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In this paper we present numerical results for the transverse fluctuations {x2(z)) of a directed poly-
mer in a random potential field on fractal substrates. Because of the randomness of the potential these
mean-squared displacements are shown to be enhanced with respect to the regular random-walk behav-
jor on fractals. The enhancement enters in a subordinated way {x2(r))~1°, with a =(2/d,)v, where
d. is the walk exponent for fractals and v is the enhancement factor. The minimal energy fluctuations
are also calculated and show a similar behavior, AE ~¢ Y42 On the Sierpinski gaskets studied up to
the numerical accuracy v and B appear to concur with the values 4/3 and 1/3, correspondingly, in-

dependent of the embedding Euclidean dimension.

PACS number(s): 05.40.+j, 61.50.Cj, 02.50.+s

The problem of directed polymers in random media [11]
has been a subject of extensive research due to its intimate
relationship via mapping to fundamental problems such as
dynamics of surface growth [2], interfaces in random spin
systems [3], and the driven Burger equation [4] and has
been shown to have properties previously encountered in
the study of spin glasses [5,6]. Of special interest have
been the enhanced transverse fluctuations of directed
polymers (DP) [1] and the low-temperature (strong-
coupling) to high-temperature (weak-coupling) phase
transition [7,8]. The DP problem is defined by walks
directed in d spacetime dimensions with coordinates (x,t),
where d — 1 is the substrate dimension, which obey the
partial differential equation [1]

%=[sz+n(x,1)]W, )

subject to the initial condition
w(x,0)=6(x).

Here W(x,t) is the weight of all DP with one end at
(x,1) =(0,0) and the other at (x,#). n(x,t) is a random
potential field which is usually assumed to be Gaussian or
white noise with §-function correlation

{n(x,1))=0,
)
(x,)nx',t'))=1269""(x—x")6(t —1') .

The randomness term given by Eq. (2) causes the DP to
be stretched in the transverse direction so that the low-
energy sites, even far from the origin, are visited. This
randomness-induced stretching contributes to transverse
fluctuations which have been shown to grow with time, at
low temperatures, faster than expected for a simple
Brownian motion. Some analytical results which have
been derived for DP in dimensions d =(1+1) and have
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been confirmed by simulation calculations show that
(x2(t))~1t" with v=4/3. Claims have been made that the
exponent v=4/3 is independent of the dimension and is
therefore superuniversal [1,4,9]. These claims are, howev-
er, still under debate since simulation results on equivalent
growth models demonstrate dimension-dependent results
[2,10,11]. Another issue which has not yet been com-
pletely settled is the weak-to-strong-coupling transition in
higher dimensions. While low dimensions, d < 3, are ex-
pected to exhibit low-temperature (strong-coupling) be-
havior which results in enhancement, in higher dimen-
sions, d > 3, one expects a phase-transition behavior be-
tween low temperatures and high temperatures, namely,
between enhanced- and regular-transverse fluctuations
[2,8].

Several modifications of the original model have been
suggested lately, trying to gain more insight into the com-
plexity of this seemingly simple model. Most of the
modifications have concentrated on the random potential
term n(x,r) in Eq. (1) using broad distributions and
long-range correlations and have demonstrated possible
changes in the values of the characteristic exponent v
[4,12-15].

In this paper we center on substrates of dimension d — 1
that are characterized by anomalous mean-squared dis-
placements of DP even in the absence of random poten-
tials. For such substrates we choose Sierpinski gaskets
which allow us also to follow in more detail the dimen-
sionality dependence between d =(1+1) and d=(Q2+1).
Simple random walks on fractals are known to be disper-
sive and are described in terms of the walk dimension
d..=(d,/2d,) where d; is the fractal dimension and d is
the spectral dimension so that [16]

(x2(1))~1 (3)

The propagator problem on fractals has been revisited re-
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cently and exhibits anomalous behavior as well [17].

RAPID COMMUNICATIONS

R6963

In order to study DP on Sierpinski gaskets we have solved numerically the path integral

(x,1) v t, 1
wi(x,t) =f(o,o) Dx'(t )exp{ —J:) dt [ [4—0—

dx’
dt'

2
+n(x',t')}}, @

using the transfer-matrix approach as discussed by Kardar [18]. We used a discretized version of Eq. (4) where the sites
lic on a grid. Figure 1 describes the (1+ 1) example of our approach with two possible rules for the transfer matrix. The
DP in Fig. 1(a) corresponds to the Kardar and Zhang solution of Eq. (1) [1] and follows the recursion relation

Wix,t)=e" Wt —1)+e W —1—D+Wk+1,c— 1]}, (5)

where D was set to unity. Figure 1(b) corresponds to a
different case which is basically a random-walk process
that allows for up or down random steps, as indicated, in
the presence of the same random noise. For this case the
recursion relation (5) is modified by omitting the first
term in the curly brackets. The random term 7 was ran-
domly chosen from the range n € [—A+/3,Av/3] for case
1(a) and from a Gaussian distribution of width A in case
1(b).

These two models were extended by us to Sierpinski
gaskets. Figure 2 provides an example of DP extension to
fractals: a (d,+1) structure in spacetime with a gasket
as the substrate of dy=1.58. This structure over which
the DP walks is essentially a triangular prism (called a
“Toblerone” in Ref. [19]). For a randomness-free prob-
lem the transverse fluctuation of the DP follows Eq. (3),
namely, the Brownian results for fractals. Once we intro-
duce n(x,1), as defined in Eq. (2), we observe an enhance-
ment. Our numerical calculations were done on systems
of dimensions (1+1) and (2+1) and on (d;+1) dimen-
sions for Sierpinski gaskets embedded in Euclidean di-
mensions 2, 3, and 4, for which d;=1.585, 2, and 2.322,
correspondingly (to be referred to in the figures as
dsg=2, dsg=3, dsg=4). For the (2+1)-dimensional
system the size of the transverse square lattice was
512x512. The Sierpinski gaskets were taken at the 8th,
7th, and 7th iteration stages for the embedding dimen-
sions 2, 3, and 4, correspondingly. The number of realiza-
tions was typically of the order of 103-10%. In the calcu-
lation of the transverse mean-squared displacement we
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FIG. 1. Directed paths on different substrates. (a) Three

possible steps with weight factors corresponding to Eq. (5). (b)
The random-walk process.

l
used the fractal extension of Eq. (5) and Fig. 1(a) for two

values of the randomness parameter A =1 and A =4.

The results for the transverse mean-squared displace-
ments for both A =1 and 4 show enhancement relative to
the regular (x2(r)) and the amount of the enhancement
depends on A. This enhancement, however, need not be
superdiffusive since 2/d,, may belong to strongly disper-
sive cases depending on the underlying fractal. We there-
fore introduce the concept of an enhancement factor v.
Figures 3(a) and 3(b) display the transverse mean-
squared displacement for the different dimensions and fits
well the behavior

(x2(t)y~1 Vv (6)

The figures include also the Euclidean limits d =(1+1)
and d=Q+1) for which 2/d,=1. In Fig. 3(a) we
present the transverse fluctuations for A=1. Only the
(1+1)-dimensional case has approached the asymptotic
behavior with (x2(1))~¢*>. For the Euclidean case of
(2+1) dimensions and for the Sierpinski gaskets (d,+1)
we observe that the mean-squared displacements follow
Eq. (6) but with values of v lying in the range | < v <4/3.
This may support the idea of a possible crossover to the
asymptotically, fully enhanced limit which we found for
2 =4 [Fig. 3(b)]. In Table I we summarize our fitted ex-
ponents which correspond to A =1. As stated, the ex-
ponents are larger than expected for regular random-walk
motion on fractals (2/d,,) but still smaller than the values
obtained for the stronger randomness parameter. In the
case of A =4 all the substrates demonstrated the same
enhancement, as shown in Fig. 3(b), namely, up to the ac-

t

FIG. 2. Triangular prism structure. The vertical space is
given by a Sierpinski gasket embedded in a two-dimensional Eu-
clidean space and the longitudinal direction is indicated by time
t (dsa=2).
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FIG. 3. The mean-squared transverse fluctuations {x2()) as
a function of time ¢ for transverse spaces given by Euclidean lat-
tices (1+1) and (2+1) and by Sierpinski gaskets of embedding
dimension dsg, as indicated. Solid lines denote simulation re-
sults obtained from paths of the type shown in Fig. 1(a).
Dashed lines give the slopes for the long-time behavior. (a) The
randomness parameter A =1. The slopes are fitted to the data
and are presented in Table I. The data for d =(1 +1) are shift-
ed vertically by a factor of 2. (b) The randomness parameter
A =4. The slopes give the predicted enhanced exponents 8/3d...

curacy of our calculations we found that v=4/3 fitted, in-
dependent of the dimension. Since the fractals fall into
the category of low-dimensional systems (d, <2) they
should belong to the low-temperature, strong-coupling
limit which is energy, rather than entropy dominated. Al-
though, for the d; values we studied, we obtained A-
dependent values of v such that v> 1, but not necessarily

TABLE I. Exponents for the mean-squared transverse fluc-
tuations of directed polymers in Euclidean lattices of dimension
d and for Sierpinski gaskets embedded in Euclidean spaces of di-
mension dsg. From left to right are listed the exponents for the
regular behavior, for the enhanced behavior, and the slopes
fitted to the data obtained for A =1 as presented in Fig. 3(a).

2/d 8/3d. Fit
d=(+1) 1.0 1.333 1.33
d=0Q+1) 1.0 1.333 1.05
dsg=2 0.861 1.148 0.99
ds¢=3 0.774 1.032 0.84
dsg=4 0.712 0.950 0.72
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FIG. 4. The minimum energy fluctuations AE as a function of
time for transverse spaces given by Euclidean lattices (1+1)
and (2+1) and by Sierpinski gaskets of embedding dimension
dsci, as indicated. Solid lines denote the simulation results ob-
tained from paths following a random-walk picture as demon-
strated in Fig. 1(b). Dashed lines denote the predicted ex-
ponents 2/3d.,.

4/3, we conclude that these may originate from a different
approach to the asymptotic limit depending on the ran-
dom potential parameter A.

The enhancement of the spatial fluctuations has been
related to the minimal energy distribution. A relationship
has been proposed between the transverse fluctuations and
the scaling of the energy fluctuations, AE, with time [1,3].
In the d =(1+1) system it has been confirmed that AE
scales as 1 '>. In order to check a possible extension of the
relationship between AE and (x2()) to fractal substrates
we calculated AE for the different dy. For each of the gas-
kets, in a given configuration of the random potential field,
we determined the minimum energy using the recursion
relationship which is the discretized version of the integral
in the exponent of Eq. (4) taken along the minimum ener-
gy path with zero-diffusional contribution

H(x,t)=n(,0)+min[H(x—1,t—1), H(x+ 1, —1)],
@)

Jd=@+
d=(1+1)

FIG. 5. The transverse displacement X,, (1) of the paths of
minimum energy for the parameters as in Fig. 4. Dashed lines
denote the predicted exponents 4/3d...
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and defined
E nin(t) =minlH (x,1)], . (8)

Here we used the random-walk approach defined in Fig.
1(b) and n was chosen from a Gaussian distribution.
Within this framework we were confined to the strong-
coupling limit. The root-mean squared of the E i, was
calculated as AE (1) =(E 2in — (Emin) )2 where the aver-
age was taken over the random potential configurations.
We observed that AE follows the power law AE ~t"* 1n
Fig. 4 AE(¢) is plotted as a function of time on log-log
scales. Solid lines give the simulation results, and for
longer times the predicted slopes are given by dashed
lines. The energy fluctuations which correspond to the
(2+1)-dimensional case were calculated by the energy
difference between the minimal energy path and the path
terminating at x=0. Again reasonable agreement is ob-
tained in all cases with the value of f=1/3.

Following Huse and Henley [3] we measured the length
X, which is defined as the transverse location on the
substrate at E ,in(¢) averaged over all configurations,
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X (1) =(xmin 2% As we see in Fig. 5 X,, scales with
time with the same exponent as in Eq. (6), namely,
Xp~1" “  Each X, was calculated under the same con-
ditions as AE. It follows therefore that (AE)2~X,,,
which generalizes the result obtained in the case of
d=~+1).

Concluding, we point out that our results agree with
values v=4/3 and B=1/3 independent of the embedding
Euclidean dimension. However, we cannot rule out the
possibility of slight variations of v and B as functions of d,
(or dy) along the results of Wolf and Kertész [10] or Kim
and Kosterlitz [11]. Such variations would be difficult to
observe over the range of dimensionalities covered here.
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