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Instability and phase separation of a binary mixture:
The role of short-range repulsion and core-size ratio
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The integral equation of the fluid theory has been solved for the supercooled binary mixtures
of fourth-, sixth-, ninth-, and twelfth-inverse-power potentials with a modified hypernetted-chain
approximation recently proposed by us. In order to calculate zero-pressure thermodynamic and
structural properties, we have incorporated an attractive potential of the Kac form. Using pair
distribution functions obtained, we have calculated the concentration-concentration structure factor
Scc(k) and partial coordination numbers, which are useful to investigate mixing properties depend-
ing on the softness of the potentials to which some groups of material are attributed. For the mixture
of fourth-inverse-power potential with a core-size ratio of 1.2, Scc(0) and the partial coordination
numbers show a remarkable tendency towards phase separation near the freezing temperature, which
is in good agreement with experiments on inter-alkali-metallic alloys. For the potentials with n > 6,
the mixtures are stable near freezing (even in a highly supercooled regime), which is typical of alloys
of the rare-gas families. The interchange energy obtained is also in good agreement with experimental
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values.
PACS number(s): 64.75.+g, 64.70.Pf, 61.20.Gy

I. INTRODUCTION

The aim of this work is to study the thermodynamical
stability of binary mixtures under normal and highly su-
percooled fluid conditions. Our particular interest is con-
cerned with the phase separation of binary fluid mixtures
which is a very common thermodynamic phenomenon in
simple atomic and molecular systems, as well as metallic
alloys. Segregation is usually believed to be induced by
van der Waals attractions rather than short-range repul-
sions. Recent theoretical investigagtions, however, have
revealed that phase separation also takes place even in
mixtures of purely repulsive interactions such as the in-
verse power potential [1], repulsive a-exp-6 potentials
[2], and hard-sphere potentials [3]. Especially the pre-
diction of phase separation for hard-sphere mixtures [3]
is contrary to the long-held belief [4] that they never en-
counter the segregation under possible choices of poten-
tial and thermodynamic parameters within the Percus-
Yevick (PY) approximation [5]. In these circumstances,
this work is mainly concerned with roles of the form (soft-
ness) of short-range repulsive interactions in mixtures by
adopting a series of soft-sphere potentials with different
softness.

Another interest in the discussion of the phase sep-
aration is the role of the atomic size ratio o2/01. For
example [6], in a NaCs (02/01 ~ 1.43) liquid solution
a distinct tendency to phase separation has been ob-
served, while in a NaK (02/01 ~ 1.24) liquid solution
the tendency becomes much weaker. It is known that
a KCs (03/01 ~ 1.15) mixture behaves almost like an
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ideal solution. There are at least two empirical rela-
tions related to the stability of a binary mixture against
phase separation: A binary substitutional solid solution
becomes unstable when the atomic sizes of constituent
particles differ by more than 15%, known as the empir-
ical Hume-Rothery rule [7, 8]. Careful analyses of glass-
forming metallic alloys [9, 10] reveal that the ability or
easiness of glass formation is related to the core-size ra-
tio of constituent atoms, which is mostly satisfied when
o1/02 < 0.85.

The mixing stability of a binary mixture is described
by concentration fluctuations of the system under consid-
eration [11], which are directly related to the partial pair
distribution functions (PDF’s) of the mixture [12]. Espe-
cially, the concentration-concentration structure factor,
Scc(k), is well suited for the investigation of stability
mixtures, because its long-wavelength limit, i.e., Scc/(0),
is proportional to inverse of the second derivative of the
Gibbs free energy with respect to the number concentra-
tion. Therefore, the phase separation of a fluid mixture
is given by the equation Scc(0) = 0.

The partial PDF’s can be obtained through either com-
puter simulations or the integral equation based on the
theory of liquids. The result of computer simulations
provides numerically exact PDF’s only for the range
of the interparticle distance shorter than half the side
length of a simulation cell. This causes an unavoid-
able difficulty for the determination of Scc(0), which
is a Fourier transform of the PDF’s. On the other hand,
any known integral equations provide only approximate
PDF’s [11], the reliability of which depends on the ap-
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proximate form of the bridge function used. Well-known
classical hypernetted-chain (HNC) and PY approxima-
tions only work for specific volumes or temperatures far
above the freezing point [11]. Recently we proposed a
modified HNC approximation for supercooled soft-sphere
fluids (MHNCS), which has successfully been tested for
one- and two-component fluids [13, 14]. In the MHNCS
approximation, the bridge function is approximated by a
proper interpolation of bridge functions of the PY hard-
sphere model and the leading elementary diagram. It has
been obtained that the MHNCS approximation works
excellently well above and below the freezing tempera-
ture, leading to a better agreement with the computer-
simulation results over thermodynamically consistent ap-
proximations such as the Rogers-Young (RY) [15] approx-
imation. Near and below the glass-transition temper-
ature, the PDF’s obtained from the MHNCS have been
found to exhibit a splitting of the second peak of the PDF
compatible with the results of the computer simulations.

In this paper we discuss the mixing properties of binary
soft-sphere mixtures of inverse-power potentials with var-
ious inverse-power (softness) parameters n from n = 4,
6, 9, to 12, and the MHNCS integral equation. The re-
sults are shown for each softness parameter near and be-
low the freezing points estimated with an equivalent one-
component fluid model. The core-size ratio was chosen
to be 1.2 and 1.4. In order to take into account attrac-
tions between particles, we have used a generalized van
der Waals model as in our previous papers [16-18]. In
this model, the particles interact through the Kac poten-
tial [19] (attraction) as well as the soft-sphere potential
(repulsion). We examine in detail the difference of short-
range interactions (both softness and core-size ratio) ef-
fects on Scc(0) and a characteristic energy of mixing
under a constant pressure condition. We also study the
conformal-solution theory [11] for binary soft-sphere mix-
tures. These results are compared with the experimental
data on inter-alkali-metallic binary alloys. It is found
that the present model with n = 4 gives rise to a good
agreement with the experiments.

II. PAIR STRUCTURE AND PHASE
SEPARATION

The microscopic pair structure of binary mixtures is
well described by the partial PDF’s g;;(r) and structure
factors S;;(k), where the subscripts denote the species
indices. The PDF’s and structure factors are related to
each other through the Fourier transforms as [11]

Sij(k) = zib;j + xixjp/e'ik"[gij(r) —1}dr, (1)

where 6;; is the Kronecker § symbol and z; the num-
ber concentration of the ith species. Knowledge of the
PDF’s or structure factors allows us to calculate equilib-
rium thermodynamic properties of mixtures, such as the
excess internal energy, equation of state, and isothermal
compressiblity. The concentration-concentration struc-
ture factor Scc(k), which is a measure of concentration
fluctuation in a mixture [12], is simply a linear combina-

tion of the partial structure factors [11];

Scc(k) = :L‘%Sn(k) — 27172512 (k) + .’l:%Szz(k)
=2173 + (z122)%p

x / e [g11(r) + g22(r) — 2g12(r)]dr . (2)

The long-wavelength limit of Scc(k) is related to the
second derivative of the Gibbs free energy G with respect
to the number concentration z; [12],

. ~ N
im Soc(k) =BG oehrmn (3)

where (3 is the inverse temperature (kgT)~! and N the
total number of particles.

To illustrate ideal-mixing and -demixing behaviors of
Scc(0), we recall a simple expression for G in binary
mixtures as follows [11, 12]:

G = N(z1p +z203)
+NkgT(z1Inz; + z2lnzs) + pr(:cl) R (4)

where pu{ are the chemical potential of a purely ith
species, w a so-called “interchange energy,” and p(z;)
an upper convex function with a boundary condition of
p(0) = p(1) = 0; the simplest model for the form of p(zx;)
is given by a quadratic function of the composition

p(:cl) =T1T2 . (5)

The second term of Eq. (4) represents the entropy of
mixing originated by the labeling of particles. An ideal
mixture is represented by setting w = 0 in Eq. (4), using
Egs. (3) and (4), which leads to

T1T2 7

72— .

Sc(0) + z1228wp" (21) (6)
Here primes denote differentiation with respect to the
argument. When w is positive and temperature inde-
pendent, it is clear from Eq. (6) that Scc(0) diverges at
a concentration-dependent critical temperature T (1)

o= - 22
_ _ _T1T2
=T (1 Scc(0)> ' @

Below T,, the mixture separates into two fluid phases.
Henceforth the ratio z1z2/Scc(0) plays an important
role interpreted as a stability parameter for the phase
separation; it is unity for an ideal mixture, while it be-
comes zero when the phase separation takes place at 7
[20].

Let us make a brief consideration of Scc(0) based on
the conformal-solution theory or so-called “one-fluid” ap-
proximation [11], which assumes that the partial PDF’s
of a mixture can be represented by that of an “equiv-
alent one-component fluid.” Then, the crudest exam-
ple is given by the random-mixing approximation assum-
ing that all partial PDF’s are identical. It is clear from
Egs. (2) and (6) that this approximation leads to an ideal-
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mixing for any concentration and core-size ratio. Another
useful one-fluid approximation is to assume that

9ij(r/035) = ge(r/oe) , (8)
2 2
3 = szixja?j s (9)

where the subscript e represents the equivalent one-
component fluid. Substituting Eq. (8) for Eq. (2), we
obtain an approximate form for the stability parameter

as
= [1— T1T2 (1 — px_gﬁ)

3 3 3 11

011 + 059 — 207,

x—l 22 12 ,
Ue

12
Scc(0)

(10)

where X7, is the isothermal compressiblity of the equiv-
alent one-component fluid. This is no more ideal mixing,
which allows us to estimate an approximate temperature
of the phase separation T,(x;1). We note that the con-
formal solution theory should be restricted to mixtures
for which the differences of pair potentials are simply in
the characteristic energy and length scales but the form
of the potentials is given by an identical function.

III. THE MODEL

We consider binary mixtures composed of two species
with different diameters o, and o5, interacting through
the purely repulsive inverse-power potentials

Tiq n
uy(r) = (22)", (11)
where n (> 3) is the softness parameter of the potential
and the diameters are assumed to be additive, i.e.,

05 = %(0’1 +0j5). (12)

In the present calculations, the softness parameter was
chosen to be n = 4, 6, 9, and 12. The advantage of
the inverse-power potential is due to its scaling prop-
erty. According to this property, all reduced equilibrium
properties of binary mixtures, in excess of their ideal-
gas counterparts, depend on two independent variables,
i.e., the number concentration of species 1, x;, and the
coupling constant I', defined as

T = poi(eB)*/™ . (13)

With the conformal-solution theory described in Sec. II,
the equivalent one-component soft-sphere fluid is in-
troduced by choosing the effective diameter following
Eq. (9). The corresponding effective coupling constant
becomes

r.=T (%)3 . (14)

Hereafter, we use a set of three parameters, i.e., I'¢, 1,
and o2/01, to assign each thermodynamic state for a bi-
nary soft-sphere mixture. The freezing points of one-

component soft-sphere fluids with n = 4, 6, 9, and 12
are calculated by Hoover et al. with Monte Carlo (MC)
simulations, and found to be I' = 5.54, 2.18, 1.33, and
1.15 for n = 4, 6, 9, and 12, respectively [21].

The inverse-power potential works very well for high-
density liquids in which the short-range repulsive force
is dominant. The pure repulsive nature of the inverse-
power potential, however, yields an unphysically high
pressure. In order to investigate thermodynamic and
structural properties at more realistic conditions, we take
into account the effect of attractive interactions between
particles within a standard van der Waals mean-field ap-
proximation [22]. This approximation turns out to be
exact for the limit of an infinitely weak and long-range
attractive potential of the Kac form [19],

vi5(r) = —ai;7v® exp(—9r) , (15)

where ¥ — 0 after a thermodynamic limit (N — oo,V —
00) under a constant density (N/V); the Helmholtz free
energy of the system can be obtained by adding a cor-
rection term to the free energy of the inverse-power po-
tentials, that is,

2 2
F=Fy—4rpN Y > zizjai;, (16)

? J

where Fj is the free energy for a;; = 0 and N the total
number of particles. In our study, we make a simple
assumption as

ai; = e0y; (17)

where ¢ is the same energy scale as in Eq. (11). Therefore,
the equation of state takes a simple form of the van der
Waals type,

%@ = P} — 4T (T*)~(n=3/n (18)

where P§ is the compressibility factor for the purely
inverse-power potential and T* the reduced temperature
kgT/e. The condition of zero pressure (P = 0) yields
then the following simple relation between the effective
coupling constant I, and the reduced temperature 7*:

* —n/(n-3)
T* = ( Fo ) . (19)

4nT,

With this equation, all zero-pressure thermodynamic and
structural quantities can be calculated as a function of
temperature. Equation (16) is useful because the repul-
sive and attractive terms of the total potential can be
treated separately. This model has been found to work
well for various simple classical liquids; for example, the
case n = 15 works for liquefied inert gases and the case
n = 5 for liquid alkali metals [16,17]. Note that the
Kac potential gives no influence on the properties of the
structures (both static and dynamic).
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IV. THE INTEGRAL EQUATION

A. The MHNCS approximation

The integral equation of the fluid theory plays an im-
portant role in the study of structural and thermody-
namic properties of liquids [11]. The integral equation
results from the combination of two relations. One is the
Ornstein-Zernike relation

2
hij(r) = ci;(r) + D _ Tk /dr,hik('r,)ckj(lr -r)),
k

(20)

where ¢(r) is the direct correlation function and h(r) =
g(r) — 1 the pair-correlation function. The other is a
closure relation

gij(r) = e Puii (r) s (N +Bij(r) (21)
where y(r) = h(r) —c(r) is the so-called sum of the nodal
diagrams and B(r) the bridge function. It is well known
that B(r) can be expanded in terms of h-bond elementary

diagrams as [11]

Bi(r) =) _lenys(M)]

n=4

(22)

where [e,,:;(r)] represents a set of n points elementary
diagrams. However, the convergence of Eq. (22) is gen-
erally too slow to be applicable to practical calculations
for a highly dense liquid state. For such a difficulty in
the calculation of B(r), various approximations for the
integral equation have been proposed [11, 15, 23-30].
Recently, we proposed the MHNCS approximation
which reproduces the correct behavior of the PDF in
both stable and supercooled liquids for one-component
soft-sphere fluids and their mixtures [13, 14]. The PDF
obtained with the MHNCS approximation yields a clear
splitting of the second peak near and below the glass-
transition temperature compatible to that of computer
simulations. This approximation is based on the idea of
a universality of the short-range part of B(r), suggested
by Rosenfeld and Ashcroft [23], and the relevant work
for the one-component plasmas (OCP’s) by Iyetomi and
Ichimaru [27]. According to the former, the form of B(r)
at short interparticle distances can be expressed in terms
of the PY bridge function of the hard-sphere system with
an adjustable core diameter d, i.e., BE¥(r,d), irrespec-
tive of the choice of potentials for repulsive cores. Iyetomi
and Ichimaru, on the other hand, have shown that an ap-
proximate B(r) based on the leading term of Eq. (22),
€4(r), together with a rescaling assumption [31] could
be in good agreement with computer simulations for a
highly supercooled OCP fluid state, leading to a split-
ting of the second peak of the PDF. Similar results have
successfully been obtained for two-component plasmas
by Ballone, Pastore, and Tosi [28]. Based on these find-
ings we proposed an empirical bridge function of the form
of a linear combination of the short-range-distance part
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BEY (r,d) and the long-range-distance part 4(r) [13,14]:

Bij(r) = [1— f(r,di;)|BRs;(r, d1) + £ (r, dij)easi ()
(23)

where d; is an adjustable hard-sphere diameter, 0 <
f(r,di;) <1 a continuous mixing function, and d;; are
defined as [14]

_ di(oi +0y)

dy = (24)

The mixing function is simply taken of the form [13, 14,
30]

Frd) =3 [1 +tanh (’"v;,d)] ,

where W is a dumping parameter that could be deter-
mined from the magnitude of thermal vibration of par-
ticles (root-mean-square amplitude) or the width of the
first peak of the PDF. The adjustable parameter d; in
Eq. (23) is determined using the property of the screen-
ing potential H(r) = —y(r) — B(r) at r = 0 given by [14,
23]

(25)

H(0) = 2(8u — 3)(1 — 20*~D)/3) | (26)
where u®* is the excess internal energy per particle.

As we have shown in our previous papers, €4(r) yields
a significant oscillatory behavior around zero value at
an intermediate distance range for a highly supercooled
regime, which is responsible to the splitting of the sec-
ond peak of the PDF. On the other hand, the oscillatory
behavior disappears for stable liquid states. In this case,
e4(r) at intemediate distances can be expressed as [25]

2 2
64(7’) fad —%.’L’iib‘jp2 [Z/dr’hik(r')hkjﬂr - r'|) .
k

(27)

The right-hand side of Eq. (27) always gives a negative
value in a qualitative agreement with a property of the
respective bridge functions for the PY or RY approxima-
tion [13).

B. Numerical procedures

The MHNCS integral equation has been solved on a
FACOM VP-2600 vector processor at Computing and In-
formation Systems Center of Japan Atomic Energy Re-
search Institute. The method used here to solve the in-
tegral equation is an iterative procedure proposed by Ng
[32]. A number of iterations were made so that the fol-
lowing self-consistent measure A is minimized:

2 2
A =33 [1e0) - rrar
i

The superscripts “in” and “out” denote the input and
output functions, respectively. It took about 100 itera-

(28)
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tions within about 1 sec for A to be less than 5 x 10719,
which is considered to be small enough, for the present
purpose, to ensure the validity of the solutions. BEY (r, d)
in Eq. (23) has been calculated with the analytical solu-
tion of the PY approximation for the hard-sphere model
given by Lebowitz [5]. To solve the integral equation,
we used dimensionless length x = 7p'/3. The number
of grid points and the step size used in numerical inte-
grations were chosen to be 2048 points and Az = 0.01,
respectively, and the fast-Fourier-transform routine was
used in each iteration step.

The numerical integration to calculate €4(r) has been
carried out using the Legendre expansion of h(r) obtained
from the simple HNC equation, as discussed in detail in
Refs. [27], [29], and [33], which was originally used for
the calculation of the virial coefficients by Barker and
Monaghan [34]. In our calculation we have taken the
first 11 terms of this expansion, which give an error to
be smaller than about 1%, and it takes about 150 sec-
onds for this calculation. A dumping parameter W in
Eq. (23) is taken to be 0.2p~1/3 for all present calcu-
lations, because the magnitude of the root-mean-square
amplitude of particles is not significantly changed over a
wide range of I'’s in supercooled liquids [13, 18, 35].

V. RESULTS

The MHNCS integral equation that has been solved
for the binary soft-sphere mixtures in various concentra-
tion x;’s ranged from 0.1 to 0.9 by a step size of 0.1. In
Table I, both the coupling constant I'e and core-size ratio
03 /0 for which we have studied are summarized together
with the values of PS3/p, reduced isothermal compressib-
lity pxr /8, and total coordination number N, where

2 2
Ne=3>"3 ziz;Ny, (29)
i g
Tm;ij
N;j = 47rp/ 9ij (r)r2dr . (30)
0

TABLE L
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N;; are partial coordination numbers and r,, is the po-
sition of the first minimum of each partial PDF. In the
calculations, the coupling constant was initially set to
the value of the freezing point corresponding to each n
and then increased to the supercooled regime. For both
fourth- and sixth-inverse power potentials with o2/ =
1.4, a reasonable convergence in the numerical integral
equations was not obtained in the supercooled regime.
Otherwise a good convergence was attained and the par-
tial PDF’s obtained from the MHNCS integral equation
exhibit a clear splitting of their second peak in a highly
supercooled regime except for n = 4.

The equation of state, reduced compressibility, and
total coordination number depend only weakly on the
number concentration z; and the core-size ratio o2/01
for a given coupling constant I'. as seen from Table I.
This means that the equivalent one-fluid approximation,
Eq. (8), works well at least for these quantities. We have
examined the validity of the conformal solution theory
by using partial coordination numbers. The equivalent
one-fluid approximation, Eq. (8), together with Egs. (29)
and (30), leads to a simple relation

Ny _ )
Ny _ % 31
Ng 0,2 ( )

and therefore

Ni1 < Nig < Nop . (32)

It becomes evident from Fig. 1 that the one-fluid approxi-
mation, Eq. (31), is no longer valid, and the deviation be-
comes more remarkable for softer potentials like fourth-
and sixth-inverse-power potentials. In the case of the
fourth-inverse-power potential, the inequality, Eq. (32),
fails and instead it holds Ni; > N2, indicating that the
system favors homocoordination over heterocoordination
or a tendency of phase separation. Note that whenz; ~ 0
or z; ~ 1, the partial coordination number for a domi-
nant species tends to its ideal value consistent with the
conformal solution theory.

The phase-separation condition was examined with

Summary of calculations with the MHNCS integral equation. Values of the equation

of state P3/p, reduced compressibility pxr /3, and total coordination number N, are those obtained
by averaging over the number concentration z;. Each second column denotes a mean deviation

over different z1’s.

n Te o2/01 PB/p pxt/B (units of 10%) Ne

4 5.54 1.2 109.45 + 0.05 0.4637 =+ 0.0002 13.47 + 0.05
6 2.18 1.2 40.35 + 0.03 1.064 + 0.007 12.92 + 0.03
6 2.8 1.2 63.48 + 0.06 0.671 + 0.004 12.98 + 0.05
6 3.6 1.2 101.2 + 0.1 0.417 + 0.002 12.95 + 0.03
9 1.33 1.2 23.14 + 0.02 1.62 + 0.02 12.62 + 0.02
9 1.7 1.2 41.73 + 0.06 0.879 + 0.007 12.74 + 0.04
9 2.1 1.2 71.6 + 0.1 0.504 + 0.004 12.72 + 0.02
12 1.15 1.2 19.87 + 0.01 1.73 + 0.02 12.46 + 0.04
12 1.3 1.2 28.01 + 0.03 1.213 + 0.009 12.56 + 0.03
12 1.5 1.2 42.96 + 0.08 0.779 + 0.006 12.61 + 0.03
9 1.33 1.4 23.6 + 0.2 1.58 + 0.03 12.53 + 0.04
12 1.15 14 20.4 + 0.2 1.68 + 0.03 12.39 + 0.05
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FIG. 1. N;j/Ne calculated with the MHNCS approxima-
tion near the freezing point for the core-size ratio o2/01 = 1.2.
Points marked by O, A, and ® are those of Ny;, Ni2, and
Na2, respectively. Respective predictions with the one-fluid
approximation, Eq. (31), are plotted by solid, dotted, and
dashed curves.

the stability parameter z1z2/Scc(0) (Fig. 2). As al-
ready noted with Eq. (10), the approximate form of
z172/Scc(0), based on the conformal-solution theory,
involves the reduced compressibility pxr/8. With this
approximation, Eq. (10), and the values of pxr/8 in Ta-
ble I, no phase separation can be predicted to occur. The
correct values of the stability parameter, however, indi-
cate a demixing tendency, which becomes remarkable for
softer potentials. Especially for the fourth-inverse-power
potential, z1x2/Scc(0) yields no positive value in the
concentration range of 0.4 < z; S 0.8, which means that
the system is no longer forming a stable mixture in this
regime, i.e., the phase separation is predicted. We should
note that the dependency of z1z2/Scc(0) on the number
concentration is not symmetric about the equimolar line,
z; = 0.5, suggesting a breakdown of the quadratic form
in the excess mixing energy, Eq. (5). Similar results are
reported for the hard-sphere mixtures (8].

To obtain a dependence of the characteristic energy
of mixing on the softness parameter, we have calculated

00 S 05 10
X,

FIG. 2. z122/Scc(0) vs the number concentration z; for
the soft-sphere mixtures near the freezing points with the
core-size ratio o2 /01 = 1.2; the softness parameters are n = 4
(solid curve), 6 (dotted curve), 9 (dashed curve), and 12
(dotted-dashed curve), respectively.
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the interchange energy with Eq. (4). The interchange en-
ergy w has been determined using the following equation
obtained by integrating Eq. (6):

Z1Z2

2w /Olp(xl)da:l = /01 [1 - m] dz; . (33)

Here, we assume the quadratic form of P(z;) [Eq. (5)]
for the sake of simplicity. The zero-pressure condition,
Eq. (19), was also applied. In Fig. 3, the reduced in-
terchange energy w* = w/e is shown together with the
freezing temperature and the stability limit point of one-
component soft-sphere fluid [18], which can be inter-
preted as a lower limit of the glass-transition tempera-
ture. It is clearly seen that w* is much smaller than the
freezing temperature for the ninth- and twelfth-inverse-
power potentials. This indicates that these mixtures can
be easily supercooled without causing a phase separation.
Since as the core-size ratio increases the interchange en-
ergy substantially increases, a mixture with a larger core-
size ratio will presumably lead to a phase separation even
in a normal liquid state for the softness n = 9 and 12 [1].
For 03/017 = 1.2, a ratio of the interchange energy to
the excess-internal energy due to the repulsive part of
potentials yields an almost constant value irrespective to
the value of the softness parameter (Table II). On the
other hand, for the larger core-size ratio, 02/07 = 1.4, w
seems to be sensitive to the softness of the repulsive core
potential.

Comparison of the present results of w with the exper-
imental values for inter-alkali-metallic alloys (6] is found
to be in a good agreement. The interchange energy has
been found to be w = 0.145kgT and 0.94kgT for KCs
and NaK liquid alloys, respectively, at 373 K. Taking the
potential parameter £ shown in Table III and assuming
for €;; the average of each combination, w/e is found
to be 0.053 and 0.39 for KCs (02/0; ~ 1.15) and NaK

06-
4o 04
3 0
OO T T T T T T
00 02 04 06 @M
©129 6 4L n

FIG. 3. Softness (n) dependence of the reduced inter-
change energy w* = w/e for the soft-sphere mixtures obtained
from the MHNCS equation near the freezing points. Points
marked by A and O are for the core-size ratio o2/01 = 1.2
and 1.4, respectively. The freezing temperature Ty (O) and
the temperature of the stability limit point T, (®) for the one-
component soft-sphere fluids are also plotted in the reduced
units, i.e., kT /e and kT /¢, respectively. Curves attached
are only for visual clarity.
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TABLE II. Ratios of the interchange energy w to the ex-
cess repulsive internal energy U, for the soft-sphere mixtures
near the freezing point.

n o2/01 w/Uss (%)
4 1.2 2.81
6 1.2 3.04
9 1.2 2.85
12 1.2 2.91
9 14 8.11
12 14 6.52

(o2/01 ~ 1.24) liquid alloys, respectively. Those values
are close to our result for o2/01 = 1.2, as seen from
Fig. 3. We also examined a similar caluculation for the
AKr (o2/01 ~ 1.07) mixture. By taking the result of a
MC simulation by McDonald [36], w = 0.19 + 0.03kgT
at 116 K, and potential parameters shown in Table III,
w/e is estimated to be 0.17 & 0.03. This value is some-
what larger than our result. This discrepancy suggests
that the mixing properties depend on the energy scales
of interatomic potentials as well as the atomic size ratio.

For n = 9 and 12, the gross feature of T,(z1) turns out
to be insensitive to the temperature T'. For n = 6, in the
highly supercooled regime, however, the concentration
dependence of T,(z) exhibits an anomalous behavior at
' = 3.6 around z; ~ 0.7 as shown in Fig. 4. This
anomaly may reasonably be interpreted as a suppression
of the long-ranged concentration fluctuation. The first-
order approximation of z1z2/Scc(0) can be written with
the partial coordination numbers as

T1T2 _ 1 (34)
Scc(0) 1+ z122(N11 + Naz — 2Nya) -

This equation is exact only when the partial pair distri-
bution functions are dumped within a distance charac-
terized by the first coordination shell. It is found that T,
nearly agrees with values estimated from Eq. (34) around
x1 ~ 0.7 where the anomaly occurs, and the partial co-
ordination numbers also turn out to be Nij; > Njo be-
low z; ~ 0.7, instead of N1; < Nj; which holds above
z1 =~ 0.7. In such a highly supercooled state, e4(r) in
Eq. (23) is responsible for the characteristic feature (such
as second peak splitting) of the PDF at the intermediate
distance effects on such an anomal behavior of Tc(z1).

TABLE III. Potential parameters for the generalized van
der Waals model, n, o, and € [16].

Substance n o (R) e (10 Berg)
A 15 3.64 15.1
Kr 15 3.89 21.0
Na 4.8 3.74 146
K 4.8 4.62 133
Cs 4.8 5.33 121
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FIG.4. (a)z: dependence of the temperature of the phase
separation for the soft-sphere mixtures of the sixth-inverse-
power potential with the core-size ratio o2/01 = 1.2; coupling
constants are I'e =2.18 (solid curve) and 3.6 (dotted curve),
respectively. The dashed curve is obtained from Eq. (34) for
I'e =3.6. (b) Nij/Ne obtained from the MHNCS solutions
for the sixth-inverse-power potential with ' =3.6 and the
core-size ratio o2/01 = 1.2. Points marked by O, A, and @
are those of Ni1, N12, and N2, respectively.

VI. DISCUSSION

We have studied the mixing properties of the general-
ized van der Waals supercooled binary mixtures based on
the integral equation with the MHNCS approximation.
The conformal-solution theory holds well at least for the
averaged thermodynamic and structural properties such
as the equation of state, isothermal compressiblity, and
total coordination number. The long-wavelength limit of
Scc(k) significantly depends on the softness parameter
of the repulsive potentials and the one-fluid approxima-
tion no longer gives correct predictions. As the softness n
decreases, a mixture tends to separate into two phases be-
cause of a remarkable increase of the interchange energy
of mixing. Especially in the case of the fourth-inverse-
power potential, the mixture yields a phase separation
already near the freezing temperature. In this regime,
the partial coordination numbers violate a regular or-
der of magnitudes represented by Eq. (32). The inter-
change energy depends on the core-size ratio as well as
the softness of repulsive core potentials. A mixture with a
larger core-size ratio yields a phase separation at a higher
temperature. The calculated values of w/e are in good
agreement with the experimental values for inter-alkali-
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metallic alloys.

T. (the temperature of phase separation) exhibits
an anomalous z; (number-concentration) dependence at
large z; in a supercooled state for the softness n = 6.
This anomaly is possibly understood as a partial suppres-
sion of the long-ranged concentration fluctuation and the
characteristic feature (second peak splitting) of the PDF
at intermediate distances for highly supercooled liquids,
for the latter of which the leading term of elementary
diagrams, £4(r), is essential.

In our model mixtures, the temperature dependence of
the interchange energy is relatively weak. This suggests
that the heat of mixing, e.g., the mixing enthalpy, can
be approximated by the Gibbs free energy of the mixing.
Thus, it is suggested that a mixture of a softer potential

1021

is more difficult to be in a stable amorphous phase than
that of a harder potential and therefore possible core-
size ratios for a stable amorphous phase are much more
strongly restricted for the former than the latter.
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