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Entropy and the freezing of simple liquids

15 MAY 1992

P. V. Giaquinta and G. Giunta
Istituto di Fisica Teorica, Unii ersita degli Studi di Messina, Casella Postale 50, S. Agata, Messina, Italy

S. Prestipino Giarritta
Dottorato di Ricerca in Fisica, Universita degli Studi di Messina, Casella Postale 50, S. Agata, Messina, Italy

(Received 5 August 1991; revised manuscript received 3 March l992)

A criterion for the freezing of a liquid is investigated through an analysis of the contribution of mul-

tiparticle correlations to the statistical entropy. Molecular-dynamics results are presented for a

Lennard-Jones system at two subcritical isotherms in a range of densities across the freezing line.
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Recently, new attention has been devoted to the mul-
tiparticle correlation expansion of the entropy of simple
classical fluids which was originally derived by Nettleton
and M. S. Green for an infinite open system using graphi-
cal techniques [1]:

s2 —
2 p [g(r)lng(r) g(r)+ l]dr, — (2)

where p is the number density and g(r) is the radial distri-
bution function (RDF). The result obtained by Nettleton
and M. S. Green generalizes the expression previously de-
rived by H. S. Green for a finite system [2].

Recent calculations of the pair entropy for liquid sodi-
um and argon using experimental data have been per-
formed by Wallace who has also reconsidered the original
H. S. Green's expansion in the canonical ensemble [3-6].
The formal equivalence of the entropy expansion in the
canonical ensemble with its grand canonical counterpart,
however, was fixed by Baranyai and Evans [7] who carried
out a molecular-dynamics (MD) calculation of both the
two- and three-particle contributions to the statistical en-

tropy of a Lennard-Jones (LJ) model fluid along two iso-
therms [8]. The two-body term s2 is a negative definite
quantity. Like s2, the three-body contribution s3 turns out
to be a negative, monotonically decreasing function of the
density at the temperatures sampled by Baranyai and
Evans. They also noted that the partial sum (s2+s3) be-
comes somewhat more negative than the total excess en-

tropy for states of the liquid close to the freezing line.
This behavior is already manifest in the residual multipar-
ticle entropy

AS =S $2, (3)

which, despite of its minor quantitative relevance in the
entropic balance, does indeed reflect the changes in phase

(ex) ~Sns
n~2

where s '" is the excess entropy per particle in units of
Boltzmann's constant. The partial entropies s„are ob-
tained from the integrated contribution of the spatial
correlations between n-tuples of particles. In particular,
the pair entropy for a homogeneous and isotropic system
reads

behavior undergone by the system. In fact, an analysis of
hs vs p for hard spheres (HS) shows that this quantity
faithfully records all the borders between distinct packing
regimes which are identified by both theory and experi-
ment [9,10]. In particular, AsHs(p) exhibits a nonmono-
tonic pro61e with a change of sign from negative to posi-
tive values at a density p=0.960 which lies extremely
close to the computer-estimated freezing point p(s
=0.943, in units of the hard-core diameter o. It thus ap-
pears that, beyond this threshold, the loss in entropy due
to localization (sp & 0) becomes tempered by the gain as-
sociated with the ordering of the fluid on a local scale
(hs & 0). This process, which is driven by a requirement
of greater efficiency in the packing of the spheres, does
show up, as expected, at the level of higher-order correla-
tion functions and leads to an increase of the excess entro-

py of the system relatively to the prevailing negative value
settled by the two-body term. In this respect, the change
of sign in AsHs(p) unveils as an underlying signature of
the freezing transition within the homogeneous Auid phase
of hard spheres [10].

The data reported by Baranyai and Evans for the LJ
model refer to systems with a number of particles N rang-
ing from 108 to 2048 at reduced temperatures 1.15 and
1.5 (the same reduced units, scaled to the LJ parameters,
will be adopted from now on for all quantities). However,
the density range explored did not extend up to the freez-
ing line. The goal of the present calculation is to cover
this gap so as to check the validity of the "freezing cri-
terion" discussed above for a more realistic interaction.
As the density increases, the long-ranged oscillations in
the RDF become more and more enhanced and, corre-
spondingly, the error associated with a finite upper cutoA'
of the integral in Eq. (2) increases. Therefore, in order to
sample a more extended space region, we carried out a
series of MD calculations on systems with 6912 particles
in the liquid phase with a time step of 0.005 using the
Nose algorithm [11]. The LJ potential was truncated at
2.5. The present MD calculations were performed along
two isotherms, i.e., for T =0.75 (just above the estimated
triple point temperature T, =0.68~0.02) [12], and for
T=1.15 (still below the critical point). At such two tem-
peratures, the thermodynamic history of the system from
very low densities is supplied by Hansen and Verlet in
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TABLE I. Compressibility factor PP/p, excess energy per particle U "*'//V, excess entropy per parti-
cle s '", and two-body excess entropy sz as a function of the reduced density for T =0.75 and 1.15. The
number of equilibrium configurations JV,-„[used to compute the thermal averages is also indicated.

0.75
0.75
0.75
0.75
1.15
1. I 5
1.15
1.15
1.15
1.15
1.15
1.15

0.84
0.85
0.86
0.87
0.75
0.85
0.92
0.93
0.94
0.95
0.96
0.97

con['

5000
5000
5000
5000
2500
2500
2500
5000
5000
5000
5000
5000

/jP/p

0.441
0.692
0.952
1.244
1.161
2.865
4.719
5.022
5.364
5.711
6.069
6.450

U (ex)/JV

—6.024
—6.084
—6.134
—6.192
—5.107
—5.664
—5.951
—5.986
—6.013
—6.039
—6.063
—6.082

(ex)

—3.441
—3.516
—3.581
—3.659
—2.535
—3.133
—3.599
—3.671
—3.739
—3.810
—3.882
—3.953

—3.378
—3.492
—3.599
—3.711
—2.203
—2.855
—3.462
—3.566
—3.668
—3.771
—3.882
—3.993

Ref. [12]. The range of densities spanned in this work was
0.84 ~ p ~ 0.87 for T =0.75 and 0.75 ~ p ~ 0.97 for
T=1.15. Correspondingly, the RDF was evaluated up to
R „. „-10, where R „. „=L/2 and L =(N/p)'/ is the
simulation box length. At such distances the values at-
tained by the RDF do not significantly differ from unity
and, therefore, the standard asymptotic correction on the
integrals for both the pressure and the internal energy can
be safely made. The RDF histogram (with a spatial reso-
lution Ar =0.01) was updated after every ten MD time
steps. Typical averages were computed on the thermal-
ized system over a number of 2500-5000 configurations.
Given the above setup, the value of sq was found to con-
verge to four significant figures even at the highest sam-
pled density. This numerical happenstance straightly fol-
lows from the asymptotic vanishing of the integrand in

Eq. (2) as the square of [g(r) —1]. Actually, it turns out
that the above level of convergence in s2 is already estab-
lished for r =8.

Table I gives the present results for the thermodynamic
quantities of the LJ liquid. In order to estimate the sta-
tistical uncertainty affecting the values of both s2 and hs,
we divided the MD trajectory for each set of (T,p) values
into blocks of 5000 time steps (corresponding to 500 sam-
pling configurations). After verifying the statistical in-

dependence of the partial block averages for each quantity
through the evaluation of the interblock correlation
coefficient, we estimated the error on the cumulative aver-
age as the sample standard deviation [13]. The error on
the compressibility factor PP/p does not exceed 0.01 while
that on s2 is lower than 0.004. The corresponding error on
h,s is 0.003 for T=0.75 and 0.006 for T=1.15. However,
a residual systematic uncertainty is associated with the es-
tirnate of the total excess entropy of the initial reference
states at both temperatures, i.e., (p =0.84, T=0.75) and
(p=0.75, T=I.15), as obtained after integration of the
thermodynamic data by Hansen and Verlet. Given their
estimate of the uncertainty affecting PP/p, we conclude
that the resulting error on s '" should not exceed 0.015.

The residual multiparticle entropies for both isotherms
are plotted in Fig. 1 together with the data given in Ref.
[8] for T =1.15. A spline interpolation of the data locates

the zero of hs at p=0.856 for T=0.75 and at p=0.960
for T =1.15. In Table II these values are compared with

the freezing-point estimates for both a LJ system with 864
particles and liquid argon as reported in Ref. [121. The
largest discrepancy relative to the two-phase free-energy
recipe is 2.5%. However, a caveat should be posed on the
different size of the two LJ systems. The predicted tem-
perature dependence of the density where d,s =0 adheres
to that followed by the freezing line. Moreover, the re-
sulting values suggestively lie systematically closer to the
experimental ones. Given the present evidence we surmise
that the change of sign undergone by the residual mul-
tiparticle entropy along the Quid branch furnishes a one-
phase criterion for predicting the freezing point of a sim-

ple liquid. The ensuing estimate of the freezing line

p(i(T) allows the calculation of the slope of the phase
equilibrium curve (dP/dT) and, through the Clausius-
Clapeyron equation, of the ratio of the latent heat to the
volume change at the transition. A rough, straight-line

0.1

-0.5
0.4

FIG. 1. Residual multipartic)e entropy as a function of the
reduced density for the LJ liquid. Diamonds: data for T=0.75.
Solid circles: data for T=1.15. Open circles: data from Ref.
[8] for T= I.15. The solid line represents a spline interpolation
of the data. The estimated error is also displayed.
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TABLE II. Freezing point densities for the Lennard-Jones
liquid: (a) two-phase rule (see Ref. [12]); (b) present, one-
phase criterion. The corresponding experimental data for argon
are also reported [12].

0.75
1.15

LJ (a)

0.875
0.936

LJ (b)

0.856
0.960

Argon

0.856
0.947

estimate of the slope, as can be obtained from the present
data which refer to two isotherms only, is 15.4. This re-
sult may be compared with the experimental value 12.3
and 15.3 for argon at T=0.75 and 1.15, respectively [12].

We have also analyzed Monte Carlo data relative to a
model system of 864 soft spheres interacting through a
merely repulsive potential p(r) =4m(rr/r) ' [14,15]. This
system undergoes a freezing transition at a reduced densi-
ty p~«(T) =0.814T [16,17]. The calculated behavior
of hs as a function of p turns out to be analogous to that
reported for hard spheres with a crossover point which
overestimates the freezing density by 5% with respect to
the numerical simulation datum. This discrepancy (which
is larger than that found for both hard spheres and the LJ

system) is still within the error arising from the statistical
uncertainty on the tabulated RDF values. In fact, as not-
ed by the authors in Ref. [14], this uncertainty becomes
particularly relevant (significantly exceeding 1%) for dis-
tances below the position of the first peak, because of the
poor statistics in this region. We have verified that the
contribution to s2 that is associated with this interval of
distances affects its first decimal place and, therefore, the
corresponding error may sensitively weigh in the ultimate
balance between the total excess entropy and the two-
particle term for densities close to the freezing point.

Molecular-dynamics calculations for the LJ system at
supercritical temperatures together with an extension of
the analysis to other inverse-power pair potentials will be
the object of a forthcoming paper.
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