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Perturbation theory with arbitrary boundary conditions for charged-particle scattering:
Application to (e,2¢) experiments in helium
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A perturbation series of the distorted-wave Born type is developed in such a way that the slow de-
crease of the Coulomb potential in which the incoming and scattered particles move plays no role. We
apply this approach to triple-differential cross sections for electron-impact ionization of helium at low
and intermediate energies, where we use Coulomb waves with an effective charge for the incoming,
scattered, and ejected electron, and show that even though these wave functions are known to satisfy
the wrong Coulomb boundary conditions at infinity, they give reasonably and unexpectedly good agree-

ment with experiment.

PACS number(s): 34.10.+x, 34.80.Dp

It is generally considered that perturbation expansions
for charged-particle scattering are constrained to satisfy
asymptotic boundary conditions that account for the slow
decrease of the Coulomb field with distance [1-3]. This
implies, for example, that the Coulomb Born approxima-
tion should never be used for electron scattering from neu-
tral atoms despite the obvious practical value that this ap-
proximation may have for inner-shell excitation [4]. The
Coulomb Born approximation is periodically proposed for
neutral systems, but is based on invalid expressions for
transition amplitudes [2,5]. In this report we show how
one may simultaneously employ well-defined expressions
for transition amplitudes, yet obtain first-order expres-
sions where the wave functions are not constrained by the
slow decrease of the Coulomb potential at large distances.
This requires rewriting conventional perturbation theory
recognizing that the solutions of the perturbation equa-
tions are not generally given by the conventional Green-
function expressions universally used in formal scattering
theory [6]. This can be done surprisingly simply, as we
demonstrate here. Recent (e,2e) measurements for He
targets provide a test of this idea [7]. We find that the
Coulomb Born approximation for this neutral system
gives reasonably good agreement with experiments at en-
ergies as low as 50 eV, a case in which some important ex-
perimental features of the triple-differential cross section
(TDCS) are reproduced by theory for the first time,
where the usual Born approximation gives completely
wrong results. Our new perturbation expansion has obvi-
ous implications for the computation of physically impor-
tant quantities, such as the generalized oscillator strength,
fundamental to the interaction of charged particles with
matter [8]. Atomic units are used throughout.

Consider excitation or ionization of an (V —1)-electron
ion with nuclear charge Z by a fast electron N. The Ham-
iltonian for the system is

H=H0+VT+Vim, (1)

where Hy is the kinetic-energy operator for N electrons,
Vr is the potential of the N — | target electrons in the field
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of the nucleus, and V;,, is the interaction potential of elec-
tron N with the target ion. As ry— o we have Vi,
— —Q/rn, where Q =Z — N +1 is the net charge of the
ion in the initial state and ry is the coordinate of electron
N. Define H(\) according to

HQ)=Ho+Vr+ Vgt U+AW )

where Ver=—Z/rn, U=(Z.s—Q)/rn, W=V, +0Q/
rn, and Z.q is arbitrary. Clearly, when A =1 we recover
the true Hamiltonian. When A =0 we obtain the “initial”
Hamiltonian of the (V —1)-electron target ion plus elec-
tron NV in the field of a nucleus of charge Z.s. Our objec-
tive is to expand the 7 matrix 7(1) in a power series in A.
To this end we define the Coulomb wave functions y/ki )
for electron NV which are eigenfunctions of the Hamiltoni-
an

H =Ko+ Ver+ArU, 3)

where Ko is the kinetic-energy operator for electron N.
The desired transition matrix element is

T (W) =(ye WO AW +12WG W)Wy WD),
@

where ®; and @ are initial / and final f target eigenstates,
andGT*W) =[E+in—HM)] "

If the coefficients w = of A" in the expansion of the
Coulomb waves were given by the usual Green-function
expression

wi"E =(E+in—Ko—Ver) ~'Up" ", (5)

then the expansion of T(1) in powers of A would just rep-
resent the usual distorted-wave Born expansion. Howev-
er, it is known that the Coulomb waves cannot be expand-
ed with coefficients given by Eq. (5), since the limit of the
right-hand side of Eq. (5) as n goes to zero does not exist
[2,3,9,10]. The standard response to this dilemma is to
abandon [2,3,10] expansions in powers of A. This allows
no freedom to choose a Z.r on physical grounds, rather
the value of Z.y is dictated by “boundary conditions” at
infinite distance which should be physically unimportant.
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To recover the freedom to employ arbitrary Z.q some au-
thors [11] screen the real potentials with a large screening
radius Ro. The 7 matrix is then multiplied by large phase
factors expliviA)In(2kRy)], where v(L)=[(1 —A)Zq
+1Q1/k, which also precludes expansions in powers of A.
This lack of flexibility emerges only when higher-order
terms are computed, thus it has not completely deterred
the use of effective charges in practical calculations [4]. It
has always been troublesome, however, that the higher-
order terms are known to diverge. Here we propose a sim-
ple alternative to abandoning the expansion of 7, namely,
compute ¥ directly from the known Coulomb func-
tions [6]. We then easily verify that this immediately
gives us lowest-order terms with the desired Z.g, but at
the same time gives finite, well-defined expressions for all
orders.

For the zeroth order we have as usual 7 =0 and for
the first order we obtain

TV =(y (0)®/| Vi wid (0)D,) (6
|

where the orthogonality of initial and final target eigen-
states has been used to eliminate Q/ry. This is just the
desired expression since the distorted waves are Coulomb
waves in an attractive potential with the arbitrary
strength parameter Z .

The second-order term is not the conventional result of
distorted-wave theory; rather, we have

7@ =2y Mo Vinlyit W)

A=0

+(ye (0)O,|WG T (O)W|y (0)d,) . @)

Since the derivatives of the Coulomb functions are well
defined, and since W — 0 as ry — oo faster than 1/ry, it is
easily seen that T is finite and well defined. Alterna-
tively, if Eq. (5) with n=1 is erroneously used to compute
the derivatives of the Coulomb functions with respect to
the expansion parameter A, then one obtains the usual ex-
pression

T =y )0/ | (Vi = Ver)G T O) Vi — V) lwid (0)D;) €))

which diverges unless Z.s=Q. In contrast, our perturba-
tion series allows complete freedom in choosing Z.r and
thereby extends the Coulomb Born approximation to
scattering from neutral systems as proposed in Ref. [5].

This freedom is useful for analysis of atomic collisions
at high and moderately high energies. For example, exci-
tation cross sections at large momentum transfer q corre-
spond to close collisions where Z.y=Z. In the Born ap-
proximation the cross sections decrease as g ~'2, while in
the Coulomb Born approximation [Eq. (6)] the cross sec-
tions decrease as g 4 e, they behave as Rutherford
cross sections for large q.

As a more detailed test of these expansions, we consider
the ionization of He by electron impact, since much high-
quality data is available from (e,2e) experiments. We
have used a model in which the correlation between the
two atomic electrons is neglected, and therefore we ap-
proximated the bound-state wave function by a simple hy-
drogenic wave function ¢;(r) =Z#?x =2 ~ % with Z
equal to the screened charge chosen such that it gives the
binding energy of the 1s electron, and an effective charge
Zr=1.6 in the Coulomb waves. The 7 matrix is comput-
ed using Eq. (6).

The TDCS corresponding to ejection of an atomic s
electron with momentum k; into the solid angle d Q;, and
to scattering of the incident electron in the direction
(6',¢") into the solid angle d Q' is then given by

d’c (4 2K 2

d0dn, % 20 5Tl ©

Figure 1 shows the TDCS for He corresponding to an
energy of the incoming electron of 256 eV, energy of the
ejected electron of 3 eV, and a scattering angle of 8'=4°.
The experimental results are from Ref. [7]. Even though
both experiment and theory give absolute values of the
TDCS, we have multiplied the experimental results by

|

0.703 for comparison purposes. This overall multiplica-
tive factor is in agreement with other calculations [12] us-
ing correlated three-body continuum final wave functions
and has been the subject of previous studies [13]. Notice
that the ratio between the binary and recoil peaks is repro-
duced by the theory, as well as the angular position of the
peaks, whereas the plane-wave Born approximation, given
by the dashed line, does not reproduce these features of
the TDCS. Several theoretical calculations, such as a
much more elaborate distorted-wave calculation of Madi-
son, Calhoun, and Shelton [14] and a second Born calcu-
lation of Mota Furtado, and O’Mahony [15] (for a recent

FIG. 1. TDCS for He corresponding to an energy of the in-
coming electron of 256 eV moving parallel to the Z axis, energy
of the ejected electron of 3 eV, and a scattering angle of 4°.
The solid line is the present calculation, the dashed line is a
plane-wave Born calculation, and the solid dots are the experi-
mental results from Ref. [7].
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review see Ref. [16]), have reproduced these results.

Figure 2 shows the TDCS for He for an energy of the
incoming electron of 50 eV, energy of the ejected electron
of 10.5 eV, and a scattering angle of 7°. Notice that even
though these results are not in perfect agreement with the
experiment, some of the important features are repro-
duced by theory for the first time, such as a double peak at
negative angles, a small cross section in the forward direc-
tion, and a larger cross section in the backward direction.
The dashed line shows the results of a plane-wave Born
calculation, which gives a completely wrong angular dis-
tribution, with most of the intensity in the forward direc-
tion.

We have presented a perturbation series that allows one
to use Coulomb waves with arbitrary Z.g in the calcula-
tion of cross sections for inelastic scattering of charged
particles from neutral atoms. We have shown that, by
writing the perturbation series for the 7 matrix in a par-
ticular way, the boundary condition of the zeroth-order
wave function becomes irrelevant. We applied this
method to calculate the triple-differential cross section for
electron-impact ionization of He at intermediate and low
energies and found that even using a simple model for
both the ground state and the ejected electron wave func-
tions the theory reproduces reasonably well most of the
experimental features of the cross section. It is indeed a
great improvement over the plane-wave Born approxima-
tion, which, as pointed out above, does not reproduce the
ratio between the binary and recoil peaks at 256 eV and
gives completely wrong results at SO eV. This method
should prove particularly useful for the investigation of
inner-shell excitation [17] and for the computation of gen-
eralized oscillator strengths. A more comprehensive study
of the method and its applications to (e,2e) cross sections

FIG. 2. TDCS for He corresponding to an energy of the in-
coming electron of 50 eV moving parallel to the Z axis, energy
of the ejected electron of 10.5 eV, and a scattering angle of 7°.
The solid line is the present calculation, the dashed line is a
plane-wave Born calculation, and the solid dots are the experi-
mental results from Ref. [7], normalized to the present calcula-
tion.

in electron scattering from atomic hydrogen is now under
way, and the results will be published elsewhere.
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