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Temporally linear domain growth in the segregation of binary fluids
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We report the numerical observation of temporally linear domain growth in a phenomenological

model of segregating fluids. Our observation is facilitated by the use of computationally efficient cell

dynamical system models.
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Much recent attention has focused on the dynamics of
segregation of binary mixtures quenched below the mixing
temperature, e.g., spinodal decomposition [Il. Speci-
fically, it is now well established that the segregating
domains are characterized by a unique, time-dependent
length scale L(t)-t~ (where t is time and p is called the
growth exponent). When hydrodynamic effects are not
relevant (e.g., binary alloys), it is known experimentally
[2] and numerically [3] that p has an asymptotic value of
I /3. When hydrodynamic effects are relevant (e.g. ,

binary fluids), it is theoretically argued [4] that p=l
asymptotically, and this temporally linear domain growth
has also been observed experimentally [5]. The theoreti-
cal arguments leave many open questions such as the pre-
cise time regime and the volume fraction where this tem-
porally linear growth law should hold. Numerical work
clarifying such questions would be very desirable. To
date, however, there have been no numerical confirma-

tions of this growth law. In this paper, we report the nu-
merical observation of temporally linear domain growth in
a phenomenological model of segregating binary fluids.
Our simulation is facilitated by the use of computationally
efficient cell dynamical system (CDS) models, which have
quite successfully elaborated the nature of spinodal
decomposition in the case without hydrodynamics [6],and
in a variety of other problems involving reaction-diffusion
equations [7].

Our phenomenological model for the dynamics of segre-
gating fluids is a variant of the so-called model H [8],
which describes the dynamics of binary fluids and has had
considerable success in correctly predicting the dynamical
critical exponents of binary fluids. As in model H, our
model consists of a scalar density (order parameter) cou-
pled to the hydrodynamic velocity field. With appropriate
rescaling [9], our equations have the dimensionless form
(in three dimensions)

By(x, r) = —V [y(x, t) —y(x, t) +V y(x, t)] —aV [y(x, t)J(x,r)],

BJ;(x,r )
=riV'J;(x, r )+o g VVk Ji, (x,t)+ ay(x, t)V;[y(x, t) —y(x, t )'+V'y(x, r)] .

k I

In (]), y(x, i) and J;(x,t) (i =1,2, 3) are respectively the
order parameter and the dimensionless velocity field as a
function of dimensionless space x [=(xi,x2, x3)] and time
I The resc.aled parameters in (I) are the coupling con-
stant a (a =0 corresponds to the usual case of binary al-
loys) and the transport coefficients ri and c7 (which are the
viscosities). Before we proceed, some comments on the
form of (I) are in order. First, we consider only the deter-
ministic case as we are interested only in the asymptotic
behavior, which is not affected by the presence of thermal
noise [IO]. In the late stages of growth, the presence of
noise terms only alters the interfacial profile between
domains and this is an irrelevant factor for sufficiently
large domain sizes, i.e., at asymptotic times. Second, (I)
would reduce to the standard form of model H [8] if we
impose the additional constraint V. J(x,t) =0. However,
as was pointed out by Farrell and Valls [9], this extra con-
straint causes numerical complications and we do not im-
pose it.

Farrell and Valls [9] have numerically studied a more

I

complicated version of (I) (with thermal noise and non-
linear convective terms) in two dimensions. In the late
stages of their simulation, they find a domain growth law
L(I)-t ' . However, it is well known that continuum
hydrodynamics is not well defined in two dimensions and
it is not clear how this would affect numerical results.
Furthermore, the simulation of Farrell and Valls [9] is
slowed considerably by the presence of the additional
terms. We believe that (I ) constitutes the minimal model
for studying the late stages of spinodal decomposition in

Auids and use it to derive a computationally efficient CDS
model, which we use in our simulations.

We do not go into the details of CDS modeling here as
these are well documented in the literature [6]. Essential-
ly, this procedure can be understood as an unconventional
method of discretizing the corresponding partial diff'er-

ential equations, which enables the use of rather coarse
mesh sizes without any loss of numerical stability. The
CDS model (in three dimensions) we derive from (I) has
the form
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Itr(n, t+ I) =I'(n, t) —
—,
' Ag[A tanh(Itr(n, t)) —y(n, t)+(D/6)ADItr(n, t)] —aVD. [Itt(n, t)J(n, t)],

3

J;(n, t+1)= J;(n, t)+rthDJ; (n, t)+o' g Vo,;VD I, JI, (n, t) (2)

+attI(n, t )VD;[A t anh( tIr(n, t)) —Itr(n, t)+ (D/6)boy(n, t)],

where y(n, t) is the order parameter at the discrete lattice
site n on a simple cubic lattice at discrete time t; and A,
D, a, g, and a are phenomenological parameters. The pa-
rameters A and D are respectively measures of the quench

depth and the diffusion. The other parameters are analo-

gous to the corresponding parameters in the continuum
model (1). In (2), Ao is the isotropically discretized La-
placian operator whose action on a function f(n) is

defined as t)af(n) =—6[((f(n))) —f(n)], where the angular
brackets refer to the average of f(n) on the sites neigh-

boring n Th.is average includes the nearest-, next-nearest,
and next-next-nearest neighbors in the relative ratio 6:3:2.
Also, in (2), VD is the symmetrically discretized gradient
operator. The values of the parameters are dictated by
the requirements that the scheme be stable and that the
results be reasonable [6]. We choose A =1.5 and D =0.5,
which are good values for simulating the case without hy-

drodynamics [6]. We can associate mesh sizes with these
values of A and D by comparing the CDS scheme with the
usual Euler discretization scheme for partial differential
equations. The corresponding values are t)t=0.5 and

hx =2.45. It is worth noting that these mesh sizes are too
large for a stable simulation using an Euler discretization
of the given equations [3]. In (1), we set t) =1 and cr=2,
following Farrell and Valls [9]. The phenomenological
parameters I) and a in (2) are then fixed as rt=rtI5, t/
(Ax) =0.08 and rr =rjht/(hx) =0.17. This should not

be interpreted as a rigorous prescription for fixing param-
eters but rather as a general rule to associate parameter
values in a CDS model with those in the corresponding
partial differential equation model. Finally, we discuss
the most important parameter in (2), viz. a, which fixes

the strength of the coupling between the order parameter
and the velocity field. We have studied domain growth as
modeled by (2) for a range of values of a. Stronger values

of a accelerate the onset of the asymptotic time regime in

which L(t )- t, whereas smaller values of a delay the on-

set of the asymptotic regime and give an extended period
of slower growth. In the limit a 0, we recover the
Lifshitz-Slyozov growth law L(t)-t 't . In this paper, we

present results for a=0.41, which corresponds (in the
prescription defined above) to a=2 in (1). Detailed re-

sults for different values of a will be published elsewhere
[11].

We have implemented (2) with the above parameter
values on an N lattice with periodic boundary conditions.
The results presented here are for the case N=80. We
used a Siemens-Fujitsu VP100 vector processor and a sin-

gle update of 80 lattice took approximately 1 CPUsec.
All results presented here are for the case of a critical
quench, where there are equal concentrations of both
components in the mixture. Results for off-critical
quenches will be presented later [11]. The time-

dependent structure factor for the order parameter is

I

defined as

S(k, t) =(Itr(k, t) Itr( —k, t)), (3)

gkS(k, t)
(k)(t) =

S k, t

In (4), the sum over the k values is cut off at
k „. „=trJ3/2. We have confirmed that the structure fac-
tor has decayed sufficiently up to this wave vector so that
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FIG. I. Plot of S(k, t)&k&' vs k/&k) for structure-factor data
from a simulation of (2) on an 803 lattice with periodic bound-

ary conditions. Data were obtained as averages over 40 indepen-
dent runs from initial conditions corresponding to a homogene-
ous state. The structure factors are for update times 2000,
4000, and 6000 (marked by the symbols indicated).

where It(rk, t) is the Fourier transform of the order param-
eter field at wave vector k and the angular brackets refer
to an average over the ensemble of initial conditions. In
the discrete case, we calculate (using the NAGLIB rou-
tine C06FJF) Itt(k, t) as the discrete Fourier transform of
the order parameter field Itt(n, t). The wave vectors k lie
in the first Brillouin zone of the lattice, viz. k=2tr(n„,
n~, n, )/N where n„, n~, and n, are integers between and
including N/2 and —N/2 —1. The structure factor is cal-
culated as an average over 40 runs from different initial
conditions, each of which consists of the order parameter
and velocity field uniformly and randomly distributed
about a zero background with amplitudes 0.05 and 0.1,
respectively. The structure factor is normalized as
gkS(k, t)/N =1. The vector function S(k,t) is then
spherically averaged to give the scalar function S(k,t).
The time-dependent characteristic length scale L(t) is
defined as the reciprocal of the first moment of the scalar
structure factor S(k,t), i.e., L(t) =[(k)(t)] ', where
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FIG. 2. Plot of S(k, t)(k) vs k/lkl for structure factor data
from a CDS simulation of model B [viz. (2) with a =01, imple-
mented on an 80 lattice with periodic boundary conditions.
The data were obtained by the same procedure as that described
in the text for Fig. l. The structure factors are for update times
2000, 4000, and 6000 (marked by the symbols indicated).

the sum is a good approximation of the infinite integral.
For purposes of comparison, we have also performed a

CDS simulation for the case without hydrodynamics (the
so-called model B) on an 803 lattice. Our CDS model for
the case without hydrodynamics is simply (2) with a=0.
We use the same values for A and D as in the case with
hydrodynamics and the procedure whereby we obtained
the structure factor and the characteristic length scale is
the same as that just described.

Figure I shows the scaled structure factor $(k, t)
x [(k)(t)] plotted as a function of the scaled wave vector
k/(k)(t) for data from update times 2000, 4000, and
6000. The excellent data collapse indicates that dynarni-
cal scaling [12] is valid and that the domain growth is
characterized by a unique length scale. The form of the
universal function in Fig. 1 is similar in shape to the case
without hydrodynamics (shown in Fig. 2, for comparison)
with the only major difference being that the peak of the
scaled structure factor for model B is considerably higher.
For earlier times, the form of the universal function for
the case with hydrodynamics is identica1 to that for the
case without hydrodynamics. Notice that there are no ad-
justable parameters in our definition of the structure fac-
tor.

Figure 3 shows the characteristic domain size L(t) as a
function of the update time r for our model (2) (marked
by circles) and the case without hydrodynamics (marked
by squares) on a double logarithmic scale. After an initial
transient regime (which can be extended by using a small-
er value of a), the domain size for the hydrodynamic case
grows linearly in time, viz. , L(r) r At tim—es s. omewhat
beyond those shown in Fig. 3, freezing sets in because of
the finite size of the system. To ensure that our data are
not affected by finite-size effects, we have also performed
(less thoroughly) simulations on lattices of size 64 and
100 . The results are the same as those presented here
with the only difference being that the onset of freezing is
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FIG. 3. Plot of the characteristic length scale L(t) as a func-
tion of update time I for the case with hydrodynamics (marked

by circles) and the case without hydrodynamics (marked by
squares) on a double-logarithmic scale. The error bars on the
data points are smaller than the symbol sizes. The solid lines
have slopes of 3 and l, as marked.
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delayed in the larger systems. Domain growth for the
case without hydrodynamics is seen to obey the usual
Lifshitz-Slozov growth law L(t)-r '~ .

To summarize, we have reported the numerical obser-
vation of a temporally linear domain growth in a phenom-
enological model of segregating fluids. Our observation is
facilitated by (i) the use of the simplest possible
(minimal) model, and (ii) the use of a CDS model to ac-
celerate the onset of the asymptotic regime. The onset of
this asymptotically linear growth is determined by the
strength of the coupling parameter a. For smaller values
of a, we obtain a Lifshitz-Slyozov growth law for the early
and intermediate times and this crosses over to the tem-
porally linear growth reported here. We will provide de-
tailed results in an extended publication, where we will
present results for the decay of the current-current corre-
lation function and also a comparison of our results with
experiments on binary fluids.

Note added. After the submission of this manuscript,
we have become aware of cornplernentary works by Koga
and Kawasaki [13] and Shinozaki and Oono [14]. Koga
and Kawasaki [13] report a linear growth law in a binary
fluid system, where the hydrodynamic interactions are de-
scribed by the Oseen tensor. Shinozaki and Oono [14]
study spinodal decomposition in a Hele-Shaw cell.
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