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Anomalous interface roughening in porous media: Experiment and model
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We report measurements of the interface formed when a wet front propagates in paper by im-

bibition and we find anomalous roughening with exponent 0. = 0.63 6 0.04. We also formulate an
imbibition model that agrees with the experimental morphology. The main ingredient of the model
is the propagation and pinning of a self-afBne interface in the presence of quenched disorder, with
erosion of overhangs. By relating our model to directed percolation, we find a 0.63.

PACS number(s): 47.55.Mh 68.35.Fx

I. INTRODUCTION

Recently, considerable progress has been made in un-
derstanding the dynamics of nonequilibrium interface
growth in the context of a variety of models, analytical
theories, and experiments [1]. Many recent investigations
have concentrated on the dynamic scaling properties of
the rms interface width

u~(E, t)—:([h(z, t) —(h(x, t))]z)iIz E f(t/PI&). (1.1)

Here h(x, t) is the surface height at time t, the angular
brackets denote the average over z belonging to an inter-
val of size E; also, f(u) ul for u « 1 and f (u) ~const
for u )) 1.

It has been widely believed that many such problems
lie in the same universality class as the Kardar-Parisi-
Zhang (KPZ) equation [2), which predicts scaling ex-
ponents o. = 2i and P = si for (1+1)-dimensional sys-
tems. However, recent experiments on bacterial colony
growth [3] and immiscible displacement of viscous flu-
ids in porous media [4, 5] give quite difFerent exponents,
with a in the range 0.73—0.89. One possible explanation
is based on the assumption that the noise in the system
has power law distributed amplitudes [6], but the origin
of such a noise in real systems remains unclear [7].

Here we report experiments in which ink, coffee, and
other suspensions are absorbed by a hanging paper, form-
ing a rough interface between wet and dry regions. We
analyze this morphology and measure its roughness ex-
ponent n. Based on the experiment we propose a model
for interface roughening. Both the model and the ex-
periment produce interfaces with an anomalously large

value of n. Our work is focused on the analysis of the
height-height correlation function, defined by

c(t, t) —= (~h(&+*,t+ r) —h(* r)I')' '
~ (1.2)

Here h—:h —h and the angular brackets denote an aver-
age over z and w, and h is the average height. For E « L
(where L is the system size), c(l, 0) /, while for short
times c(0, t) tl . Note that c(E, t) scales similarly to the
width ui(E, t).

II. EXPERIMENT

The imbibition experiment was performed by clipping
paper to a ring stand, and allowing it to dip into a basin
filled with suspensions of ink or coffee [Fig. 1(a)]. The
suspension was absorbed into the paper, forming a rough
interface between the wet and the dry regions. We allow
the interface to rise until it stops and no change in either
height or shape of the interface is observed. The stop-
ping can be attributed to the evaporation of the fluid in
the wet regions. Suspensions of coffee, ink, and various
food colorings were used; also, various papers were ex-
perimented with. Parameters such as temperature, hu-
midity, and concentration of coffee were varied. These
changes affect the area and the speed of wetting, and the
global width of the rough surface, but they do not af-
fect the scaling properties of the surface. After drying,
we digitize this rough interface [Fig. 1(b)]. We then cal-
culate c(l, t = 0) on different length scales l, averaging
over 15 different interfaces. Figure 2(a) shows the data,
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FIG. 1. (a) Schematic illustration of the experimental
setup. (b) Digitized interface, using an Apple scanner with
resolution 300 pixels per inch. The horizontal size of the pa-
per is 20 cm. The function h(x, t ~ oo) was obtained as
the highest dark pixel in column z. (c) Typical result of the
model with width L = 400 and p = p, 0.47.
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FIG. 3. Explanation of the model for interface growth
with erosion of overhangs. Wet cells are indicated by shaded
cells. Dry cells are randomly blocked with probability p (in-
dicated by 0) or unblocked with probability 1 —p (indicated
by 1). The interfaces between wet and dry cells are shown by
aheavyline. (a) t=0, (b) t= 1, (c) t=2and(d) t=3.

which support a scaling of the form c(l, 0) l with
o. = 0.63 6 0.04.

III. MODEL
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The model we propose is defined as follows: on a square
lattice of edge L (with periodic boundary conditions) we
block a fraction p of the cells to correspond to the inho-
mogeneous nature of the paper towel. At t = 0, we regard
the "interface" to be the bold horizontal line shown in
Fig. 3(a). At t = 1 we randomly choose a cell [labeled X
in Fig. 3(b)] which is one of the unblocked dry cells that
are nearest neighbors to the interface. We wet cell X
and any cells that are below it in the same column. This
process is then iterated. For example, Fig. 3(c) shows
that at t = 2 we choose cell Y a second unblocked cell to
wet, while Fig. 3(d) shows that at t = 3 we wet cell Z
and also cell Z' below it [8].

We find that for p below a critical threshold p, = p, (L)
[9] the interface propagates without stopping, while for

p above p, the interface does not propagate. Figure 2(b)
displays the scaling behavior of the model at criticality,
and we find that n = 0.63 6 0.02, a value identical to the
experimental value of Fig. 2(a).

FIG. 2. Log-log plots showing the dependence on length
scale E of the height-height correlation function c(E, O) for
(a) the experimental data (averaging over 15 difFerent ex-
periments), and (b) the numerical results (averaging over
1000 different realizations for system size L = 16384 and
for p = 0.469, very close to p, for the infinite system). The
slope for the set of experimental points indicated by solid
circles (two decades) is 0.63 + 0.04, while the slope for the
simulation points indicated by solid circles (three decades) is
0.63 + 0.02.

IV. DISCUSSION

Next we argue that the model presented above is con-
nected to directed percolation [10], thereby providing a
theoretical basis for the observed and calculated values
of the anomalous roughening exponent o.. The propa-
gation of the interface will stop when it reaches for the
Erst time a directed path of blocked cells leading from
West to East—this path is such that one can walk on
it from West to East without turning to the West (see
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Fig. 4). Such a "directed path" is a path on the directed
percolation cluster formed by the cells labeled 0. We
assume that a single transverse length characterizes the
directed percolation clusters so that the width w of this
interface scales as the transverse correlation length (~ of
the directed percolation problem (Q is a rigorous upper
bound). Thus we assume iv(E) (~ and f, (~~, where (~~

is the longitudinal correlation length in the correspond-

ing directed percolation problem. Since Q (~~
we

identify n = v)(/v~ 0.63 [11].
Up to now we have investigated only the static prop-

erties of the pinned interface, since experimentally we
analyzed the interface only after it stopped propagat-
ing. To probe the dynamics of the growing interface in
the model, we study the height-height correlation func-
tion c(t, t) Our . numerical results support an exponent
P = 0.68+0.04 [Fig. 5(a)]. Numerical studies on the mov-

ing interface give n in the range 0.66 —0.73, larger than
for the pinned interface. The usual exponent identity at-
tributed to the Galilean invariance (which is known to be
valid for the KPZ equation [2]) is violated; we find n+ z
smaller than 2; here z —= n/P is the dynamical exponent.
This is a consequence of the strong anisotropy of the
mechanism which excludes the overhangs: An infinitesi-
mal tilting of the pinned interface will result in removing
blocked cells, thus allowing the interface to propagate
further.

Further support for the directed percolation model can
be obtained if we consider a finite system at a fixed value

p, (p, . If (~ ~
(p, ) is larger than the system size L, the in-

terface may be stopped by the directed percolation path.
Thus we identify two regimes: regime I where (~~ ) L
and regime II where (~~ ( L. In regime I, we observe
only anomalous roughening (n 0.73), while in Regime
II we predict a crossover to behavior described by the
KPZ exponent (cr = 0.5). Exactly such a crossover [12]
is observed, both in our calculations [Fig. 5(b)] and even
in some very recent experiments (Fig. 3 of Ref. 5).
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In summary, we have presented an experimental study
on the ink or coffee front propagating in a paper towel-
a simple model of a randomly porous medium. The in-
terface observed shows an anomalously large roughness
exponent. Based on the physical ingredients of the ex-
periment, a simple model has been proposed which de-
scribes the propagation and the pinning of an interface in
porous media. The model reproduces the observed exper-
imental behavior. In particular, me emphasized that the
experiments correspond to the situation where the evolv-
ing interface is pinned by the random inhomogeneities,
and scaling arguments based on directed percolation were
presented to explain the value of the anomalously large
roughness exponent n. [13]

After this work was completed, L.-H. Tang kindly sent
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FIG. 4. Shown as a bold line is a spanning path formed
by connected nearest-neighbor and next-nearest-neighbor
blocked cells which pin the interface. Note that the various
nonspanning clusters of blocked cells are insufficient to pin
the interface.
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FIG. 5. (a) Scaling plot for the height-height correlation
function c(0, t) defined in (2), for p = 0.47 near the perco-
lation threshold p, . Shown are five different system sizes,
L = 512(x), 1024(+),2048(o), 4096(o), and 8192 (4). The
time t is measured in terms of the number of Monte Carlo
steps per average number of unblocked cells on the inter-
face after the interface reached saturation. The data collapse
wss obtained using n = 0.68 and P = 0.68 and z = 1.00.
The slope of the straight line is 0.68. (b) Log-log plot of
iv(L)—:iv(L, t ~ oo), the global width of the system, as a
function of system size I for a value of p = 0.44 well below
p, of an infinite system. If the system size L is larger than
the correlation length (~~, then we observe sn interface which
is propagating in time without being stopped by the perco-
lation cluster. If L ( (~~ we can still obtain a propagating
interface by removing randomly one cell of the percolation
cluster which stops, at a given moment, the interface. This
local change allows us to obtain a moving interface which is
locally pinned by a critical percolation substrate.
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us a copy of unpublished work which independently pro-
poses the possible relevance of directed percolation as
a mechanism for interface pinning in a medium with
quenched disorder [14].

Note added in proof A. fter this manuscript was sub-
mitted, both the imbibition experiments and the imbibi-
tion model were extended to the case of three dimensions
[15],and additional results were obtained on the dynamic
growth in two dimensions [16].
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