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Preparation and detection of macroscopic quantum superpositions
by two-photon field-atom interactions
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We put forward a simple, feasible scheme for the preparation and subsequent detection of macro-
scopic quantum superposition (MQS) states. It is based on the two-photon model which obtains when

a cascade of two atomic transitions is resonant with twice the field frequency. The initial conditions
amount to a field in a mixed state characteristic of lasers or masers and an excited atom. The MQS is

generated by a conditional measurement of the atomic excitation after an interaction time that deter-
mines the relative phase of the MQS components. Remarkably, the MQS is subsequently detected
and its phase is inferred by measuring the excitation probability of a second, "probe, " atom, as a func-
tion of its interaction time. The realization of the scheme in the optical domain, using dielectric mi-

crospheres, is discussed.

PACS number(s): 42.50.—p, 32.80.—t, 42.52.+x

Superposed macroscopically distinguishable quantum
states of the electromagnetic field, hereafter referred
to as macroscopic quantum superpositions (MQS), have
aroused considerable interest in recent years [1-9]. Their
main appeal is that they constitute potentially realizable
"Schrodinger cats" that embody the well-known paradox-
ical aspect of quantum mechanics [4]. Attention has been
focused on a single-mode field in a MQS of two coherent
quasiclassical states, with identical mean amplitudes and
a fixed relative phase [1,3]. Various rather intricate
mechanisms have been proposed for the preparation of
such MQS, but none of them has been realized thus far.
These mechanisms include the following:

(a) Nonlinear evolution of the field from an initially
coherent state in amplitude-dispersive [5,6], and, particu-
larly, bistably dispersive [7] media. The generation of
MQS states in such media is contingent on dissipative
losses being negligible.

(b) Quantum measurements (photon counting [8] or
quadrature detection [9]) of the field, following its
preparation in a nonclassical state, e.g., in a parametric
amplifier. Such schemes are hampered not only by dissi-
pation, but also by the performance of photon detectors
that falls short of ideal (unit) efficiency.

(c) Interactions of a two-level atom with a quantized
single-mode field, describable by the Jaynes-Cummings
model (JCM). This model is of fundamental importance
in quantum optics [10,11] and is realizable to a very good
approximation in high-quality resonators [12]. Certain
JCM schemes for the generation of MQS rely on the ini-
tial preparation of the atom in a polarized state, i.e., a
coherent superposition of the ground and excited states
[13,14]. A more recent scheme [15]exploits a remarkable
inherent property of the resonant JCM [16],whereby ini-
tial preparation of the atom in the ground or excited state
and of the field in a quasiclassical coherent state results in

the spontaneous disentanglernent of the atomic and field
states, with the field forming a MQS of two quasiclassical
states. The limitations of this scheme stem from the com-
plexity of the field evolution in the JCM: (i) It is difficult

to exactly characterize the superposed states in the
spontaneously-formed MQS. (ii) Likewise, it is difficult
to account for changes in the MQS due to initial devia-
tions of the field from a perfectly coherent state, although
such deviations are inevitable in real systems. (iii) The
field-atom interaction time is restricted to exactly half the
time between the "collapse" and "revival" of the oscilla-
tions of atomic population inversion. Correspondingly,
the MQS relative phase is restricted to 180'.

The detection of MQS, particularly the "signature" of
its relative phase, poses yet another difficulty. The only
viable detection scheme that has been proposed thus far is
based on the interference of a MQS with an intense
coherent field of the same frequency at a homodyne detec-
tor, which results in sensitivity of the output current to the
MQS phase [5]. As noted above, the losses or inefficiency
of the detector will severely degrade this MQS signature.

Our purpose here is to put forward a simple, feasible
scheme for the preparation and subsequent detection of
MQS in the same setup It is base. d on the two photon-
resonant JCM with due account for Stark shifts [17,18],
which obtains when a cascade of atomic transitions
~e) ~i) ~g) is resonant with twice the field frequency,
co,g =2', whereas the intermediate transition frequencies
to„and ta;s are strongly detuned from to. In Ref. [19],the
authors have studied the splitting of the initial quasi-
probability distribution of the field into two identical
coherently superposed parts via a resonant two-photon in-
teraction in a degenerate Rarnan model which is iso-
morphic to the present scheme. However, whereas the de-
generate Raman model involves two indistinguishable
atomic states, the present scheme allows the MQS
preparation by projecting the entangled field-atom system
on one of the distinguishable atomic states ~e) or ~g&. The
present scheme allows the generation of MQS with any
relative phase, starting from a field in a narrow statistical
distribution of coherent states characteristic of lasers or
masers and from an excited or ground state of the atom.
The MQS is generated by a conditional measurement in

which the excited atom is registered after an interaction
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time corresponding to the chosen relative phase, provided
this time is much shorter than the dissipation time. Re-
markably, the MQS is subsequently detected and its phase
is inferred by monitoring the excitation probability of a
second, "probe, " atom, as a function of its interaction
time (still well within the dissipation time). The realistic
initial conditions on the field and atom, the flexible choice
of the interaction time, and the simplicity of the phase
detection, all stem from the advantageous property of the
two-photon resonant JCM, whereby each of the super-
posed field states evolves periodically in time [19], in con-
trast to the complicated evolution of their counterparts in

the one-photon resonant JCM. Another advantage of the
present scheme is the high efficiency of atomic excitation
measurements, as compared to photon detection employed
in other schemes [5,8,9]. Finally, it will be argued that
the present scheme is realizable not only in high-Q mi-
crowave cavities [11,12,17], but also in dielectric micro-
spheres that can serve as high-Q optical resonators
[20,21].

In order to prepare the desired MQS, we start at t =0
from a single-mode field in a mixed state, characterized
by a narrow quasiclassical distribution in phase and am-
plitude. This means that the initial density operator of the
field, when written in the basis of coherent states I p)

pF(0)= J d pP(p)lp&(pl (I)

has a distribution P(P) that is localized around the state
Ip) = Ilplexp(ig)), with Ipl »1 and small normalized
variances, hp/)pl « 1, and hg/lgl « l. A laser (or maser)
well above threshold (yet well below the saturation limit)
are suitable examples. For the sake of definiteness, we im-
pose the realizable condition that the atom is initially in

the excited state Ie), although we can equally well treat an
atom initially in the ground state lg) or in a statistical
mixture of the two.

Given these initial conditions, let the atom traverse the
field region during 0 ~ t ~ r, and then measure whether
it emerges in the le) or lg) state. The density operator of
the field pF(r) then corresponds to the projection of the
entangled field-atom density operator p~+F(r) on either
Ie& or Ig). The evolution of the field-atom system up to r,
under the two-photon resonant condition 2N 8 g is ana-
lyzed on noting that the intermediate state li) in the

I

"ladder" le) li) lg) can be eliminated [17,18], pro-
vided that the detunings +'h/2 of to„and to;g from to are
sufficiently large, as detailed below. Then, an n-photon
component of the field at co will cause two-photon Rabi
nutation between Ie) and lg) with the effective Rabi fre-
quency [17]

O„=A+nB,

where

W =(n,';+2n, )/h, B=(n,2+n2)/h

(2a)

By choosing O„much smaller than 5 we can ignore the
intermediate level and make the two-photon model valid

over many nutation cycles.
The evolution in the two-photon resonant LCM is thus

obtainable in complete analogy to the ordinary (one-
photon) resonant JCM [10,11], on expanding the initial
field state in terms of photon-number states ln) and writ-

ing the Rabi nutation solution for each In) component,
with Eq. (2a) replacing the ordinary Rabi frequency
(which is proportional to n '/ ). For an atom measured to
be in state le), the corresponding density matrix of the
field is

PF (r )-Z (n lpF(0) ln')cos
O„y2t

2

icos n n',
2

(3)

where r is well within the dissipation time [1,3].
Using Eqs. (1)-(3) we can obtain the matrix elements

of pF(r ) between any two coherent states:

Here Q„and 0;g are the Rabi frequencies (per photon)
for the respective transitions, giving rise to the Stark shifts
(n+ l)Q„/h for the first transition in the cascade and

(n+2)O;g/h for the subsequent one. These Stark shifts
can effectively counter the detuning. Therefore, in order
to eliminate Ii), these shifts should be small enough to
preclude the buildup of population at Ii& during the in-

teraction time r. This implies [18]

O„t2

((x. (2c)

«IpF(r ) Ia'& =exp( —Ial /2 —Ia'I2/2) g (n IpF(0) In' )

n n 4(n!n'!.) ''

~ [ei4(aeiar/2) n+ ip( —ier/2) n]—e [ i4( ~ iver/'i) n + —ip( '& —iBr/2) n'] (4)

where p = (A +2B)r/2.
This expression can be rewritten as

(alpF(r ) Ia') =(i//F(a, r ) IpF(0) litiF(a', x')&,

where the ket vector

li//F(a r)&=Nn(r) ' (e' Iae' ' )+e ' Iae ' '
&)

(5)

(6a)
is a superposition of two coherent states with a relative

phase of Br, normalized by [1]

N (r) =2+2cos[lal sin(Br)+2/]

xexp[ —2lal sin (Br/2)]. (6b)

It is easily checked that the Q function (alpF(r)la)
consists of two diagonal parts peaked around the states
lpexp(iBr/2)) and Ipexp( —iBr/2)). Each part is de-
scribed [Fig. 1(a)] by the initial Q function rotated
either clockwise or counterclockwise by the phase Br/2
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FIG. I. Generation and detection of MQS in the two-photon Jaynes-Cummings model; (a) Q-function evolution in the phase
plane. The dashed circles indicate a MQS generated after the passage of the first atom, by splitting the initial quasiclassical Q func-
tion into two identical parts and their counterrotation by phases ~ 8 /r2. The shaded circles depict the MQS generated by the second
"probe" atom by splitting each dashed circle into two identical parts and their counterrotation at rate B/2 The o.verlap of the two
foremost circles corresponds to one of the partial ("satellite" ) revivals. (b) The periodic temporal pattern of the excitation probability
of the second probe atom following its interaction with the MQS generated by the first atom The. parameters used are P=6,
Br tr/2, and B A. The satellite (half-amplitude) revivals are separated by ~ir/4 from the regular (full-amplitude) revivals.

Although these two parts are localized, the field is
nonetheless in a coherent superposition of two quasi-
classical distributions. This is evident from the fact
that (a

~ pF (r ) ~

a') is off diagonal in states localized
near ~a) =)Pexp(+'iBc/2)) and correspondingly ~a')

(Pexp(:t iBr /2) ) Thes. e off'-diagonal elements are
multiplied by exp( 2ip). For the idealized initial
preparation of the field in a single coherent state ~P), the
field-density matrix reduces to the pure state

pF(r ) - I tirF(P, r ))(iirF(P, r ) I . (7)

Equations (5) (7) demon-strate that in the two-photon
resonant JCM, the projection of the field-atom system on
an atomic-energy state creates a MQS by first splitting
the initial quasiclassical Q function into two identical
parts, and subsequently rotating them in opposite senses in
the phase plane at a constant rate B. The advantageous
properties of the model are linear dependence of the
phases P and Br (mod2tr) on r, as well as the preservation
of each of the superposed Q-function parts in its initial

l

form (at any r well within the dissipation time). These
properties allow the control of MQS by adjustment of r.

The same advantageous properties are in the basis of
our proposal for the detection of the MQS after its
preparation. It consists in the injection of a probe atom in

the state (e) into the resonator at t i ) r, still well within
the dissipation time [1,3]. In the ensemble of excitation
measurements, the fraction of probe atoms that remains
in the (e) state upon exiting the resonator at time t =t —t i

is obtained analogously to its counterpart in the one-
photon resonant JCM [10,11]. This fraction, i.e., the
probability of excitation is given by

P, (t) = g (n(pF(r)~n)cos' (g)
n~0

Here the initial-field preparation is given by pF(r ), since
the phases p and Br do not change during t i

~ t ~ r. We
substitute Eq. (3) and Eq. (I) into Eq. (8) and perform
the summation over n again, utilizing the results of the
one-photon resonant JCM [10,11]. The final result is

P (t) = i + g ]
d pP(p)1Vp (r)e !~i'expf[pI cos[B(t+j r)+arg(p)]]j 0, +]
x cos [(A +2B)(t +j r ) + ( p) sin [B(t+jz ) + arg(p)]] . (9)

Examination of Eq. (9) reveals that "revivals" of the
oscillations of the population inversion occur when
B(t+j r ) =2trn, where n is any integer and t ) 0. Thus, a
field initially prepared in a MQS with a relative phase of
Bz gives rise to a pair of "satellites, " shifted by + z,
about each of the regular revivals which have a period of
T 2tr/B The ampli. tude of each regular revival is twice
that of its satellites. Hence, the temporal pattern P, (t)
can be readily used to detect a MQS and infer its relative
phase [Fig. 1(b)].

I

We can obtain some insight into the temporal pattern
P, (t) in Eq. (9) by realizing that it reflects the evolution
of the field distribution in the phase plane [3,16,19]. Each
localized peak of the Q function in the initial MQS splits
into two identical counter-rotating parts when the interac-
tion with the probe atom is switched on, as we have seen.
This splitting generates a four-peaked distribution [Fig.
1 (a)], and, owing to the phase diff'erences between these
peaks, collapse of the atomic Rabi oscillations occurs.
The two foremost peaks "collide" at t = z or t =T —z
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(whichever comes first), thereby restoring half of the ini-
tial distribution, and causing the first partial (satellite) re-
vival of the Rabi oscillation. Likewise, at t=T+r the
other two peaks overlap, causing another satellite revival
that marks the restoration of half the initial distribution.
At t =T the initial two-peaked distribution is completely
restored, corresponding to a full revival, with twice the
amplitude of the satellite revivals. The perfect periodicity
of the evolution will produce the same series of revivals at
t+jr =nT, with n 1,2, 3, . . . and j =0, + 1 as long as
dissipation is negligible.

Superconducting microwave resonators [12] can satisfy
the requirements of thc present scheme, namely, above-
threshold stimulated emission at ro=ru, s/2, in a single
high-Q mode (Q-10 ), with a much longer dissipation
time than the atomic time of flight through the resonator.
The point we wish to make here is that these requirements
may also be satisfied at optical frequencies by dielectric
low-loss (transparent) microspheres with radii ( 10
wavelengths. Optical pumping of the active medium in
such a microsphere can yield lasing at ro in a spherical
mode with a Q value as high as 10', associated with a
low-order Mie resonance [20,21]. In the current state of
the art, it is more practical to settle for spherical modes
with Q-10 . The spatial amplitude of such a mode ap-
preciably extends outside the surface over a radial region

h,R which is several wavelength large, a region in which
this amplitude exceeds the amplitudes of other modes by a
few orders of magnitude [21]. A beam of atoms with a
two-photon resonance at eo,g=2co, which pass within a
distance hR away from the sphere surface will therefore
selectively couple to this mode. This requires the collima-
tion of the atomic beam down to radial widths of —1 pm,
which is quite feasible. The time of flight of an atom with
velocity v ~ 10 cm/sec through the field region —10
sec ~ LLR/v, can correspond to appreciable Br, yet shorter
than the dissipation time of a MQS in a mode with
Q-10 .

To conclude, we have pointed out the conceptual simpli-
city and feasibility of macroscopic quantum superposi-
tions generation and detection based on conditional mea-
suremcnts in the two-photon resonant Jaynes-Cummings
model. The MQS prepared by the field interaction with a
passing atom has been shown to be detectable by the
periodically recurring satellite revivals of the Rabi oscilla-
tion, which are displayed by the population inversion of a
subsequent probe atom.
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