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Bound solitons in coupled nonlinear Schrodinger equations
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Interaction of solitons belonging to different modes is analyzed in the framework of a system of non-

linear Schrodinger equations with incoherent and coherent nonline"r couplings and with different

group velocities. It is demonstrated that the two solitons can form a strongly bound state with coincid-
ing centers and several weakly bound states with far-separated centers. The bound states of the latter
type can be produced only by the coherent nonlinear coupling, provided it is stronger than the in-

coherent one. The results obtained are employed to explain qualitatively recent experiments with in-

teractions of solitary pulses in the subcritical traveling-wave convection.

PACS number(s): 47.25.Qv, 47.20.Ky, 03.40.Kf

(u, v) =2irtsech[2rt(x —z, , )]exp(4iri t+ip„,, ), (2)

where rt is the amplitude, hereafter assumed equal for
both solitons. If the solitons move at velocities c„and c,„
the coordinates and phases of their centers in Eq. (2) are
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pt, ) being arbitrary phase constants. In the optical fiber
theory, the solutions given by Eqs. (2) and (3) represent
polarized solitons [1,2]. The coupled NS equations occur
as well in some other physical applications, the purport of
the corresponding soliton solutions being similar to that of
the optical solitons in the nonlinear fibers. However, the

The coupled nonlinear Schrodinger (NS) equations de-
scribe copropagation of two independent modes in a
quasi-one-dimensional nonlinear medium. As a para-
digm, one can take the generalized system governing the
copropagation of two orthogonally polarized electromag-
netic waves in a nonlinear optical fiber (see, e.g. , Refs.
[1,2] and references therein):
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where the asterisk stands for the complex conjugation,
and p is a real parameter taking values 0 (p ( l. Usual-
ly, in the theory of the optical fibers p = —,', which corre-
sponds to the Kerr nonlinearity of the dielectric material
with purely electronic response. However, the crucial
point of the present work will be to regard p as an arbi-
trary parameter (which is sometimes admitted in the opti-
cal fiber theory [2]). The variable t in Eqs. (1) will be
treated as the evolution variable, although in the fibers it
has the meaning of the propagation distance, while x is
the so-called reduced time [1]. The parameter c measures
the difference of the group velocities of the two modes. In
the optical fibers, it is produced by the birefringence effect
[il.

Each subsystem (la) and (lb) supports the usual soli-
ton solutions of the form

coupled NS equations with additional dissipative terms,
accounting for input and loss of energy, may also appear
as coupled Ginzburg Landa-u (GL) equations modeling a
number of nonlinear nonequilibrium systems, a well-
known example being the coupled GL equations for the
right- and left-traveling waves in the oscillatory convec-
tion [3]. The GL equations of a certain form support
solitary pulse (S-P) solutions, which may be interpreted,
in terms of the perturbation theory, as the NS sohtons
with the amplitude and velocity uniquely selected by the
balance of the energy input and loss [4,5].

The objective of the present work is to investigate
bound states (BS's) of the solitons belonging to the
different modes. This analysis is spurred by the recent ex-
perimental observation of the interaction between coun-
terpropagating SP's in the subcritical oscillatory convec-
tion [6]. The experiment was carried out in a narrow an-
nular channel filled with a binary fluid heated from below.
The stable SP's in the subcritical state of this system (i.e.,
when the undisturbed state of the liquid is still stable)
were first reported in Ref. [7]. In the experiments per-
formed in Ref. [7], the SP's were immobile. However, in
Ref. [6] it has been demonstrated that, in fact, they were
stuck by microinhomogeneities of the channel. In a very
homogeneous channel, the SP's are observed to be right or
left traveling at small velocities. Both the amplitude and
the velocity of the SP, except for the sign of the velocity,
are uniquely selected in a well-controlled experiment.
Next, collisions between the traveling SP's were investi-
gated in detail in Ref. [6]. It has been demonstrated that
two qualitatively difl'erent outcomes are possible: (i) If
the relative velocity of the colliding pulses is moderately
small, only one pulse survives the collision; and (ii) if the
pulses approach each other at a very small velocity, they
eventually form a persistent quiescent double-peaked
structure, which may be interpreted as a stable BS of the
two SP's [6]. In this work, I aim to put forward a qualita-
tive interpretation of these challenging experimental facts
in terms of the model (1) (it is postulated, as it was first
suggested in Ref. [3], that the interaction of the right- and
left-propagating disturbances in the convection layer is
governed by the coupled GL equations). It will be shown
that the model admits BS's of two different types: (i)
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when the centers of the bound solitons coincide and (ii)
when they are far separated. In the former case, the soli-
tons are strongly bound, the binding energy being equally
contributed to by the incoherent and coherent couplings in

Eqs. (I ), i.e., by the nonlinear terms proportional, respec-
tively, to p and 1

—p. In the latter case, the binding is

weak, and it is solely stipulated by the coherent coupling
(jointly with the group-velocity difference). The BS's of
type (ii) are multiple, the one with the minimum distance
between the centers of the solitons being most stable.

To attack the problem of the BS's analytically, it will be
assumed that the group-velocity parameter c in Eqs. (I) is

t

small, c « g. To analyze the stability of the strongly over-
lapped BS, in the lowest approximation one may com-
pletely neglect c. Then, just setting u =i, one immediate-
ly finds the bound two-soliton state in the form [cf. Eq.
(2)l

u =v =242i risech(4 ilx)exp( I6i iI t) . (4)

The simplest way to analyze the stability of the BS (4)
against a decay into free u and v solitons is to compare en-
ergies of the initial and final states. The full Hamiltonian
of the underlying system (I) is H= f+ '/i'dx, where the
Hamiltonian density is

P = —,
' ic(uu„* —u*u„) —

—,
' ic(vv* —v*v )+(u„( +tv (

—(u) —
~v(

—2piui'ii i' —(I p)—[u'(v*)'+(u*)'v'J. (5)

In addition to the energy (Hamiltonian), Eqs. (I) also
conserve the momentum and the total wave action

I

Inserting Eqs. (2) and (3) with c„=c,, =0 into Eq. (11),
one can readily find

P + 00

W =„(Jul'+ (i J')dx.

It is straightforward to find the energy of the BS (4):

(6) V(z, p) = —512piI e "=z —512(1 —p)c 'rI e

x sin(2cz)cos(2tt ), (i 2)

E= —'3' iI +O(c). (7)

If the BS is unstable, it may decay into the symmetric u

and v solitons plus some radiation (quasilinear dispersive
waves). Note that, if one neglects the group-velocity
term, the Hamiltonian density (5) is always positive for
the radiative component of the wave field. Thus, a
sufficient condition for the stability of the BS (4) can be
formulated as follows: If one assumes that the BS com-
pletely decays into a pair of the free solitons, their net en-

ergy must exceed the initial energy given by Eq. (7). Tak-
ing the eventual free solitons in the form of Eq. (2), it is

straightforward to see that the conservation of the wave
action (6) is satisfied. At last, the net energy E' of the as-
sumed final state, which is twice the energy of the free sol-
iton (2), is

E'=2[- —", ~'+ ~(c')' —~c'], (8)
c' being the final velocities of the free solitons. Thus,

the minimum of the final energy (8) is attained at c'=0:

(E');„=——", q'+O(c') .

Comparing Eqs. (9) and (7), one concludes that, at least
as long as c remains small, the sufficient stability condi-
tion E & (E');„holds. Note that the BS (4) is strongly
bound in the sense that its binding energy

E = (E');„—E=32iI—+O(c) (io)

V=——2p„(u(x) ( (v(x) ( dx

[u '(v*) '+ (u *)'v 'jdx .—(I —p)„

is of the same order as
~
E ).

Let us proceed to interaction of the weakly overlapping
solitons. In this case, the two-soliton state may be approx-
imated just by a linear superposition of the solitons (2).
The interaction is governed by the eA'ective potential

where z=z„—z, , p—=P„—iti, , , and, according to what
was said above, it is assumed that gz &) 1 and c « g.

A stable BS of the two weakly overlapping solitons cor-
responds to a local minimum of the potential (12).
Straightforward analysis demonstrates that the local
minima, satisfying the underlying condition riz)) I, exist
only in the case when p is a small parameter (p « I ). The
minima lie at the points

enp+ 28„=c/iI (i 4)

(for the sake of definiteness, c is assumed positive). From
Eq. (14) it follows that the minima exist at

n ~ nm'x (is)

In turn, it is necessary to have nm,. „)I in Eq. (15), which
implies

p &p „. „—= / cIn. i (i6)

Recall that the assumption c«q underlies the analysis
developed, so that the inequality (16) tells us once again
that p must be small.

Inserting Eqs. (13) and (14) into Eq. (12), it is

straightforward to find the binding energies [cf. Eq. (10)j

E "i= —V(z y ) =256iI e (i 7)

As it follows from Eq. (17), even the binding energy cor-
responding to the most stable BS (n = I) is exponentially
small. This exponential smallness, as well as the very
roechanism to create the BS's of the weakly overlapping
solitons, are similar to those found in Ref. [8] for the

strongly separated solitons governed by one equation (not
a coupled system) of the NS-GL type. In that case, a

z„= n+ ( —I )"(2c) '8„, cosy„=( —
I )", (13)

C

where n=1, 2, 3, . . . , and the small correction 6„&0 is
determined by the equation
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term in the soliton's phase linear in x and proportional to
a small wave number was produced by dissipative terms in

the NS-GL equation, and then it gave rise to a set of the
bound states through the coherent nonlinear soliton-
soliton interaction. In the situation considered here, the
linear terms in the solitons' phases were directly produced
by the group-velocity terms in Eqs. (I ). If the dissipative
terms are added to Eqs. (I) to transform them into a full
GL system, they will induce a correction to the wave num-
bers + —,

' c [see Eq. (3)] as in Ref. [81.
The full GL system can model the two above-mentioned

basic types of the inelastic collisions between the SP's
discovered in Ref. [6], viz. , (i) their fusion into one SP if
the collision velocity is not very small, and (ii) the forma-
tion of a double-peaked BS if the velocity is very small.
Both inelastic processes are characterized by their thresh-
old velocities, i.e., a maximum collision velocity which
makes the process possible. Although the process (i) can-
not be directly modeled analytically, at the qualitative lev-
el it seems akin to a fusion of the soliton-antisoliton pair
into the strongly overlapping BS; the process (ii) can be
modeled directly as the fusion into the weakly overlapping
BS. The latter process can be accurately analyzed in
terms of the perturbation theory (to be presented else-
where), while the former one cannot. However, it has
been demonstrated above that the binding energy of the

BS in case (i) is much larger than that in case (ii). This
implies that the threshold velocity should also be much
larger in case (i) than in case (ii). This inference is in full
agreement with the experimental observations of Ref. [6].

As has been shown, the analysis developed is applicable
if p is su%ciently small. %'ith the growth of p, the weakly
overlapping BS's disappear, and the last one disappears
when p attains the critical value given by Eq. (16). If,
however, the ratio c/ri is not a small parameter, p~,. „may
become nonsmall as well. One can therefore expect that
in the case one or several BS's (apart from the obvious BS
with the coinciding centers of the solitons) still exist at p
not very small (in particular, at the physical value p = —,

' ).
To find the critical value p .„„for this case could be a per-
tinent problem for numerical simulations.

Finally, it seems worthy to note that in the limit oppo-
site to that employed here, i.e., when 1

—p &&1, the system
(I) can be attacked in another way, if one takes into ac-
count that it is close to the exactly integrable Manakov's
system. This approach was developed in detail in Ref. [2].
It has been demonstrated, in particular, that weakly over-
lapped bound states are possible between the so-called
vector solitons, i.e., the ones of the type (4). However, the
mechanism of formation of these BS's is difTerent from
that investigated in the present work.
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