values of the upper bound B2 [Eq.
(36)] compared to the Hartree-Fock values of & r ' ) for some atoms for which g(r) is found to be posi-

tive everywhere (see text).

2
6

10
12
14
18
22
26
30
34
38
42
46
50
54

&r '&,

3.375
13.122
22.501
28.210
33.549
44.140
55.535
66.242
76.922
88.130
99.922

110.925
121.775
134.005
145.593

2.998
11.564
20.745
25.618
30.580
40.695
51.013
61.389
71.867
82.541
93.336

104.192
115.101
126.125
137.204

B, /(r '),
0.888
0.881
0.922
0.908
0.912
0.922
0.919
0.927
0.934
0.937
0.934
0.939
0.945
0.941
0.942

3.38

39.92

91.42
115.66
142.06

196.57
225.52
255.90

B2

72

176
208
240

380
378
368

(r ') /B,

0.84

0.55

0.52
0.56
0.59

0.52
0.60
0.69

=—Bl .

&r &,
— g,„2'

1/2 '

=—L3

r

1
& )& &r '&

2Z fma.

I/2 '

(41)

For Hartree-Fock values of p(0) and BL we obtain for all
atoms between Z =2—54 that Bz /p(0) )0.975, which
shows the tightness of this relationship.

Using the fact that g,„~f,„, and f,„&f,„ for
Z ~ 7, we can write

for atoms whose least-bounded electron is of s type and
Z &7. This bound is found to be very tight when tested
with Hartree-Fock values of p(0), & r &„&r &, and
&r '&, calculated from Ref. [15], improving the accura-
cy of the bound L2 [Eq. (18)] and even of L t [Eq. (17)] for
high-Z atoms, as illustrated in Table I by means of
R3 =L3/p(0).

TABLE IV. Comparison between the Hartree-Fock values of p(0) and (r ') to those of Ao [Eq. (38)] and A, [Eq. (39)], respec-
tively.

2
6

10
14
18
22
26
30
34
38
42
46
50
54

p(0)

3.597
127.555
620.146

1 765.707
3 840.215
7 133.884

11 911.575
18 448.586
27 060.826
38 008.696
51 612.876
68 128.534
87 898.961

111 163.943

3.673
129.321
625.603

1 783.759
3 871.556
7 192.254

11 995.633
18 568.276
27 219.844
38 258.334
51 909.746
68 460.367
88 344.612

111687.797

11.992
138.773
414.900
856.227

1 465.009
2 244.585
3 192.222
4 312.007
5 612.758
7 093.557
8 752.136

10589.311
12 612.454
14 818.052

12.395
144.425
423.677
898.880

I 519.531
2 370.278
3 354.866
4 512.831
5 832.216
7 446.281
9 129.739

10 862.655
13 115.467
15 350.114

p(0)/Ap

0.979
0.986
0.991
0.990
0.992
0.992
0.993
0.994
0.994
0.994
0.994
0.995
0.995
0.995

0.968
0.961
0.979
0.953
0.964
0.947
0.952
0.956
0.962
0.953
0.959
0.975
0.962
0.965
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Finally, let us think again about an isoelectronic se-
quence of closed-shell electrons. As we said above in Sec.
IV, we expect g(r)/p(0) to be less important when in-
creasing Z. This suggests that the ratio vo/p(0) will also
decrease and the bound given by Eq. (31) will be more ac-
curate when increasing Z. This is found when we test Eq.
(31) by using Hartree-Fock values of p(0) and (r ), for
the sequence of ten electrons, for which the ratio vo/p(0)
increases monotonically from 0.982 for Z=10 to 0.994
for Z =54.

VI. CONCLUSIONS

A numerical study of the functions

f (r)=p(r)+p'(r)/(2Z) and g(r) =p, (r)+p'(r)/(2Z), by

using Hartree-Fock data, shows that the former is posi-
tive for all atoms in the range Z =1—54 and the latter is
positive for the atoms whose least-bounded electron is of
s type. The application of the positivity of f (r) or g(r)
allows us to find tight lower and upper bounds to p(0)
[Eqs. (18), (31), (38), and (41)] and relationships between
radial expectation values of p(r) and p, (r) [Eqs. (33), (36),
and (39)].
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