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Surface-tension-anisotropy measurements of succinonitrile and pivalic acid:
Comparison with microscopic solvability theory
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New determinations of the surface-tension-anisotropy parameter e4 of succinonitrile (SCN), pi-
valic acid (PVA), and a PVA —1%-ethanol mixture are reported. Effects of temperature gradients
and crystal orientation are analyzed in detail. The experiments utilized numerical interpolation
techniques previously employed by Dougherty and Gollub to enhance the digital image resolution.
The values found for z4 in SCN, PVA, and PVA —1'Pp-ethanol are 0.0055+ 0.0015, 0.025+0.002, and
0.026+0.002, respectively. From these values, the selection parameter 0,'h, , predicted by micro-
scopic solvability theory for the three-dimensional axisymmetric case was computed and compared
to the a,'„pt values determined directly from previous dendritic-growth experiments. We find that
ot„i,/ ,o'„~, is 0.56+0.20 for SCN, and 2.14+0.50 for PVA. Possible sources for these discrepancies

are discussed.
PACS number(s): 68.70.yw, 68.10.Cr, 61.50.Cj

I. INTRODUCTION

It has long been known that dendritic solidification of
a crystal into its undercooled melt results in dendrites
with tip radius p and growth velocity v uniquely deter-
mined by the undercooling. Until recently, however, the
mechanism responsible for this pattern-selection process
was not understood.

In 1947, Ivantsov [1] showed that if surface tension is
neglected, the thermal-diffusion and energy-conservation
(Stefan) equations governing dendritic growth are solved
by a continuous family of parabolic needle crystals, with
only the product pv fixed by the undercooling. Introduc-
tion of surface tension as a perturbation to the Ivantsov
solution led to the prediction of a maximum in the v(p)
curve, suggesting that this maximum velocity may corre-
spond to the operating point selected by the system [2].
But this maximum-velocity hypothesis was disproved in
1976 by the precise succinonitrile experiments of Glicks-
rnan, Schaefers, and Ayers [3].

Subsequently, Langer and Miiller-Krumbhaar analyzed
the stability of parabolic dendrites, treating surface ten-
sion as a linearized perturbation, and found that the
Ivantsov continuum divides into stable (fast) and unsta-
ble (slow) regions. They suggested the marginal stability-
hypothesis that the operating point selected by the phys-
ical dendrite corresponds to the marginal-stability point
dividing the stable and unstable regions of the Ivantsov
continuum. This hypothesis led to a selection rule for the
quantity

2dpD
tT

P

where D is the thermal-diffusion constant and dp is the
capillary length defined as do ——poT Cz/L (po is the
surface tension, C& the specific heat per unit volume, T

the bulk melting temperature, and L the latent heat of
fusion). For cubic crystals, they found that the value of
the stability parameter cr' selected by this mechanism
was o* 0.026, and they showed that o' = 0.025 pro-
duced a good fit to the experimentally determined se-
lected velocities for both succinonitrile and ice, spanning
a range in v of over five decades [2].

A new development in the theory of dendritic pat-
tern selection occurred in a series of papers beginning
in 1983, first with simplified local models, and later with
the full nonlinear nonlocal equations of dendritic growth,
in which surface tension was included from the outset.
These theoretical investigations, utilizing both numerical
and analytical methods, led to several surprising new in-
sights: (i) surface tension constitutes a singular perturba-
tion which destroys the continuum of Ivantsov solutions,
replacing it with a discrete set; (ii) of this discrete set
of allowed solutions, all but the fastest one are linearly
unstable; (iii) the growth velocity of the single allowed
stable solution depends critically on the anisotropy s of
the surface tension. For small values of L, v is propor-
tional at fixed undercooling to s"L . This theoretical ap-
proach is frequently designated as microscopic solvability-
theory (MST) because the presence of the microscopic
capillary length do imposes a solvability condition on a
family of macroscopic steady-state solutions (for reviews,
see Refs. [4—7]). MST showed that the quantity o intro-
duced in Eq. (1.1) was still the central selection param-
eter but the selected value depended on the crystalline
surface-tension anisotropy e of the material.

The selected values cr' of Eq. (1.1) as a function of
anisotropy L have been computed both by numerical so-

lution of the appropriate integro-differential equation and

by several analytical techniques. Barbieri and Langer [8]
computed cr' analytically for both two-dimensional and
three-dimensional axisymmetric dendrites, for both sym-
metric and nonsymmetric diffusion. In Fig. 1 we show
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their analytically computed results for symmetric growth
in the small undercooling limit in two and three dimen-
sions, a two-dimensional (2D) numerical result obtained
with the method of Kessler and Levine [9] (the computer

FIG. 1. Selected values of the stability parameter cr'
vs surface-tension anisotropy e predicted by microscopic
solvability theory (For .fourfold anlsotropy, n = 15e4,
for sixfold anisotropy, o. = 35s6.) The solid lines
are the analytic results of Barbieri and Langer [8] for
the symmetric model in two dimensions with y = 0
( —), in three dimensions with p = 0 ( - - - ), and in three
dimensions with p = 0.25 ( - - - ). The symbols (+) are
the results of a numerical calculation based on the method
of Kessler and Levine [9) for the two-dimensional symmetric
model with p = 0.0027, and the symbols (C3) are the results of
a numerical calculation by Ben Amar for a 3D axisymmetric
model with p = 0.

program used was generously provided by H. Levine),
and the results of a 3D axisymmetric numerical compu-
tation by Ben Amar [10].

It has frequently been asserted that MST has defini-
tively resolved the dendritic pattern-selection problem.
However, there are several reasons for caution. First, the
underlying set of continuum equations, though obviously
difficult to solve, is nevertheless only approximate. They
ignore the effects of microscopic crystal structure and
growth kinetics, and they do not include the effects of
noise and sidebranching, which may play a particularly
significant role at very small anisotropies. Second, and of
central interest in this report, attempts to establish the
validity of MST by direct experimental tests have led to
disappointingly uneven results. The source of this diffi-
culty could well lie in the extreme dependence of 0,'h„,
on surface-tension anisotropy in MST illustrated in Fig.
1, combined with the difficulty of obtaining experimen-
tal values of the anisotropy sufBciently precise to permit
definitive tests of the theory.

To date, experimentally determined surface-tension
anisotropies have been reported for only five materials:
succinonitrile (SCN), pivalic acid (PVA), hectaoctyloxy-
triphenylene (HET), NH4Br, and ice. Of these, only the
anisotropy of PVA has been measured twice, and the two
reported values differ by almost an order of magnitude.
In the upper part of Table I we list the existing published
anisotropy values for these materials with the predicted
o'th, „values found from the data of Fig. 1, and com-
pare these with the o,'„~tvalues determined from direct
observation of grovring dendrites summarized in Table II.
Clearly, no meaningful conclusion on the validity of MST
can be reached from these results.

In this report, we present experimental determina-
tions of the surface-tension anisotropy of SCN, PVA, and
PVA —1% ethanol. Previous studies have been based on
the observed shape of either a small crystal surrounded
by the melt [11—13] or of a melt inclusion within a crys-
tal [14, 15]. We used the small-crystal method, but im-
proved the accuracy of our measurements by exploiting

TABLE I. ot'i„,computed from experimentally determined surface anisotropy p(8) = go[1 + e cos(m8)] and compared
with vexpg

Material

SCN
PVA
PVA + 1% ethanol
NH4Br (soln. )
HET (soln. )
Ice

Ref.

14]
15]
12]
11]
13]
24]

e (%%uo) n = (m —1)e
(a) Previous measurements

0.5 0.075
5 0.75

0.6 +0.2 0.09+0.03
1.6+0.4 0.24+0.06

0.3+0.1 0.11+0.04
0.2+0.1 0.07+0.03

+theor

0.009
0.14

0.024+0.010
0.072+0.018
0.033+0.014
0.012+0.005

Crexpt

0.0195
0.022

0.05+0.02
0.081+0.020

0.038
-0.075

Ref.

29]
15]
12]
11]
13]
24]

SCN
PVA
PVA+1% ethanol

(b) This work
0.55+0.15 0.083+0.023
2.5+0.2 0.375+0.03
2.6+0.2 0.390+0.03

0.011+0.004
0.054+0.004
0.107 +0.007

0.0195
0.022

0.05+0.02

[29]
[»]
[12]

This value is 35 times smaller than that cited in Ref. [13] and corresponds to their Eq. (5) being revised to read R(8) =
Ro [1 —e6 cos(68)].

We accounted for the asymmetry of the ice-water phases (p 0.5).
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TABLE II. Experimentally determined 0.,'„~, from dendritic growth experiments.
cr,„~,= 2doD/vp; p is the Peclet number; and m is the order of rotational symmetry.

Material
SCN
PVA
PVA + 1% ethanol
NH4Br (soln. )
NH4Br (soln. )
HET
Ice
Ice
Helium
Krypton
Xenon

Crexpt

0.0195
0.022

0.05 + 0.02
0.081 6 0.020
0.072 6 0.037

0.038
0.025
0.075
0.0013

0.017+ 0.009
0.022 + 0.012

2 x 10-4-3 x 10-'
9x10 4 —1x10 '
8x10 —5x10
5x10 —2x10
1x10 —5x10

3x10

5x10 —2x10
2x10 —2x10
2x10 —1x10
1x10 —8x10

m
4
4
4
4
4
6
6
6

4
4

Ref.
29]
15]
12]
11]
30]
13]

231
24]
32]
33]
33]

' From Fig. 13 in Ref. [24].

the stabilizing effect of a temperature gradient. Incor-
porating digital interpolation techniques similar to those
of Ref. [11] in our videomicroscopy image-analysis pro-
cedures helped us to push the efFective resolution down
to approximately 0.2 pixels. Since we are studying two-
dimensional projections of small three-dimensional crys-
tals, we have developed a method to determine the orien-
tation of the crystal axes before measuring the shape. As
we shall show, the apparent anisotropy of such a crystal
depends strongly on its orientation, so that experiments
with uncontrolled orientations would produce wide vari-
ation in the measured anisotropy.

In Sec. II, we review the equations governing the shape
of a crystal in equilibrium with its undercooled melt,
first for uniform undercooling, and then with an added
temperature gradient. We also consider the relation of
this two-dimensional analysis to observations of three-
dimensional crystals. In Sec. III, we describe our ex-
perimental methods and data-analysis procedures and
present a summary of our results. In the concluding sec-
tion, Sec. IV, we discuss our results in comparison with
previously published anisotropy values and discuss the
implications for MST.

II. THEORY OF SHAPE ANISOTROPY

A. Uniform undercooling

The shape of a crystal in equilibrium with its melt is
controlled by the Gibbs-Thompson equation which deter-
mines the lowering of the equilibrium interface tempera-
ture T, relative to the bulk melting temperature T due
to the curvature v of the interface. In two dimensions,

shows that K must be constant so that the equilibrium
crystal will be circular with radius R = 1/K given by
R' = p/Lb, , or R' = (do/A)(L/T C„)where we have
defined the dimensionless undercooling 6 = (T T)/T—
[17]. Note that this R' is just the critical radius of nu-
cleation, the minimum size that a crystal must reach to
overcome the nucleation barrier. Crystals with R & R*
will melt, while those with R ) R' will grow, so that
R = R' represents a state of unstable equilibrium.

For a weakly anisotropic crystal with m-fold rotational
symmetry, the surface tension p(8) is usually approxi-
mated by a constant plus the lowest-order 8-dependent
term allowed by symmetry:

p(8) = go[1+ s cos(m8)]. (2.2)

Combining Eqs. (2.1) and (2.2), an approximate solution
for the interface R(P) can be found (where R, P are the
polar coordinates of the interface):

R(P) = R'[1+ s cos(mP)], (2.3)

x = [p cos(8) —pe sin(8)]/AL, (2.4)

where, again, R' = p/LA is the critical radius of nu-
cleation. Note that in this approximation, the relative
amplitude of the cos(mP) shape anisotropy is identical
to that of the p anisotropy. Since most materials used
in dendritic solidification studies are cubic, the most im-

portant case is m = 4.
Equations (2.1) and (2.2) can also be solved exactly by

first converting Eq. (2.1) to a pair of first-order paramet-
ric difFerential equations [18]. Their solutions are

T' = T [1 —5+Wee)K/L] (2.1) y = [p sin(8) + pe cos(8)]/DL (2 5)

where p(8) is the orientation-dependent surface tension,
8 is the angle of the interface normal to the crystal axis,
gee is the second derivative of p(8) with respect to 8, and
r is the curvature of the solid-liquid interface [16]. If p is
isotropic and the melt is uniformly undercooled, Eq. (2.1)

Substituting Eq. (2.2) for m = 4 into Eqs. (2.4) and
(2.5) with different values of s4 then produces a series of
interface shapes as shown in Ref. [18]. For e4 ——0, the in-

terface is round. As c4 increases, increasingly prominent
bulges appear along the four axes, effectively reducing
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R(P) = Rp[1+ ) sA, cos(kP)]. (2.6)

The resulting values of the fourfold shape anisotropy s4
divided by the prediction s4 = s4 of the approximate
solution [Eq. (2.3)] are shown in Fig. 2 as s4/s4 vs s4.
Up to the maximum value of s4 = 1/15 at which cusps
would appear, the maximum disagreement is ( 10%,
while for s4 values less than 0.03 with which we will be
concerned, the two results agree to better than 2%. The
only other Fourier component with significant amplitude
was cos(8$) whose amplitude reaches almost 20% of the

(4P) component at s4 = 1/15. (ss/s4 is also shown in

Fig. 2.)

B. Temperature gradient

Next, consider a crystal located in a radially symmetric
linear temperature gradient G so that, in polar coordi-
nates (r, P),

1.00-

the fraction of the interface for which s4 cos(48) is largest.
Cusps appear on the surface when p+ ass = 0 [s4 = 1/15
or more generally s~ = (m —1) ]; for s~ ) 1/15, some
orientations are missing. Thus, 1/15 represents the up-

per limit on e4 for this approach. Alternatively, by using
cr = (mz —1)s~ as the anisotropy parameter, this upper
limit corresponds to a = 1 independent of m (see Fig.
1).

In order to compare the exact and approximate solu-
tions to Eqs. (2.1) and (2.2), we generated polar plots

R(P) of Eqs. (2.4) and (2.5) for difFerent values of s4.
These were then Fourier analyzed as

T(r) = Tp + Gr. (2.7)

Since at equilibrium the interface temperature T, of Eq.
(2.1) must equal the local T(r) of Eq. (2.7), we have

Tp + Gr = T [1 —(p + ass) Ir,/L]. (2.8)

Guided by the approximate solution [Eq. (2.3)] for the
constant temperature case, w'e first look for an approxi-
mate solution to Eq. (2.8) of the form

R(P) = Rp[1+ s4cos(4$)]. (2 9)

Assuming that the shape anisotropy factor s4 is small
and that the difFerence between the polar angle P and
the normal angle 8 can be ignored, we obtain, for the
curvature of R(8) to first order in s4,

z(8) (1/Rp) [1+15s4 cos(48)]. (2.10)

Combining Eqs. (2.2), (2.8), and (2.10) for the case rn =
4, and collecting terms in ascending orders in s4, we find

Tp + GRp = T (1 —pp/LRp), (2.11)

—(G/T )s4Rp = (15&p/LRp)(s4 —E'4). (2.12)

Equation (2.11) determines the average radius Rp. If
G=O it reduces to Rp = p/Lb, , as found above in the
isotropic uniform undercooling case. With the gradient
included, however, Eq. (2.11) is a quadratic equation in

Rp which may have zero, one, or two solutions. In Fig. 3,
we have plotted the two sides of Eq. (2.11) separately for
the case where there are two solutions. The smaller solu-
tion R„is unstable since a small increase in R will bring
the crystal surface to a position where the local temper-
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FIG. 2. Fourier amplitudes s4 and ss of the analytical
solutions of Eqs. (2.4) and (2.5) using the surface tension form
of Eq. (2.2). Both s4 and ss are normalized to s4 and plotted
against e4. Note that for e4 & 0.03, s4 and z4 agree to better
than 2%. (The solid lines are guides to the eye. )

Radius

FIQ. 3. plots of the two sides of Eq. (2.11) indicating two

solutions at r = R„andR, . Note the different stabilities of
the two solutions.
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s4/s4 = [1+G/(15G, )) (2.13)

ature T0+ G'R is below the surface melting temperature,
and the crystal will grow. Similarly, a decrease in R will
cause the crystal to melt. This solution, therefore, cor-
responds to the usual unstable solution in the uniform
undercooling case. Conversely, the second solution at R,
is absolutely stable.

Equation (2.12) shows that the temperature gradient
suppresses the shape anisotropy relative to the uniform
undercooling case where s4 ——e4. This result is physically
reasonable since the bulges will now extend into a warmer
region of the melt and will therefore be reduced relative
to the uniform undercooling case.

It is useful to rewrite Eq. (2.12) in the form

C. Extension to three dimensions

(a)
00

0
4, "X++

x +
X +

X

So far we have discussed the equilibrium shape and sta-
bility properties of a two-dimensional crystal at uniform
undercooling as well as in the presence of a linear, radi-
ally symmetric temperature gradient. Experimentally we

observe two-dimensional projections of three-dimensional
crystals. In three dimensions the Gibbs-Thompson rela-
tion [given for two dimensions in Eq. (2.1)] is [16]

where G, = peT~/LRo has the dimensions of a tem-
perature gradient. In Fig. 4(a) we plot s4/s4 vs G as
found from Eq. (2.13) for crystals with radii between 50
and 1000 pm, all with anisotropy of s4 = 0.05. The shape
anisotropy is more strongly suppressed for the larger crys-
tals, as expected, since their bulges extend farther into
the higher-temperature region. If we scale the gradient
G by G„Eq.(2.13) then predicts a universal plot for
s4/s4 as shown by the solid line in Fig. 4(b). This figure
also shows that the shape anisotropy is not significantly
affected by the gradient until G is well above G, .

The physical significance of the critical gradient G,
can be found from the Gibbs-Thompson equation (2.1)
for isotropic surface tension where the interface tern-
perature T, and equilibrium radius Ro are related by
T~ ——T [1 —p/Lr]„R,. The deri—vative of T, with re-
spect to r, evaluated at r = Ro, is then

0, 1—

I

10

X +

radius = 50 pm
x radius = 100 Nm

radius = 200 pm
v radius = 1000 pm

X

+
0 A X

I I I I I I I

10 10 10 10 10 10 10
Temperature Gradient G (mK/mm)

(dT, /dr)R, = pT /LRo. (2.14)

Equation (2.14) shows that G, is just the slope of the
melting point curve at the radius Ro. As can be seen
from Fig. 3, G & G, implies an unstable solution, while
G ) G, implies a stable one. Note, however, that even
for unstable solutions with G & G„the presence of a
gradient will reduce the instability, increasing the time
it takes for a crystal with R = R„to grow or shrink
appreciably.

Finally, we solved Eq. (2.8) numerically in order to
test the limits of validity of the approximate solution of
Eqs. (2.11)—(2.13). Again, as in the uniform undercool-
ing case, Eq. (2.8) was reduced to a pair of first-order
parametric differential equations which were solved nu-
merically by a relaxation method [19]. Details of the cal-
culation will be presented elsewhere [20]. Interface pro-
files were calculated for a wide range of gradients, with
anisotropies of e4 ——0.01, 0.03, 0.04, and 0.05. The re-
sulting values for the shape-anisotropy parameter 84 are
indicated by the symbols in Fig. 4(b) and are seen to be
in excellent agreement with the approximate result of Eq.
(2.13). In fact, for G & G„allthe results are indistin-
guishable from the simple uniform undercooling result of
Eq. (2.3).

0
0.1—

CC

—eqn. (2.13)
+ E4 =1%
X C4 =3%

c —4%
C4 =5%

I
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0.01 0. 1 1 1 0 100 1000
Dimensionless Temperature Gradient G/6,

FIG. 4. (a) Influence of a temperature gradient G on the
shape anisotropy for crystals of different size. The material
parameters used to generate these plots where those of SON
and the anisotropy was choosen to be e'4 = 5'. (b) Data
similar to (a) for four values of e4 plotted against the dimen-
sionless gradient G/G, . The solid line is the scaling prediction
of Eq. (2.13).
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T; = T (1 —[(p+ ps, s, )~g + (p+ ps, s, )~g]/L),

(2.15)

where 8q and 8q are the angles along the principal axes of
the surface and Rq and Rq are the corresponding princi-
pal curvatures. The three-dimensional equivalent to the
approximate fourfold-symmetric surface-tension expres-
sion of Eq. (2.2) is the cubic symmetric function [4]

p(8, P) = pp[1+ s4(4( sin (4$)[cos (48) + sin (4P)]
+cos (48)) —3)], (2.16)

where 8 C [O, s] and P c [0, 2z'] are the usual polar
angles in spherical coordinates. Figure 5 shows three
plots of this function from difFerent angles. Note that
we have slightly altered the form of p(8, P), as given in
Ref. [4], so that Eq. (2.16) goes over into Eq. (2.2) in
the z-y plane (8 = s/2), the x-z plane (P = 0), or the
y-z plane (P = vr/2). The shape of the corresponding
three-dimensional crystal at uniform undercooling was
derived by Cahn and HoÃiriann [21] and can be expressed
in Cartesian coordinates by [18]

z = 2[ p sin(8) cos(P) + ps cos(8) cos(P)

py sin(P—)/ sin(8)]/Lb, , (2.17)

y = 2[ p sin(8) sin(P) + ps cos(8) sin(P)

py cos(P) / —sin(8)]/Lh (2.18)

z = 2[p cos(8) —pe sin(8)]/I b, . (2.19)

For small s4, the equilibrium shape of the three-
dimensional crystal will again be equivalent to the p plot
of Eq. (2.16). A projection of p(8, P) along the [111]di-

rection will show thr""- and sixfold components [see Fig.
5(b)] and give anomalously small values for s4. Only
if the crystal is oriented with one axis vertical, as in
Fig. 5(c), will the values we extract for s4 using a two-
dimensional model [Eq. (2.6)] to analyze the projections
of a three-dimensional crystal produce the correct value
for the surface-tension anisotropy.

III. EXPERIMENTAL PROCEDURES
AND RESULTS

FIG. 5. Three views of the three-dimensional anisotropic
surface tension function p(8, P) of Eq. (2.16) for s4 = 0.05. In
(b), the normal is along a [111]axis, while in (c) it is along a
[100] axis.

Our essential procedure was to establish a single small,
properly oriented crystal in equilibrium with its sur-
rounding melt, record the shape of the crystal-melt in-
terface by videomicroscopy with a charge-coupled-device
(CCD) videocamera, and generate digital images of it
with a computer-based video board. The digital images
were further processed to obtain an accurate set of polar
interface coordinates (r, , P,). Fourier analysis of these
data then allowed us to extract the value of the surface-
tension anisotropy s4 for that crystal following Eq. (2.3).
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A. Apparatus

Sample preparation

The experiments were performed with three different
types of samples: pure SCN, pure PVA, and a binary
sample of PVA and 1% ethanol by weight. The starting
materials for our sample preparation, SCN (Fluka, 99%)
and PVA (Aldrich Chemicals, 99%) were vacuum dis-
tilled four times at 110'C and 60'C, respectively. The
purified materials were transferred to carefully cleaned
glass capillaries with 4 x 0.2 mm inside cross section, ap-
proximately 30 cm long (Vitro Dynamics). After sealing
one end of the capillary with a torch, we push the open
end through a rubber seal on a glass stopper in one port
of a multineck flask. The flask is then evacuated and
the purified material distilled into it. The capillary is
dipped into the molten material and, after disconnect-
ing the vacuum pump, the flask is slowly backfilled with
helium to force the molten material into the capillary.
Finally, the capillary is pulled out of the liquid and the
flask is put back under vacuum. The capillary is then
sealed off under vacuum with a miniature torch, and is
further divided into two or three samples of 5 cm length
and a cross section of 4 x 0.2 mm for the experiments.

The sample preparation for the binary PVA-ethanol
mixture was slightly different. After purifying the PVA,
we distill it into a 25-ml buret with Teflon stopcocks on
both ends, add a small amount of 200-proof ethanol from
a previously sealed bottle to the buret, and mix both
materials thoroughly with a miniature magnetic stirring
bar. The buret is then placed on top of the multineck
receiving flask and emptied into it.

We have found that the SCN samples, prepared as de-
scribed above, have a melting point that is within 5 mK
of the melting temperature of a SCN triple-point cell de-
veloped by Glicksman and purchased from the National
Institute of Standards and Technology. Using the depres-
sion of the melting point for an ideal solution

racy with the melting temperature of T~ = 35.935 C
reported by Glicksman and Singh [15]. Finally the melt-
ing temperature of the binary PVA-ethanol mixture was
T = 30.3'C. These hermetically sealed glass capillar-
ies showed no signs of aging. Further relevant material
parameters are listed in Table III.

2. Thermostat and tetnperature control

-20-

Q

l
\

\
\
\

Our thermostat is designed to fit onto the stage of our
Nikon Diaphot microscope. It consists of an outer alu-
minum shell, controlled by a YSI-72 proportional temper-
ature controller to within k5 mK, and an inner copper
shell, controlled by a Tronac PTC-41 temperature con-
troller to within +0,5 mK. The sample capillary is posi-
tioned inside of the inner shell, between two 1.6-mm-thick
glass plates, surrounded by paraffin oil for heat transfer
and optical index matching. Both thermostats have a
flat cylindrical shape with a round opening of 20 mm di-
ameter in the center, covered by glass windows. These
windows produce a small heat loss at the center of the
thermostat and lead to a radially symmetric variation of
the temperature throughout the thermostat. We mea-
sured the radial temperature dependence by positioning
a thermistor in different parts of the sample space of the
inner shell. A typical temperature profile is shown in
Fig. 6. The crystals can be trapped in the trough of
this temperature profile. The estimated gradient at the
boundary of a crystal of 100 pm radius is of the order of
10 4 mK/pm.

T~(0) —T~(X) = (RgT~/L)X, (3.1) -40-

where Rg is the gas constant and X is the mol frac-
tion of impurity, we estimate the purity to be better
than 99.995%. We also estimated the purity of the SCN
samples from their observed stability in a directional-
solidification apparatus which gave an upper limit on the
impurity concentration [22] of about 10 s%, consistent
with the melting-point result. For the PVA samples, we
determined the melting point with a thermocouple to be
T = 35.9 C, which agrees within experimental accu-
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Parameter

p (J/cm')
T (K)

L (J/cms)
LI&~ (K)

SCN
8.g4 x 10-'

331.23
46.7
23.1

Ref.
[34]
[3]

[35]
[3]

PVA
2.84 x 10 '

309.09
20.7
11.1

Ref.
36]
14]
36]
14]

TABLE III. Material parameters for SCN and PVA em-
ployed in this work. FIG. 6. Radial temperature profile of the sample space

in the inner shell of the sample thermostat. The radius ori-
gin is the center of the observation window whose edges are
at r = +10 mm. The squares are the measured temperature
deviations relative to the uniform temperature inside the cop-
per shell of the thermostat. The solid line is a parabolic fit
to the five center points and yields T(r) = —81.5 mK +0.409
(mK/mm )(r —0.189) where r is in mm.
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8. Microscoye end video ayatem

The microscope we used is a Nikon Diaphot with in-
verted optics. It has a 35-mm-camera port and a video-
camera port. We typically use it with a 10x long working
distance objective and a 2.5x projection lens in the video
port. The images are recorded with a Dage MTI-72 CCD
camera. The video images are digitized with a 640x480
pixel Data Translation QuickCapture video board inside
a Mac II computer. We also record the images on a Mit-
subishi U31 commercial video-cassette recorder for later
analysis.

We tested our camera and image system by capturing
images of a circular reticle. Although we measured no
geometric distortion of the field, the x scale of the image
pixels was noticeably different from the y scale. With
our 10x objective and 2.5x projector combination we
determined scale factors of 0.59+0.01 pm/pixel in the x
direction and of 0.62+0.01 pm/pixel in the y direction.
After correcting for this difference we always obtained
perfectly round images of our reticle independent of the
orientation of the reticle or the camera.

B. Procedure

In a typical experimental run, the outer shell of the
thermostat was first heated to a temperature 5 to 10
K below the melting temperature of the sample (in the
case of PVA-ethanol the outer shell is not heated) and
the inner shell was then heated until the whole sample
was completely molten. We then cool the sample until
it starts to solidify by spontaneous nucleation of crys-
tallites, producing numerous small single-crystal grains
which have no time to form multiple-grain structures.

When warming the sample back up close to its melting
temperature, the grains close to the center of the obser-
vation window melt last, due to the temperature dip in

the center of the thermostat (Fig. 6). We are usually
able to capture a single-crystal grain in the center of the
capillary. Then we quickly undercool it. For PVA, the
orientation of the dendritic arms that shoot out from the
initially round seed allows us to assess the orientation
of the crystal (see Fig. 7). Next we shrink it back to
a radius of about 80—100 p,m, which is convenient for
our observations. We were not able to accurately deter-
mine the orientation of our SCN seeds with this proce-
dure since after rapid cooling they usually exhibited a
dense-branching morphology rather than clearly devel-
oped dendritic arms.

Once the crystal is at an appropriate size for observa-
tion, it still tends to either grow or shrink slowly at fixed
temperature. This is due to the fact that the critical gra-
dient G, needed to stabilize a 100-pm crystal is about
one to two orders of magnitude larger than the largest
gradients we can achieve in our sample thermostat (see
Fig. 6). We allow the crystal to slowly grow (shrink) un-
til its size becomes too large (small) for observation, at
which point we raise (lower) the temperature of the inner
thermostat to reverse the direction. Using this method
we can observe a crystal for several hours. We generally
find that after at most one hour the results of our shape
measurements (for radii ( 150 pm) remain constant, in-
dependent of the size of the crystal, the growth speed,
or the direction of growth. Images of SCN, PVA, and
PVA-ethanol crystal grains obtained this way are shown
in Fig. 8.

C. Digital image analysis

The captured images consist of a rectangular array of
640x480 pixels, each pixel having an intensity resolution
of 256 gray scales. The outline of the crystal interface ap-
pears as a thin dark line, 3—5 pixels wide, against a uni-
form lighter background. A radial intensity scan across

FIG. 7. Images of PVA crystals following a sudden temperature decrease. The fourfold symmetry of (a) indicates that this
crystal is oriented with a [100] axis normal to the image, while the threefold symmetry of (b) indicates that a [111] axis is
normal to the image.
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such an interface is shown in Fig. 9, and we see that the
profile is approximately parabolic.

We want to extract a set of polar coordinates (r, , P, )
of the crystal-melt interface from these images. To do so
we first need to find the center of the crystal and then de-
termine the radial distance r, of the interface for a given
orientation P, . As a first step we threshold the images:
all pixels with intensity values close to the white back-
ground are disregarded and the preliminary center of the
crystal is chosen to be the "center of mass" of all pixels

above the threshold. From this preliminary center the in-
terface is divided into angular slices of 2' —3' width. The
intensity profile I(r) of all pixels within a given angular
slice is fitted to a parabola (see Fig. 9). The distance of
the maximum of this intensity parabola from the center
is taken as the radial coordinate of the interface. We use
the "center of mass" of these first-pass interface coordi-
nates [r,(1),P, (1)j to determine a more accurate location
for the center. After running through this loop three
times the corrections to the interface coordinates become

50 pAl
I

50
l

FIG. 8. Binary video images of crystals of (a) SCN, (b) PVA, and (c) PVA-ethanol. After thresholding of the digitized
image, as described in the text, we highlighted all pixels above the threshold by changing their intensity values to black. The
large asymmetry of PVA is visible in (b) and (c).
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200—

180-

contrast, is remarkably stable. The time dependence of
the amplitudes of these two modes for the case of PVA-
1FO-ethanol sample is shown in Fig. 12. The initial equi-
libration period is about 30 min for pure SCN and PVA
and is considerably longer for the binary system. This
is because in pure materials relaxation occurs via ther-
mal difFusion while in binary mixtures chemical difFusion
dominates the equilibration.

lh
C
4)
C

160-

140-

120-
I

129
I

130
I

131
Radius (pixel)

I

132
I

133

FIG. 9. Radial intensity profile of a SCN crystal interface
obtained as described in the text. The dashed line is the fitted
parabola, and the arrow shows the interpolated position of the
center of the interface.
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negligible. The resulting polar coordinates of the inter-
face can be determined with an accuracy of about 0.2
pixels. The parabolic intensity profile analysis procedure
seems to reduce the noisiness of the interface coordinates
in comparison to Dougherty and Gollub's data [11,12].

Typical plots of the extracted polar coordinates for the
three materials are shown in Fig. 10. Note the clear four-
fold shape anisotropy, but also the presence of a weaker
twofold Fourier component, similar to observations of
Dougherty and Gollub [11,12]. Because of this twofold
component we Fourier analyze our data instead of fitting
them directly to the shape of a crystal with purely four-
fold surface-tension anisotropy as given in Eqs. (2.4) and
(2.5). In the fit, we used the first eight Fourier modes of
the cosine transform
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r;(P,) = ao + ) a„cos(nP,+ b„), (3.2)

where a„is the amplitude of the nth mode and b„is the
corresponding phase angle.

D. Experimental results

In Fig. 11 we show the Fourier amplitude ratios a„/ao
determined from the analysis of the three interfaces
shown in Fig. 8. These ratios are equivalent to the shape
anisotropies s„introduced in Eq. (2.6). The Fourier data
show generic features we see in all of our experimental
runs. Only the n=2, 3, 4, 6, and 8 modes have measur-
able amplitudes once the crystal has equilibrated. At the
beginning of each experiment the n=2 mode is dominant
but it decays to values well below the n=4 amplitude af-
ter the initial equilibration. The fourfold component, in
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FIG. 10. Polar plot of the extracted interface coordinates
of the three crystals shown in Fig. 8.
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The presence of the n=2, 3, 4, and 6 modes is consis-
tent with the shape of a three-dimensional crystal with
cubic symmetric surface tension when seen from differ-
ent directions as shown in Fig. 5. Unfortunately, the
amplitudes of the n=2, 3, and 6 modes are not steady
or large enough to deduce the precise orientation of the
seed from them. As mentioned above, we try to check
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cn 2.0—
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o 1.5—
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FIG. 12. Time dependence of the n = 2 and 4 mode am-

plitudes during an experimental run with the PVA-ethanol
mixture.
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the orientation of our seeds by making them go unstable
and observing the orientation of the resulting dendritic
branches as shown in Fig. 7. For seeds oriented close to
the [100]direction, the value of the fourfold component in
PVA is considerably larger than for seeds oriented along
[ill]. The value of s4 changes with orientation from 2.4'%%uo

to 1.3%%uo. This ratio is roughly equal to 1/~3 and also
consistent with changes due to orientation. We therefore
select the largest values of s4 even in SCN where we had
no means of observing the orientation.

As our calculation in Sec. II showed, the effects of
thermal gradients can be neglected if the temperature
gradient at the crystal surface is smaller than the critical
gradient. For a crystal of ~ 100 pm radius the criti-
cal gradient in SCN is 6.1x10 mK/pm and in PVA is

4.1x10 s mK/pm. These values are an order of magni-

tude larger than the thermal gradient in our thermostat
and we can therefore neglect their effects on our results.

IV. DISCUSSION AND CONCLUSIONS

25x10
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I

1
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FIG. 11. Fourier amplitude ratios s„=a /ao of the three
interfaces of Fig. 10.

From the experiments described in the preceding sec-
tion, we conclude that the surface tension anisotropies e4
for SCN, PVA, and PVA —l%%uo-ethanol are (0.55+0.15)%,
(2.5+0.2)%, and (2.660.2)%, respectively, as shown in
part (b) of Table I. Our SCN result agrees with that of
Glicksman and Singh [14]. For PVA, however, our result
disagrees with both previous measurements; it is approx-
imately two times smaller than that of Glicksman and
Singh [14] and four times larger than that of Dougherty
[12]. Moreover, we find that the addition of 1% ethanol
to the PVA has no significant effect on E'4.

In order to compare values of o,*h, , deduced from mea-
surements of the surface tension anisotropy (via the the-
oretical MST relation illustrated in Fig. 1) with o,'»t val-

ues determined from observations of growing dendrites,
several factors must be considered.

(1) The relation between o h, , and n depends some-
what on the Peclet number p = pv/2D as illustrated by
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the results of Barbieri and Langer [8] for p=0 and 0.25
in Fig. 1. We have therefore included the range of the
Peclet number for each determination of o,'„~in Table
II. Since for all the measurements p «0.25, we used the
@=0 results to find o'thor.

(2) The theoretical results shown in Fig. 1 are for the
symmetric model in which p = D,C, /D~CI = 1. (D
is the thermal or chemical difFusion constant, C is the
specific heat, and s and l refer to solid or liquid, respec-
tively. ) The equivalent asymmetry parameter for binary
mixtures is p, = D, /D~. Barbieri and Langer [8] have
shown that for any value of p

(4 1)

Since experimental values of D, are generally not avail-
able, we have followed the conventional procedure of let-
ting p, = 1 for pure materials (symmetric model) where
growth is controlled by thermal diffusion, and p = 0
for binary mixtures or solutions (one-sided model) where
chemical diffusion dominates, so that o' = 2o*(p, = 1).
The values of o~h, , shown in Table I therefore corre-
spond to the 3D, p = 0 axisymmetric numerical results
in Fig. 1 for pure materials, and to twice those values for
binary mixtures and solutions.

Table I clearly illustrates that the values of cr,'h„,de-
duced from anisotropy measurements and 0,'„,~ deter-
mined from observations of dendritic growth c.iffer sig-
nificantly for both SCN and PVA, by a factor of approxi-
mately 2, and in opposite directions. Figure 13 represents
the information of Table I graphically. The noticeable
discrepancies are well beyond the reported experimental
errors, although the reported values of o,'„&~for SCN and
PVA include no error estimates. We note that only for
the solution growth cases of NH4Br and HET do o,'„~
and o,"h, , appear to agree, and for NH4Br Maurer, Per-
rin, and Tabeling [23] found values of p v significantly
smaller than those reported in Ref. [11]. (The ice result
cannot be considered significant in view of the prelimi-
nary nature of the measurement of ss [24].)

We are therefore led to the essential question of
whether or not these discrepancies can be reconciled with
the basic approach of MST. Assuming that the discrep-
ancies are real and are not produced by experimental ar-
tifacts such as convection, there remain several possible
ways in which the MST predictions might be modified.

First, the three-dimensional predictions shown in Fig.
1 assume axisymmetric dendrites [8] while real 3D den-
drites exhibit pronounced anisotropy around their axes.
The consequences of this axial anisotropy for MST have
not yet been fully analyzed. Preliminary results indicate,
however, that deviations of o,*heQg from the axisymmetric
values given here are small [25].

Second, since the dendritic-growth experiments sum-
marized in Table II were all performed (necessarily) with
nonzero growth velocities, the values of o,*„~~they pro-
duce must include kinetic effects which should be in-
cluded in the comparison.

Third, we note that the analysis underlying the MST
predictions of Fig. 1 assumes a single nearly parabolic
needle crystal without sidebranches, boundaries, or other
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FIG. 13. Plot of cr,'„p& vs c&pe«Values of o'e„pt; are
based on experimental measurements of v and p, while the
results of ot',~„,are derived from measured surface-tension
anisotropies. Circles are data points from previous anisotropy
measurements, while the black squares are based on our data.
Whenever available, error bars for both u,'„pt and o,h, , are
included. Errors in o,'„pt., are due to uncertainty in v, p, and
material parameters, errors in ot'.h, , are based on uncertainty
in surface-tension anisotropy. References on the data points
refer to the source of u,'„p&.The straight line, indicating per-
fect agreement with MST, is given as a guide to the eye.
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