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Fluctuation phenomena in a multibranch potential
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Fluctuation phenomena, to be anticipated in all systems for which the internal fluctuating variable is

a multivalued function of the observable quantity, are reported. Analog electronic experiments on a
model optically bistable Fabry-Perot cavity have shown that the observable may be described in terms
of a Boltzmann distribution with a rnultibraneh effective potential. The distribution was observed to
possess up to four peaks (two twin peaks) within the range of bistability, and to become singular at
outer boundaries corresponding to the branching points of the potential. The experimental results are
compared with theory.

PACS number(s): 42.65.Pc, 05.40.+j

The high level of scientific activity currently devoted to
optical bistability (OB) is attributable to its prospective
applications, and also to the richness and intrinsic interest
of the underlying physics. In particular, OB systems pro-
vide opportunities for the investigation of a wide range of
quite general fluctuational phenomena associated with
coexisting stable states. Work of this kind has been car-
ried out on lasers [1-4],on hybrid electro-optical systems
[5] and, most recently, on a passive all-optical double-
cavity membrane system (DCMS) [6,7]. The latter ar-
rangement has turned out to be of considerable interest in

that it exhibits zero-frequency spectral peaks in the inten-

sity of the transmitted light together with the closely asso-
ciated phenomenon of stochastic resonance [8].

An intriguing feature of attempts [61 to account for the
effect of phase noise in the DCMS was the inference that
the intensity distribution P(IT) of the transmitted light
should in principle be describable in terms of a multi
branch effective potential. Some remarkable conse-
quences followed from this hypothesis. In particular, it
was predicted that P(IT) should be confined within

boundaries, that it should be singular at these boundaries
and that it might possess up to four separate maxima.
These predictions could not be tested in the DCMS itself
because of various smearing effects, in particular those
due to fluctuations in the input light intensity. Partly for
this reason, and partly because the theory of the DCMS
involves two periodic functions of the phase gain p of light
in the cavity, M(P) and N(p) [6],whose exact form is un-

known, it was impossible to make a direct comparison of
experiment and theory.

The main purpose of this Rapid Communication is to
report the principal results of an analog electronic experi-
ment that has enabled us to model an idealized cavity, in

the absence of input intensity noise, and with M(p) and

N(p) chosen in the (archetypal) forms corresponding to a
Fabry-Perot cavity. Thus it has been possible to investi-

gate the interesting phenomena associated with a multi-
branch effective potential and to compare the results, both
qualitatively and quantitatively, with theoretical predic-
tions. As we demonstrate belo~, the experiment has
confirmed the unusual singular and multipeaked character
of P(IT) and, in addition, has revealed features of the
inner workings of the cavity system, such as the phase dis-

Here, I and IT are the intensities of the incident and
transmitted radiation, p is the intracavity phase gain,
which takes the value p in the limit I 0, and F is the
finesse of the cavity. The functions M(p) and N(p) relate
the intensities of the transmitted light and of the intracav-
ity field (which drives the optically nonlinear medium and
causes the changes in p) to that of the incident light; the
expressions for M(p) and N(p) are standard [9] for a
Fabry-Perot cavity; and we have included the nonlinearity
parameter of the medium within Ase. The function I (t)
describes the noise driving the intracavity phase gain p of
the radiation. It is assumed white and Gaussian.

l„,(I) =r„,+m„,(r),

(bl, (t )) =0, (bl (I )bI (I')) =2Db(r —I') .
(2)

The noise (1) and (2) can originate in various ways,
e.g. , from thermal fluctuations in the nonlinear medium or
through random vibrations of the mirrors resulting in

variations of the intracavity optical length. The crucial
point here is that the fluctuations of the transmitted light
intensity IT are only due to phase fluctuations, awhile the
intensity of incident light I remains constant.

tribution, that are inaccessible through conventional opti-
cal measurements. Because phase noise is inherent to all
optical cavities, the results obtained are of wide relevance.

The model considered is a nonlinear Fabry-Perot reso-
nator displaying dispersive OB. In modeling the mecha-
nism of OB we assume that the internal medium of the
cavity has a refractive index which depends linearly on
light intensity, and that relaxation of the intracavity phase
gain of the radiation can be described by the Debye equa-
tion (see, e.g. , [9] and references therein). (Note that this
is actually a different OB mechanism to that of the air-
spaced DCMS device [6].) Our system is then described
by

j+(Ifr)(y y"') =IM—(y)+I (I),
IT =IN(y),

M(y) =3~ [1+ —,
' F(1 —cosp)]

N (p) =AIv [ I + 2 F(1 —cosp) ]
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(4)

In the range of optical bistability the potential U(p) has
two minima lying at p pi 2 where pi 2 are the stable solu-
tions of (1) with I,(I)=I„,.

The quantity of greatest physical interest is the proba-
bility distribution P(IT) of the transmitted light intensity,
rather than p(P), since it is P(IT) that can be measured in

optical experiments. This quantity can be calculated im-

mediately from (I ), (3), and (4) and has the form

P (IT ) = K (IT )exp [—V(IT )/D],

V(IT) =U[y(IT)], (5)

—2 —)
2IAN

K(IT) =IT Z Fusing[

It is evident from Eqs. (1)-(5) that there are dramatic
differences between the phase distribution and that of the
transmitted light intensity. This is due to the periodicity
of the transmission coefficient N(p) in (1), N(p+2n)

N(p). As a consequence, the whole p axis is mapped by
the relation IT =IN(p) on the interval (IT;„,IT .,„)of IT

IT ~;„=IAiv/(I +F), Ir ~a„=lAN,

and the distribution P(IT) =0 for all IT lying outside this
range. At the same time, the effective potential for the
transmitted light V(IT) is a multibranch function, and the
values of 17;„andIT „.„(i.e., those for p=nn) corre-
spond to its branching points. A comparison of U(P) and
V(IT) is shown in Figs. 1(a) and 1(b).

It is the multibranch character of the effective potential
V(IT) that accounts for some very unusual features seen
in the distribution of the transmitted light. The distribu-
tion still has two maxima at IT =ITi 2—=IN(gi 2) corre-
sponding [10] to the minima of V(IT), but they can now
lie on different branches of V(IT) [see Fig. 1(b)]. The
branching points give rise to the singularities of the distri-
bution, because they correspond to an infinite "density of
states" for the transmitted light intensity near boundaries
[see the prefactor in (5)]. Correspondingly, P(IT) di-
verges for JT ET;„,JT „.„.It should thus be possible to
obtain a four peaked distribution for-a double-well poten-
tial under OB conditions. While investigating this in-

teresting theoretical prediction it is very important to bear
in mind that the distribution as determined from experi-
ment P,„~&(IT) is the coarse-grained "bare" distribution
P(1,):

Thus in experiments, rather than singularities, we can ex-

The statistical distribution of the phase p(p) has the
form

p(P) =Z ' exp[ U—(y)/D],
(3)

Z = dPexp[ —U(P)/Dl,

where U(p) is the effective potential for the dynamics of
the phase:
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FIG. 1. (a) The potential U(p) for the distribution over the
phase in the nonlinear Fabry-Perot cavity described by Eq. (I)
(rlAu =3.925, p 0'=3.4 rad, F 10.1); (b) the corresponding
effective multibranch potential V(1r) for the probability dis-
tribution of transmitted light intensity, which bounded at
Irmin Ir max. The positions ITi, 2 of the inner maxima in P(lr)
are close to but do not coincide exactly [10] with the corre-
sponding minima in V(lr) shown in (b). The inset in (a) shows
the experimental hysteresis loop measured for the electronic
model using the same parameters.

pect to see very strong additional peaks near boundaries of
the light distribution. Ne note that the onset of the four-
peaked distribution depends on the system becoming opti-
cally bistable (for optically monostable systems, the distri-
bution would be expected to have three peaks). Thus, in

the model, (I) and (2), there is no special requirement on
the finesse for the four-peaked distribution to arise; in real
systems, however, which have losses, a minimum value of
the finesse would need to be exceeded.

The theoretical predictions, including the appearance of
the four-peaked distribution, have been tested with the aid
of an electronic analog model of (I) and (2). The circuit,
constructed with the conventional design [11]and accura-
cy, was driven by a pseudo-white-noise generator [12].
The IIuctuating voltages in the circuit representing IT(t)
and P(t) in (1) were digitized and the corresponding dis-
tributions P(IT) and P(p) were computed by means of a
Nicolet LAB80 data processor. More complete details of
the circuit model will be given elsewhere.

The experimental hysteresis loop in the absence of noise



R7680 DYKMAN, LUCHINSKY, McCLINTOCK, STEIN, AND STOCKS

is shown in the inset in Fig. l. It contains a characteristic
[9] spike at the bifurcation value of the incident radiation
intensity corresponding to the disappearance of the
lower-transmission branch: the transient transmission
exceeds that on the upper branch because, on its way from
the lower-IT stable state [IT=IT~ in Fig. 1(b)] to the
higher-IT one [IT=IT2 in Fig. 1(b)], along the input-
output characteristic, it is obvious from Fig. 1(b) that the
system must pass the value IT „.„&IT2. When noise was
added to the system, transitions occurred between the
stable states. Their reciprocal average lifetimes were
measured and, like those from the earlier experiments on
the DCMS [6], were found to be of the activation type; a
Lorentzian-shaped zero-frequency peak was observed in
the measured spectral density. To this extent, the results
obtained were in qualitative agreement with those from
the DCMS. In the latter work, however, it was not possi-
ble to compare the shape of the distribution of the
transmitted light intensity quantitatively with theory be-
cause of the input intensity fluctuations and because, as
mentioned above, the forms of M(111) and N(p) for the
DCMS are unknown and presumably do not correspond to
those assumed in the simple model (1). Neither was it
possible to observe the predicted four-peaked distribution
P(IT) for the DCMS.

The distribution P(IT) measured for the electronic
model is shown by the jagged curve of Fig. 2(a). Unlike
the (smeared) results obtained in [6], the multipeaked
structure of P(IT), expected to result from the branching
of the effective potential V(IT) given by (5), is clearly
resolved. Three maxima are immediately apparent; closer
inspection reveals that the left-hand one is actually a dou-
ble peak, i.e., there are four maxima in total. It is also evi-
dent that the outer peaks are highly asymmetric: At their
outer boundaries they are, in fact, singular within the
resolution of the experiment, just as predicted. The
smooth curve, representing the theory, is in good quantita-
tive agreement with the measurements. The distribution
of phase p(111) has also been measured for the electronic
model and is shown by the jagged curve in Fig. 2(b). In
striking contrast to P(IT), it exhibits a conventional
double-peaked structure, consistent with the ordinary
single-valued double-well effective potential (4) from
which it is derived. Again, the measurements are in excel-
lent quantitative agreement with the theoretical prediction
(smooth curve).

In conclusion, we point out that, although the present
investigations have related specifically to the model (1) of
optical bistability in a Fabry-Perot cavity, very similar
phenomena to those discussed above —notably, the ap-
pearance of multipeaked distributions confined between
singular outer boundaries —may also be expected to arise
in other types of passive optical resonator and also in

P (IT)
(a)

1 6 2.3 3 1

p (4t

4

FIG. 2. Experimental probability distributions (jagged
curves), measured for the electronic model of (1) with rlA~

3.4, compared with the corresponding theoretical predictions

(smooth curves): (a) the distribution of transmitted light inten-

sity P(lr) displays four separate maxima confined between

singular outer boundaries (note that the left-hand peak is actu-

ally a double one, in both experiment and theory, as shown in

the expanded region}; (b) the variation of the phase takes the

form of a standard double-peaked distribution p(p).
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lasers, as well as in nonoptical systems, whenever the fluc-

tuating quantity (corresponding to the phase gain in the
above analysis) is a multibranch function of the observed
quantity (the transmitted light intensity).
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