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Multifractality of growing surfaces
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We have carried out large-scale computer simulations of experimentally motivated (1+1)-
dimensional models of kinetic surface roughening with power-law-distributed amplitudes of uncorrelat-

ed noise. The appropriately normalized qth-order correlation function of the height differences

ev(x) =&Ih(x+x') —h(x') Iv) shows strong multifractal scaling behavior up to a crossover length de-

pending on the system size, i.e., ev(x)-x, where Hq is a continuously changing nontrivial function.

Beyond the crossover length conventional scaling is found.

PACS number(s): 64.60.Fr, 05.70.Ln, 68.55.—a

The concept of multifractality has provided us with a
deep insight into the complex nature of distributions and
geometry associated with numerous important phenomena
ranging from turbulence through diffusion-limited aggre-
gation to crack formation. The infinite set of nontrivial
exponents characteristic for a specific multifractal mea-
sure yields a much more appropriate description of frac-
tals than the fractal dimension alone [1-3]. The discovery
of multifractal properties has been helpful in the under-
standing of the structure and formation of various fractal
objects; in particular, it played an essential role in the field
of growth phenomena [4,5]. So far the attention has been
focused in this respect mainly on self-similar objects al-
though the multifractal formalism has been worked out
for self-affine structures as well, leading to the concept of
"multiaffinity" [6,7]. The purpose of the present paper is
to demonstrate that experimentally motivated models of
kinetic surface roughening obey multiaffine scaling.

Kinetic surface roughening is a phenomenon important
for both science and technology [8]. Vapor deposition,
growth of bacterial colonies, or fluid displacement can be
mentioned as typical experimental realizations. The sur-
face usually grows from a d-dimensional flat substrate of
linear size L and, due to the presence of noisy excitations,
gets rough during its evolution.

The development of the resulting surface can be well in-
terpreted in terms of dynamic scaling [9] and self-affine

fractal geometry [10]. In this approach the width w of the
surface h(x, t) is expressed as

w(t, L)—= [(h (x,t)) —(h(x, t)) ]'I -t&g(t/L'i~),

where g is a scaling function and the exponents a and P
correspond to the algebraic behavior of the surface width
as a function of space (for long times) and time (for short
times), respectively. Similarly, for the height-height
correlation function one has

ez(x, t) =([h(x', t') h(x'+x, t'+t)]')„—,

—t '~f (x/t ~i ) .

A powerful theoretical approach to kinetic roughening
is represented by the so-called Kardar-Parisi-Zhang
(KPZ) equation [I I] which describes the temporal devel-
opment of the height variable h(x, t),

Bh =vV h+A, (Vh) +ri,
t

where v is an effective surface tension and A. is the
strength of lateral growth. The term g is usually assumed
to be uncorrelated and bounded (e.g. , Gaussian) noise.
This equation seems to describe properly diverse computer
models of kinetic roughening like ballistic deposition or
Eden models; in particular, in I+1 dimensions the dy-
namic renormalization-group solution turns out to be ex-
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act (a= —,
' and p= —,

' ).
Recent experiments on quasi-two-dimensional two-

phase viscous IIows [12-14] and bacterial colony growth
[15],however, have lead to exponents different from these:
The results for a are in the range 0.75-0.85. As a possible
resolution of this problem (the appearance of new univer-
sality classes) it has been suggested [16] that a power-law
distribution of the noise amplitudes P(rl)-t) '+" could
lead to new exponents (roughening dominated by rare
events). In fact, the p dependence of the exponents a and

p has been observed in numerical simulations both in 1+1
and 2+1 dimensions [16,17]. Moreover, the determina-
tion of the noise amplitudes from the reanalysis of experi-
mental data seems to support this suggestion [14]. It is
now crucial to understand the structure of the surface and
the way it is built up in the presence of power-law-
distributed noise.

In analogy with the case of self-similar fractals, the
concept of multifractality can be useful for rough surfaces
as well. In this context, it has been suggested recently [6]
that for a class of surfaces the qth-order height-height
correlation functions should be studied which, for fixed
time t in 1+1 dimensions, are expected to exhibit the fol-
lowing scaling:

1P(rl) —
~+ for rl & I; P(t)) =0 otherwise. (3)

We have chosen p =3 for which the change in the
roughening exponent is known to be significant (a is in the
range 0.7-0.8 instead of —,

' ). The computations were per-
formed in single precision (32 bits) Iloating-point arith-
metic except for the critical part of the generation of the
power-law-distributed noise. The program performed
Sx10 updates per sec on a 16-kbyte processor CM-2
without double-precision hardware.

First we demonstrate the multifractal analysis of a sin-
gle run for a system of size L =131072 (2' ). Figure I

presents the qth root of the qth-order correlation functions
(q &0) on log-log plots for two different stages of the
growth: t =10 and 1000. In the absence of multifractal
scaling one would expect two regimes for a given time in
such a plot. In the first one—up to x —t~~'—the correla-
tions have already been developed, resulting in parallel
lines with the slope a. Beyond x-t~t' no correlations are
present and, correspondingly, the graphs cross over into
horizontal lines. The fact that in the rare-events-
dominated model regions with q-dependent slopes are

I

„(,t) =—g ih(;, t) —h(x;+, t)i'- '"',
i I

(2) I t I t I
t

I
l

1
l

I

where Hq is an exponent continuously changing with q.
Surfaces with height correlations satisfying (2) are called
"multiaffine" and using the multifractal formalism relat-
ing the local singularities of the surface to the H~ spec-
trum, they can be described in terms of multifractality
[7]. Expression (2) is in analogy with the qth-order veloc-
ity structure functions of fully developed turbulence which
has been found to exhibit a nontrivial q-dependent scaling
both experimentally [18] and in model calculations [19].

I n this paper we present numerical evidence of
muttiafftne scaling in the model [16] of rare-events-
dominated roughening. The scaling behavior (2) demon-
strated here for a kinetic growth phenomenon implies that
the distribution of the height differences can be described
in terms of multifractal spectra. This multifractality is
specific to rare-events-dominated roughening; growth
models obeying the KPZ equation with bounded (e.g. ,
Gaussian) noise results in a constant H„.

We have simulated in 1+1 dimensions the evolution of
the continuous height variable h (x, t) subject to some lo-
cal uncorrelated noise rl(x, t) using a discrete model in

both space and time. Starting from a flat interface h=0
at t =0, the system evolves up to time t, performing t
times the following rules: (i) The noise rl(x, t) is added to
every site; (ii) each site takes a new value h(x, t+1)
equal to the maximum of itself and its two neighbors.

We used periodic boundary conditions for the space di-
mension. This model is fully parallel in nature and can be
implemented efficiently on the Connection Machine
(CM-2) and it has been used successfully to investigate
the effect of rare events on the exponents a and P. The
noise g was taken from a power-law distribution of the
form
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Fl G. 1. The qth-order correlation functions at different

stages of the growth: (a) after 10 sweeps and (b) after 1000
sweeps. On all figures q =1, 2, 3, 5, 7, and 9, increasing from
the bottom to the top.
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FIG. 2. The qth-order correlation functions after the surface

width has saturated (L =2'" and at t =602890 sweeps) for the
same values of q as in Fig. l. An average over 7 runs was taken.

present shows that multifractal scaling characterizes the
behavior. In the early stage of growth [t =10, Fig. 1(a)]
typical multifractal scaling can be observed: The qth-
order correlation functions are described by q-dependent
exponents Hq. As the growth proceeds further an in-

teresting crossover occurs and the lines due to the
different order correlation functions become essentially
parallel [Fig. 1(b)] with about the same nontrivial slope
corresponding to the roughening exponent (a(p)).

Figure 2 presents data for L =65536 at time t
=602890, i.e., deep in the saturation regime; an average
over 5 runs was taken. This is the most relevant set of our
results. The important conclusions one can draw from
this figure are the following: (i) The initial part of the
data sets for each q exhibits scaling behavior with a
unique slope depending on q, i.e., multifractal scaling is

present; (ii) this kind of scaling crosses over into the uni-

form scaling behavior for x exceeding some characteristic
crossover length x x.

In Fig. 3 the function qHq is presented as measured in

the multifractal scaling region. The deviations from the
simple scaling behavior are clear; changes in qHq as a
function of q are rather dramatic. In fact, our scaling
considerations to be discussed below indicate that there
should be a phase-transition-like feature in the Hv spec-
trum at a p-dependent q value.

Feature (ii) means that in addition to the characteristic
length -t~ always present in kinetic roughening until
the system size L is reached at saturation, a new charac-
teristic length xx occurs in surface growth dominated by
rare events. For x & x& the qth-order correlations show
multifractal scaling behavior. For xx &x & t~~' conven-
tional scaling sets in while no correlations are present for
x & ~~'.

The situation with the new crossover length is some-
what similar to the case where the intrinsic surface width
influences the behavior [20] The intrinsic width consists
usually of short-wavelength fluctuations and its develop-
ment precedes in many kinetic roughening processes the
build up of the long-wavelength scaling fluctuations.
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FIG. 3. The exponent Hq vs q as taken from runs described in

Fig. 2. The sharp change at q-3(=p) can be an indication of
a "phase transition. "

However, there are important differences between the sit-
uation with intrinsic width and the crossover we observed
for rare-events-dominated kinetic roughening. The usual

intrinsic width does not obey scaling [21] and the cross-
over length below which it determines the behavior is in-

dependent of the system size L. Here we see that for
x & xx multifractal scaling is valid. Moreover, the cross-
over length xx depends on L, as can be seen in Fig. 1.

The new characteristic length x& is an immediate
consequence of the rare events. A perturbation due to a
large jump in the surface propagates in the lateral direc-
tion linearly until the rest of the surface catches up (see
Fig. 1 in Buldyrev et al. [17]). In the mean-field approach
[22] the surface width at saturation is identified with the
characteristic large jumps, therefore the size of such

jumps scales with the system size as -L'. Due to the
linear propagation of the perturbation a characteristic
length in the substrate direction occurs which is of the
same order as the width. For distances smaller than this
length the correlations are dominated by the large jumps
[23], while on larger lengths the self-affine structure of the
whole surface becomes apparent. This consideration im-

plies [24] x, -L' and this means that the relative size of
the region over which the multifractal scaling behavior
can be observed on a larger logarithmic scale becomes
dominant in the large L limit. We have estimated the size
dependence of the crossover length as xx =18, 37, 115,
and 245 for L =2', 2', 2', and 2', respectively. Al-

though xx is quite small, these estimates are consistent
with the above scaling consideration.

An important feature of the considered qth-order corre-
lation functions has to be pointed out. For small x
[x =O(l )], the height differences are essentially distribut-
ed according to the function P(rt) —at least as far as the
large differences are concerned [25]. Since P(rt) is a
power-law distribution, its qth moments diverge as
—N ~ " " for q & p, where N is L times the number of
samples. Therefore, these correlation functions have to be
properly normalized by this factor. For finite systems and
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a finite number of samples one can always define them ac-
cording to (2). However, the normalized correlation func-
tions cq/lV tv " t" do exist in the thermodynamic limit.

It is natural to assume that the behavior for the diverg-

ing and nondiverging moments is qualitatively diAerent;
this is expected to lead to qualitative change in the Hq
spectrum often described as a "phase transition" [26].
Figure 3 shows an indication of such a phase transition at

p =3.
We have demonstrated that the concept of multifractal

scaling is very useful in describing kinetic roughening
dominated by rare events. We could identify a crossover
length below which the qth-order correlation functions

showed multifractal scaling behavior. Beyond this length
which increases with the system size, conventional scaling
sets in. Furthermore, our preliminary results indicate that
the exponents Hq do not depend on the system size or the
time in the region we considered. Finally, we expect that
the relatively sharp turn in the Hq spectrum corresponds
to a phase transition at q =p.
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