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We propose directed percolation as a generic mechanism for interface pinning in a two-dimensional

medium with quenched point disorder. The roughness of the interface just below a critical depinning
transition is found to obey a power law with an exponent (, =v&/vi=0. 63. A moving interface near

the transition is not self-a5ne, but may nevertheless be assigned an effective roughness exponent com-

parable to the values determined in Auid displacement experiments in porous media.

PACS number(s): 64.60.Ak, 68.10.—m, 75.60.Ch, 47.55.Mh

Recent experiments [1-3] and simulations [4] on fluid
displacement in a two-dimensional porous medium have
produced rough interfaces with novel scaling properties.
Macroscopically planar moving interfaces were found to
be stable at low flow rate when the invading fluid is more
effective in wetting the medium. Analyses of interface
profiles h(x) appear to indicate a power-law increase of
the rms fluctuation C(r) =[([h(r) —h(0)] )j' with the
distance r, C(r)-r~, where the roughness exponent (-0.73-0.88 [2-4].

Due to the random geometry of the pores, the dynamics
of fluid flow on the scale of pore size is very complicated
even in the quasistatic limit, where the fluid motion is
governed by capillary forces at the interface [1-4]. Nev-
ertheless, attempts have been made to understand the
roughening behavior of the interface on a phenomenologi-
cal level by analyzing models which incorporate the essen-
tial roughening and smoothening mechanisms [5,6]. Ko-
plik and Levine, and later Kessler, Levine, and Tu (KLT)
considered the following equation of motion for a coarse-
grained interface height h(x, t),

Bh =DV h+F+f(x, h),
at

where f is the driving force [5]. The main difference be-
tween (1) and the usual Edwards-Wilkinson [7] (EW) or
Kardar-Parisi-Zhang [8] (KPZ) equation is that here the

noise term f(x,h), which represents the random geometry
of the pores, is quenched rather than fluctuating in time.
This type of disorder may lead to interface pinning at
sufficiently small F, a well-known phenomenon in the
study of domain walls in impure magnets [5,9]. Simula-
tions of (1) by KLT in 1+1 dimensions produced a scal-
ing regime with (=0.75, as compared to (= 2 for both
the EW and KPZ equations [7,8].

While the numerical result of KLT is very encouraging,
a number of open problems remain. It is not clear wheth-
er the exponent 0.75 has any particular significance, nor is
it clear why there is a discrepancy among the reported ex-
perimental results. Motivated by these questions, we con-
sider in this paper a simple (1+1)-dimensional solid-on-
solid model for which pinning occurs as a result of direct-
ed percolation of strong pins along the interface. This
mechanism yields a critical depinning transition at the
directed percolation threshold. The interface just below
the transition is self-affine, though the roughness exponent
(,. =0.63 is smaller than the value 0.81 found in Ref. [4].
At the onset of flow, there exists a regime where the inter-
face is rougher than at the transition. We find that
growth in this regime is heterogeneous, the interface con-
sists of a mixture of pinned and moving parts which exhib-
it different scaling properties.

Consider a square lattice where each cell R is assigned
a random pinning force f(R) uniformly distributed in the
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The latest series calculation yields v[I =1.733 ~ 0.001 and
v~ = 1.097 + 0.001 [ I 3].

Our simulation data indicate that, near the depinning
transition, (& sets a characteristic scale for the height
while (i sets characteristic scales for both the distance
parallel to the interface and the time. Figure 1 shows a

interval [0,1]. For a given applied pressure p & 0, one can
divide the cells into two groups, those with f(R) ~ p (free
or F cells), and those with f(R) & p (pinning or P cells).
Denoting by q the density of P cells on the lattice, we have
q=1 —p for 0&p &1 and q=0 for p~ 1. Growth
proceeds in a strip geometry with periodic boundary con-
ditions in the direction parallel to the interface. Under
the solid-on-solid condition, the interface is completely
specified by a set of integer column heights h;, i
= I, . . . , L. At t =0, all columns are assumed to have the
same height h; =0. During growth, we randomly select a
column, say i, and compare its height with those of neigh-
boring columns. If h; is greater than either h; i or h;+i
by t~o or more units, the height of the lower of the two
columns i —

I and i+ I is incremented by one unit. (In
the case of a tie, we choose one of the two with equal prob-
ability. ) In the opposite case, h; & min[h;-~, h;+i]+2,
column i advances by one unit provided the to-be-
occupied cell is an F cell, i.e., f([i,h;+ I] ) ~ p. Otherwise
no action takes place. This completes a growth event.
Time is measured in units of such events per column.

In the absence of P cells, our model is a variant of the
EW model [7] which has been used to model capillary
phenomena without quenched disorder [10]. The presence
of P cells decreases the growth velocity of the interface.
In particular, there exists a critical density q, (defined in

the limit L ~) above which growth eventually comes to
a halt, i.e., the whole interface is pinned.

To find q, , we note that growth stops if and only if (i)
h;~ ~

—h; =0, + I for all i, and (ii) all cells above the in-

terface are P cells. Thus the condition for pinning is that
there exists a string of P cells across the system, connected
horizontally or diagonally one after another. In the limit
L ~, such directed strings appear when the density of
P cells exceeds a critical value q, known as the directed
percolation threshold, which is about 0.539 in the present
case [11].

We have investigated the motion of the interface at a
fixed q both above and below the directed percolation
threshold by means of simulation. Before presenting our
numerical results, let us brieAy recall some properties of
two-dimensional directed percolation. For q & q„a typi-
cal connected cluster extends over a distance of the order
of (i in the parallel direction and a distance of the order of
(& in the perpendicular direction. For q & q, , there ap-
pears a directed percolating cluster which extends over the
whole system. This cluster is known to possess a network
structure of nodes and compartments [12]. Each com-
partment has an anisotropic shape similar to the connect-
ed clusters below q„, characterized by (i in the parallel
direction and g& in the perpendicular direction. On both
sides of the percolation transition, the two lengths have
the power-law behavior
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FIG. 1. A scaling plot of the mean surface height vs time for
0.30 ~ q ~ 0.59.

scaling plot of the mean interface height H(t) =(h;(t))
against the time t for 0.3~q ~0.59 and L =16384.
Here and elsewhere the overbar denotes an average over
all columns and () denotes an average over different reali-
zations of the random pinning forces. To bring data at
small t onto the scaling curve, a constant 0.25 is added to
H(t) The b.est data collapse is achieved by choosing
q,. =0.5385, using the exponents v[[ and v& quoted above
[14]. Denoting by 4+ (@-) the upper (lower) branch of
the collapsing curve, we have

H(t)=g.e (t/gi) (3)

for q (q, . (q & q, . ). The pinned phase is represented by
the lower branch, where H(t) grows to a finite value of
the order of g& which is the average perpendicular dimen-
sion of a compartment of the infinite directed percolating
cluster. In the moving phase there is a crossover from a
power-law growth H(t)-t" " at t «(i to a linear behav-
ior H(t) =vt at t »(t. The steady-state velocity (in the
limit L ~) can be expressed as

v(p) -&i/&i-(p —p, ) ""

where v][
—v& =0.636.

The fact that g~~ appears as a characteristic time has to
do with the way a segment of the interface gets pinned
and depinned in our model. In the following we shall
focus on the case q & q„where each pinned segment has a
finite extent of order gi. Figure 2(a) shows a typical set of
interface configurations h; (t) at uniform time intervals nr
just below the critical value q„, where r 5. (Time in-

creases from bottom to top. ) The difference between suc-
cessive curves Ah; (t ) =h; (t + r ) —h; (t) is plotted in Fig.
2(b). In both cases each curve is shifted vertically up-
wards by an amount proportional to t. The Oat segments
in Fig. 2(b), which correspond to the dark areas in Fig.
2(a), are parts of the interface which remain stationary
over each time interval. A bump in Fig. 2(b) is a part of
the interface which has moved during this time period.
Rather than a more or less uniform growth, the pictures
clearly indicate a separation of pinned and moving parts.
Each train of bumps in Fig. 2(b) is associated with a pair
of pinning and depinning processes at the upper and lower
strings of P cells. Their constant slope shows that there is
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g„,(r) =log[C„,(2r)/C (r) j/log2. (5)

FIG. 2.
above the
Di0'erence
cases each
to I.

(b)
(a) Snapshots of the upward moving interface just
pinning threshold at uniform time intervals. (b)
in height between successive curves in (a). In both

curve is shifted vertically by an amount proportional

Figure 3 is a plot of this quantity against r for the first,
second, and the fourth moment for an L =32768 system
after 2' time steps, and averaged over several different
runs. Data from the first and second moments yield an
effective exponent 0.73 and 0.77 over a decade, respective-
ly, while those from the fourth moment reach as high as
0.8. The increase in („, for higher moments comes from
the larger weights assigned to the steep (moving) parts of
the interface which, in our case, have different scaling
properties than the less steep (pinned) parts.

In contrast to the roughness exponent g, different mo-
ments of the height fiuctuation yield nearly the same
power law for the interface width,

a typical pinning and depinning velocity along the inter-
face. The characteristic time in (3) is simply the time it
takes for the interface to get over a long string of P cells,
which has a typical size gt. To be consistent with (3), the
typical size of moving segments in the perpendicular
direction should be of the order (~.

It should also be evident from Fig. 2(a) that the pinned
and moving parts of the interface behave diA'erently upon
a rescaling of horizontal and vertical distances. Each
pinned segment traces out a typical path on a directed
percolation cluster, which has a power-law roughness
characterized by an exponent g„=v&/vs=0. 63 as con-
firmed by direct measurements. On the other hand, the
moving segments tend to have a slope of order I or larger.
Consequently, self-a%ne scaling is not expected to hold
for an interface which contains both types of segments
when the coarse-graining length is less than gl.

What happens if one attempts to describe the roughness
of such a heterogeneous interface with a single exponent
g? A common approach to determining g is to measure
the first or second moment of the distribution of ~h;+„—h;~ and fit the data to a power law. In our case, this
procedure generates a reasonably good power law over a
certain range of distances, but the exponent depends on
the moment considered. For example, let us consider the
case q =0.530 which is only slightly less than the critical
value 0.5385. Denoting by C„,(r) = j~(~h;+, —h;~"') the
mth root of the mth moment of the distribution at a given
r, we define an eAective exponent

w (t) =f( th;(t) —h;(t)l )1 't -t ' (6)

for t « gs with P„=0.63. Figure 4 shows a scaling plot for
the mean-square surface width w (t) using similar scaling
factors as in Fig. l. From the data collapse we conclude

w(t) =g,e + (t/gt), (7)

where 0+ (x)-x"' "' for x« I. For x» I, 4'-(x) (for
the pinned phase) tends to a constant while II+(x) (for
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FIG. 4. A scaling plot of the mean-square surface width vs

time for 0.30«q «0.59. The upper data collapsing curve
crosses over from a power law with an exponent 2p„=1.266
(solid line) to another power law with the KPZ exponent 2p= —',

(dashed line) at t-gl.
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the moving phase) crosses over to x'l . The latter behav-
ior is typical for a moving interface which is rough and
whose velocity depends on its orientation. Although in the
q =0 limit the interface velocity in our model has no slope
dependence, such a dependence is expected at a finite con-
centration of the P cells whose eA'ectiveness in retarding
the interface motion varies with the overall slope.

To summarize, we discussed here a particular pinning
mechanism —directed percolation of strong pins —for a
driven interface in a two-dimensional disordered medium.
This mechanism gives rise to a continuous depinning tran-
sition at the percolation threshold. The critical behavior
around the transition was shown to be related to the
geometrical properties of percolating clusters. Approach-
ing the transition from the moving phase, the interface
breaks up into pinned and moving segments with diA'erent

scaling properties. Measurement of moments of interface
height fluctuations nevertheless gave eA'ective roughness
exponents comparable to experimental findings.

While there are obvious similarities between the model
we studied here and the fluid displacement experiments
and simulations, the solid-on-solid condition we adopted
does introduce an anisotropy which is not expected to be
present in experiments. Direct comparison of effective ex-
ponents may be further complicated by finite-size effects,
different boundary conditions, etc. Another important
difference is the use of constant pressure in our simula-

tions, whereas displacement experiments are typically car-
ried out at a constant flow rate. While the two ensembles
should give identical results for an infinite system in the
moving phase, their relationship in a finite system needs to
be further explored. However, we believe that the pinning
mechanism proposed here and the critical behavior we ob-
served around the depinning transition could bear a
broader significance. In particular, it would be interesting
to examine the possibility that a moving interface close to
the pinning threshold is not self-affine on length scales of
experimental interest.

Note added. After this work was completed, Havlin
kindly sent us a copy of recent work [15] which indepen-
dently proposes the possible relevance of directed percola-
tion as a mechanism for interface pinning in a medium
with quenched disorder, along with a presentation of ex-
periments which seem to match well with the proposed
theoretical picture.
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