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Tunneling control in a two-level system
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The effect of external periodic driving forces in the tunneling process of a two-level system is studied

within the Floquet formalism and perturbation theory. Coherent tunneling can be increased or de-

creased depending on the external force parameters. In particular, the model is able to account accu-

rately for the tunneling suppression phenomenon recently discovered [Grossmann et al. , Phys. Rev.
Lett. 67, 516 (1991)] in a quartic bistable potential.

PACS number(s): 05.45.+b, 03.65.—w, 74.50.+r, 73.40.Gk

External control of tunneling has been the subject of re-
cent theoretical work stimulated by its numerous applica-
tions [1-4]. Lin and Ballentine [5] have found that a
monochromatic external field acting on a quartic double-
well oscillator can increase the rate of coherent tunneling
to values several orders of magnitude higher than those
for the undriven system. This behavior is obtained for
field frequencies close to the harmonic frequency at the
bottom of each well and relatively large values of the field

strength. Classical mechanical analyses of the motion un-

der these field conditions [5-7] show that the phase-space
structure of the system is considerably perturbed with

respect to that of the undriven system. Chaos and small
stable islands coexist in the driven system, which deter-
mines its different tunneling behavior [7].

A completely opposite situation has been discovered by
Grossmann et al. [8,9] in the same quartic, bistable oscil-
lator. For specific values of field strength and frequency,
tunneling is coherently destroyed, i.e., a localized packet
can be built as a superposition of two degenerate Floquet
states of the system, which remains localized forever in

one well. For this behavior to occur the driving force fre-

quency must be comparable to the splitting of the two
lowest states in the unperturbed system, but much smaller
than the harmonic frequency at the bottom of each well.

The field strength for tunneling suppression is numerically
found to fit a linear function of the frequency and its
values are very small compared to those required in Lin
and Ballentine's case [5].

We have performed an analysis of the classical phase
space for this system in the range of driving force parame-
ters containing those leading to tunneling suppression.
The perturbation of the driving force on the classical
motion of the system turns out to be negligible. Let us

remember that in the case reported by Lin and Ballentine
the driving term produced drastic changes in the classical
phase space of the system and that these changes were re-
sponsible for most of the quantum tunneling features as
coherence and rate enhancement [7]. The case reported

by Grossmann et al. is therefore an intriguing example of
intrinsic quantum control of tunneling.

In this Rapid Communication we will show that tunnel-

ing suppression under the conditions of Grossmann et al.
is a very general behavior that can occur even in a two-

level system. This model is also able to account accurate-
ly for the values of the parameters that give rise to the de-

lr &
= ( I ) '"(I »+ I»),

ll&=(l )'"(I» —I»)
(2)

will be interpreted as wave packets localized in the "right"
and "left" wells, respectively. Thus, the tunneling fre-
quency for the undriven (V=0) system is given by Ao.

The Hamiltonian in Eq. (1) will properly describe pro-
cesses involving a pair of eigenstates of a multilevel sys-
tem whenever the driving frequency co and the pair split-
ting ho are small compared to the energy of any other
state with respect to the average energy of the pair states,
not to mention the condition of small strength field Vp

values which is necessary for I 1) and I2) to be identified as
a pair of eigenstates from the unperturbed system. As al-

ready mentioned, the range of parameters chosen in Refs.
[8,9] for the quartic oscillator satisfies these conditions.

Floquet theory reduces the problem of the solution of
the periodically time-dependent Schrodinger equation to
the determination of the propagator for just one period of
the driving term. The Floquet states and quasienergies
may be obtained by diagonalization of the one-period
propagator, which for our model is expressed as a 2x2
anti-Hermitian matrix. Let us use the notation lfi) and

lfq) for the two-level system Floquet states and e~ and e2

for the corresponding quasienergies.
In order to obtain the one-period propagator, perturba-

tion theory will be used. In doing so, an adequate choice
of the basic set to define the matrix representation of the
propagator is fundamental for the perturbation ansatz to
converge. Since we are interested in describing tunneling
destruction then the proper choice is the set [lr), ll)].
Expanding the solution Ip) of the time-dependent

struction of tunneling in the system studied by these au-
thors.

We will therefore study the system described by the fol-
lowing general, two-level Hamiltonian (l't = 1)

H = (&p/2)(l 1 && 1 I

—I2&&2I)

+ v(t)(l »&21+ I»& I I),
where Ati is the energy splitting between the states I 1) and
I2) and V(t) is the coupling between them induced by the
external periodic driving force; we will assume a time
dependence of the form V(t) = Vosin(tot).

In this model the states Ir) and Il) defined as
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Schrodinger equation for the Hamiltonian (I) in this set
we have

~p) = ~l)et(t)exp i —dt V(t)
g

+~r)c„(t)exp i„dt V(t) (3)

The time-dependent phases in this equation have been ex-
tracted to simplify the following equations. The
coefficients cl and c„must then satisfy the linear system

ict = —(Ap/2)c„ ic, = —(Ap/2)et . (4)

U~~ =et(r)exp —i dt V(t) =I,
r

U~2=c, (r)exp i dt V(t)
~ &p

=i(hpz/ro)exp( —2i Vp/rp) Jp(2Vp/rp),

where Jp(z) is the zero-order Bessel function.
Repetition of the process for the initial condition

et(0) =0, c„(0)= I, orthogonal to the previous one, gives
the expected remaining elements of the U matrix

U2I U I 2s U22 I ~

Diagonalization of the matrix U gives in first order the fol-
lowing quasienergy splitting:

5 =e2 —
s~ hpJp(2Vp/rp) .

Note that the zero-order Floquet states coincide, except
for a time-dependent phase of period r, with the basis set
states (the localized packets ~l) and )r)). This is a direct
consequence of the use of perturbation theory.

Since the Bessel function Jp(z) ~ I, the tunneling fre-
quency 6 for the perturbed system is, in this approxima-
tion, always smaller than the one corresponding to the un-
perturbed system Ap. For V=O, Jp=1 and Eq. (6) gives
the correct result. If the value of 2Vp/rp coincides with
one of the zeros z; of the Bessel function, tunneling is
suppressed. The set of parameters satisfying this condi-
tion defines straight lines in the Vp-m space. In Fig. 1 we

give some of these curves for the driven quartic oscillator
Hamiltonian [8,9]

H =p /2 —x /4+x /64D+Sx sin(rot) . (7)

We first solve these equations for the initial condition
et(0) = I, c,(0) =0 assuming, as a zero-order approxima-
tion, that e„(t)=0. Then in first order we have

et(t) = I,
(5)

c,(t) =i(hp/2) dtexp 2i d—t'V(t')

Particularizing for t =r (the period of the perturbation)
and V(t) =Vpsin(rot) we get the first row for the one-
period propagator matrix U
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FIG. 1. S and co values for the driven quartic oscillator of Eq.
(7) (D I) which lead to tunneling suppression as determined

from Eq. (6). The circles are numerical results from Ref. [9].

was optimized. The values of hp and (I ~x~2) obtained for
D = 1 and D =2 are given in Table I.

In Table I and Fig. I we also give the S and ro values

for tunneling suppression which were determined in Refs.
[8,9] from an extensive numerical study. Our simple
model is able to account very accurately for these values
and its functional dependence.

Note that expression (6) is completely general. If the
conditions for the validity of the two-level approximation
and those for the validity of the perturbation method used
to solve the two-state model are met, tunneling control is

solely determined by Eq. (6) and the parameters appear-
ing in it.

The conditions that aA'ect the validity of the two-level

approximation have been established earlier in the
description of the model. Let us discuss now the validity
range of the perturbation approximation used to study the
model system itself. The first-order solution given in Eq.
(5) will be valid provided

c„(t)=i (hp/2rp)exp( —2i Vp/rp)

x [f(rot)+rptJp(2Vp/ro)], (8)

where f(t) is a bounded periodic function. Rough upper
bounds for the magnitude of the real and imaginary parts

TABLE I. Parameters for the driven quartic bistable oscilla-
tor [Eq. (7)] and two sets of the parameters S and r0 that lead to
tunneling suppression from this work and Refs. [8,9l.

Evidently, this condition will not be satisfied for times
close to the tunneling time 2z/6 for which ~c„(t)~=1.
From Eq. (5) it is found that

In this case Vp=S(l!x~2). We have obtained the lowest
pair of states (I! and (2! for the undriven system and its
energy splitting hp by diagonalization of the unperturbed
Hamiltonian [Eq. (7) with S =0] in the basis set of the
first 200 states of a harmonic oscillator whose frequency

1.0 0.0239 2.4783 0.06
2 0 189x 10 37910 0 01

This work Refs. [8,9]

0.029 11 0.028 39
3.172x 10 3.171 x 10
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ti;~;, =2/Jp(2 p/tp)ap. (9)

However, if ti;;[ is still significantly larger than the tun-
neling time for the undriven system (2x/Ap), i.e., if
Jp« I/x, Eq. (6) remains valid in predicting the decrease
of the tunneling rate. If Jp(2vp/tp) =1, i.e., if 2 Vp/to=0
the approximation may fail and this can occur for either
Vp small or cp large. However, for Vp=0 Eq. (6) gives
the correct result, which can be explained as an error com-
pensation in the diagonalization process of the one-period
propagator matrix. For large m values this matrix loses its
physical sense since the period z 0 (note that in the
limit tp ~ to get a finite time evolution one would have
to apply infinitely many times the propagator).

In conclusion, the preceding perturbation treatment is
not appropriate in cases of driving forces with either large
or small values of the frequency. However, these two fre-
quency limits can also be solved by perturbation methods
if the zero-order states are properly chosen. Let us discuss
first the limit co 0. In this adiabatic limit the right
zero-order states are the adiabatic states ~a~(t)) and
~az(t)) which diagonalize the time-dependent Hamiltoni-
an (7) at every time t The zero-. order Floquet states are
then obtained by adding the corresponding adiabatic
phase factors, i.e.,

W1

~f, ) =exp i„d—te)(t) ~a((t)),

~fz) =exp —i dtez(t) ~az(t)),

where

(10)

are the adiabatic eigenvalues. Particularizing for t =r
and V= Vpsin(tot), we get from the phases in Eq. (10)
the quasienergies e~ and sq and the tunneling frequency

A =82 8]

=(2hp/m)(1+q )' E(q/(I+q )' ),
where q =2vp/hp and E(z) is the completer elliptic in-
tegral of the second kind. The tunneling frequency is now
larger than that for the unperturbed system. This is a
zero-order result independent of e. First-order correc-
tions can be calculated similarly to the previous case but
these are exponentially small (—e 't ) since the adiabat-
ic energies do not cross.

of f(t ) can be estimated giving

(Re[f(t)] ) & x[1 —Jp(2vp/tp)]/2,

~
I m [f(t ) l

~
& tt .

Thus for Jp(2vp/tp) =0, c„(t) in Eq. (8) remains small
for all times if hp/2tp«1. In other words, too small driv-
ing frequencies invalidate our treatment. For the case
Jp(2vp/tp)&0, the condition hp/2tp«1 is also necessary
but not sufficient, since the linear term in time in Eq. (8)
will increase and eventually produce the breakdown of the
perturbation approximation. The limit time for this to
happen is [~c,(=1 in Eq. (8)]

6 =e2 —ei =hp+2(vp/tp) Ap, (12)

which indicates a tunneling enhancement also in this lim-
it.

It can be easily shown that all the results obtained so
far are independent of an arbitrary phase in the driving
force. On the other hand, the introduction of additional
terms with different frequencies alters some of the previ-
ous results. For incommensurable frequencies we cannot
define the one-period propagator; however, expressions
(3)-(5) are still valid. If we write

V(t) =g V;sin(cp;t+p;)

then from Eq. (5) we get

c„(t) =i (hp/2)exp —2i g V;/to;

dt exp 2i g(v;/tp;)cos(tp;t+p;)

The integrand factor is a quasiperiodic function of time.
Its Fourier zero-frequency component will give rise to a
linear term in time after integration; the nonzero corn-
ponents will produce bounded oscillations in c„. As be-
fore, if the amplitude of these oscillations is ((1, the tun-
neling behavior is determined solely by the linear term in

time. In particular, if the zero-frequency component van-
ishes tunneling is suppressed. Of course, there is more
freedom now to choose the parameter for that to happen.

Concluding, the two-state model is able to provide an
accurate description of the tunneling between them in real
multilevel systems if some conditions are met; namely, co

and Vo should be small enough to disregard transitions to
other states. In these circumstances only three parame-
ters control the tunneling behavior; two of them are the
external field strength Vo and frequency m, and the third
one is the system-dependent energy splitting ho. The sim-

ple expressions obtained [Eqs. (6), (11), and (12)], which
relate these parameters, can be used for tunneling control
in very different systems and situations. Tunneling can be
easily enhanced, reduced, or totally suppressed.

Formula (11) is very similar to the one found by
Grossmann et al. [Eq. (28) in Ref. [9]] for the Hamiltoni-
an (7) in the low-frequency regime. The parameter
dependence, however, is slightly different. It turns out
that Eq. (11) fits somewhat better the full numerical re-
sults of these authors [9] for the driven quartic oscillator.

Let us solve finally the high-frequency limit. By high
frequency we mean tp»Ap [Eq. (9)] but tp still smaller
than the energy of any other possible state with respect to
the energy of states ~1) and ~2) in order for the two-level
approximation to be still valid. Due to the fast oscilla-
tions, in zero-order approximation the perturbation term
averages out to zero. Thus the correct zero-order states in
this case are precisely the states (1) and ~2).

Trying for solutions of the form

(P) =ci(t) ) I)+c2(t) (2),

with ci(0) =I, cz(0) =0 and c~(0) =0, cz(0) =I, we get
from the first-order propagator matrix an energy splitting
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