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The scaling behavior of self-avoiding (SA) fluid membranes in three dimensions subject to a bending

rigidity x is studied by Monte Carlo simulation. For x =0, open and closed membranes behave like
SA branched polymers at large length scales. For arbitrary a, scaling functions of the combination
y= N't /tr are —found to describe the shape variables of closed membranes. The transition from a rigid

phase at small y to a SA branched polymer phase at large y is smooth for closed membranes.

PACS number(s): 05.40.+j, 64.70.—p, 82.65.Dp, 87.22.Bt

Over large length scales, fluid membranes such as phos-
pholipid bilayers or surfactant monolayers can be viewed
[I] as two-dimensional, self-avoiding, tensionless surfaces
governed mainly by their bending rigidity x. Recently
there has been much interest in the shapes and scaling be-
havior [2] of such surfaces. The scaling of self-avoiding
(SA) ring polymers in two dimensions has been the sub-
ject of systematic theoretical investigations [3-6]. How-
ever, the scaling behavior of polymerized [7-10] and fluid
[11,12] surfaces in three dimensions has shown conflicting
results.

It is known from one-loop perturbative calculations on
non-SA fluid membranes that thermal fluctuations renor-
malize the bending rigidity, making it smaller at larger
length scales [13,14]. Thus non-SA fluid membranes
crumple (i.e., the local normals at the surface are uncorre-
lated) over distances larger than the persistence length
(~=aexp(4trtr/3), where a is a microscopic length pa-
rameter. Recently, two simulations have been carried out
on SA fluid membranes at zero rigidity. In one simulation
[11],the membrane is observed to crumple with a radius
of gyration squared R6 which scales like N, a scaling
behavior predicted on the basis of a Flory argument [7].
In the other simulation [12], (Ro) scales like N ', and the
membrane behaves like a SA branched polymer (SABP)
in three dimensions [15,16]. Glaus [17] has shown that

self-avoiding random surfaces also belong to the univer-
sality class of branched polymers.

In the present paper, we perform Monte Carlo simula-
tions of open and closed SA fluid membranes embedded in
three dimensions. Our alogrithms, used elsewhere [18] to
examine the open-closed transition of fluid membranes,
are slightly different from Refs. [11,12]. Our results favor
branched polymer scaling for both open and closed vesi-
cles at x =0. At intermediate x, a scaling ansatz sho~s
that closed configurations are governed by an unstable,
rigid, x'= fixed point. This leads to the main conclusion
of the paper —SA fluid membranes with finite x' scale like
SABP's for su%ciently large systems.

As in many previous simulations, we represent the
membrane by a two-dimensional manifold consisting of a
fixed number N of hard spherical beads (or vertices)
linked together by straight flexible tethers. The tethers
have a maximal length chosen to prevent self-intersection
of the membrane. Because of the tethers, the total area of
the membrane is not a constant and can change by up to
50% around the mean. A conveniens choice for a discrete
Hamiltonian governing the bending energetics of the
membrane is
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where P is the inverse temperature and each n is a unit
vector normal to the plane formed by three vertices which
are all nearest neighbors to one another. The sum is over
n's whose defining plaquettes share a common tether. The
self-avoidance constraint is imposed by using step func-
tions: The vertices are infinitely repulsive at distances less
than the bead diameter a (for all vertex pairs) or greater
than %3a (for vertices connected by tethers).

A set of appropriately weighted sample configurations
is generated using the usual Metropolis Monte Carlo tech-
nique in which trial moves are made on the vertex posi-
tions and connectivity. In our simulation of open mem-
branes, we use a label which distinguishes between the
external vertices defining the edge of the sheet, and the
internal vertices not at the edge. Similarly, an external
tether is connected to two external vertices, while an inter-
nal tether is connected to at least one internal vertex. The
closed membrane (vesicle) simulations contain no external
vertices or tethers.

A sweep across the membrane involves the following
steps: (i) An attempt is made to change the position of
each vertex by choosing another position randomly from
within a cubic box of length 2l to the side centered on the
old position. (ii) An attempt is made to reconnect every
internal tether following the procedure of Baumgartner
and Ho [11]to simulate ffuidity. In this procedure, an at-
tempt is made to cut a tether and replace it with a tether
connecting the two "opposite" vertices which (along with
the vertices at the ends of the original tether) define the
two triangles having the original tether in common. This
procedure conserves the number of tethers and plaquettes.

If the membrane is an open sheet, then there are exter-
nal vertices and tethers present which require additional
moves: (iii) An attempt is made to remove each external
tether, thus converting two internal tethers into new exter-
nal tethers and reducing the overall number of tethers by
one. (iv) An attempt is made to connect two next-
nearest-neighbor external vertices with a new external
tether, thus converting two external tethers to internal
tethers and increasing the overall number of tethers by
one. Each trial move is accepted or rejected according to
the Boltzmann weight exp( PhH) Un—like a n.umber of
previous simulations of open membranes, we do not fix the
number of vertices defining the perimeter.

The following algorthmic steps forbid the formation of
holes in the membrane: (i) A given vertex must have at
least three tethers connecting it. (ii) An external vertex
may not be connected by more than two external tethers.
(iii) The external vertices and tethers define only a single
continuous boundary. New boundaries in the interior of
the membrane are forbidden. Further, at each reconnec-
tion step the algorithm forbids a given tether to be com-
mon to more than two triangular plaquettes. This ensures
that the topology of the membrane is not changed. (That
is, the membrane is defined only by triangles, and all tri-
angles formed by three vertices which are nearest neigh-
bor to each other live on the surface. No tether is com-
mon to more than two triangles).

Either 100 or 200 sample configurations are generated
at each («, N) combination. Each configuration is
separated by a "Rouse time" r =N// Monte Carlo

sweeps. The equilibration time is approximately equal to
the Rouse time for non-SA polymerized membranes [7],
but is approximately a factor of 2 longer than the Rouse
time for SA polymerized membranes with N =300 or so
[8]. For ffuid membranes, we visually estimate the equili-
bration time to be 10-15 Rouse times for the system sizes
considered. Hence, each initialization is allowed to relax
for 30~ before sample collection commences. For the
largest system sizes, between 5 and IOX10 attempted
moves are made for each vertex and bond, comparable to
the number of moves used in Refs. [11,12].

Several checks are made on the N =542 membranes for
equilibration. For ir=0, observables are calculated both
from the entire 200~ configuration set and from the last
50m configurations only. The results agree within statisti-
cal errors. For «1.5 and 2, separate samples are gen-
erated from different initializations [130r configurations
from a ffat pancake start and (65-110)r configurations
from the last configuration at «. =1]. Again, observables
calculated with these different data sets agree within er-
rors.

From the parameters in the Hamiltonian, one can con-
struct two natural length scales: the rigidity length
L„=«a (related to the persistence length („)and the
areal length L~ =N ~ a. We are interested in the scaling
behavior of geometrical quantities like the mean volume
(V) (for closed membranes), the mean circumference (C)
(for open membranes), and the mean square radius (Ro)
as N becomes large and «. ranges over all nonnegative
values.

At «. =0, we expect the membrane to be very flexible
and („=O(a).Figure 1 shows typical open (a) and
closed (b) configurations with ramified arms which resem-
ble a branched polymer. We expect that the geometrical
quantities scale asymptotically as (RG) =RON; (V)
=VON", and (C) =CON". The behavior of (Ro) and (V)
is shown in Fig. 2. We find that for open membranes
v=1. l 1 ~0.05 and X=1.01 ~0.05 at « =0. This is con-
sistent with SABP behavior [17] where v=X =1 and with
Ref. [12]. The values of the exponents should not depend
on whether the membrane is open or closed. However, for
closed membranes we find that v =0.92 ~ 0.05 and
p=l. 18+0.05. The value of p is consistent with Ref.
[11] but is significantly larger than the BP result [17]
p =1. We believe that the origin of this discrepancy lies
in the algorithms of the simulations, and we return to this
question below.

When x' becomes infinite, fluctuations in the shape are
suppressed and the membrane transforms into a rigid
geometrical object. For closed membranes we expect the
shape to be a rigid sphere, where (RG) =R N and
(V)=V N ~. Such spherical configurations are seen in

the simulations (see Fig. I in Ref. [18]). For open mem-
branes we expect a flat, rigid shape with an arbitrarily
long boundary due to entropy. We conjecture that such a
shape scales as a two-dimensional SABP with [191
v =1.28.

What is the scaling behavior at intermediate values of
a? In analogy with the analysis of polymers in two di-
mensions [3,4], we conjecture that the shape of the closed
membrane at intermediate « is governed by an unstable
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FIG. 2. Scaling behavior for open and closed configurations
at a. 0. The data are shown for (RP) (open and closed) and
iV)'-~' (closed). The uncertainty in the data is 7%. The straight
lines are fits to the data discussed in the text.

FIG. l. Sample configurations for (a) open and (b) closed
membranes. (a) s =0, N =9I; (b) a =0, N =542.

rigid fixed point at x =~, where self-avoidance is ir-
relevant. At this zero-temperature fixed point the scaling
fields do not have any anomalous dimensions. This im-
mediately suggests that the correct scaling variable should
be y =N'~ /a which is the ratio of the two length scales
L~/L„. For closed membranes we postulate that the shape
scales as (RG)—=R N@(y) and (V)=V N e(y) with

the normalization @(0)=e(0) =1 to get the correct scal-
ing for the rigid membrane at K =~. This fixes the
nonuniversal metrical factors R and V . If the scaling
formulation is "complete" it should describe the SABP
configurations at y ~. Thus one expects, as y

~(y) @ /y
2 2v

e(y) =e /y' '",
with exponents v and p given by the three-dimensional
SABP values. Thus we expect a smooth crossover from
the closed rigid x =~ phase to the K =0 SA BP phase.

Figure 3 shows a log-log plot of (V)/N ~ vs y for N
ranging from 74 to 542. The collapse of the data to a sin-
gle scaling function is clear; the appearance of the collapse
can be improved by the introduction of shift parameters to

account for finite-size [4] and other effects. A similar
scaling behavior in accord with Eq. (2) is observed for
(Ro). lt appears that (RG)/N is almost a constant for all

values of y.
We see from Fig. 3 that the curves for fixed N peel off

from a limiting form (which goes to zero as y ee) when
x. decreases, since (V) = VnN" at zero a.. The behavior of
the N =542 vesicle is highlighted in the figure. The limit-

ing form corresponds to the asymptotic expression (2).
The exponent p can be extracted from the slope of the
segment in the intermediate y regime in Fig. 3.
Parametrizing this segment as y ~, we expect p=3 —2p
as N becomes large. From the figure, the value of p at
each N (around y= 10-20) increases with N: p=0.6
(N =74), 0.75 (N =122), 0.91 (N 182), and 1.06
(N =542) with a 10% uncertainty. Clearly, the values of
p at large N cluster around unity. In fact, if one extrapo-
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FIG. 3. Scaling analysis of the volume for closed vesicles.
The reduced volume ( V)/N '~2 is shown as a function of

y =N'~ la.. The N =542 data are linked by a solid line for clari-
ty. Data for x =0 are nominally plotted at y 1000.
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lates p to N =~ using p(N) =p(~)+B/N where B is a
fit parameter, then p(ixi) =1.1 ~0.1. This allows us to
distinguish between branched polymer scaling, for which
p(~) = I, and the results of Ref. [11] (Ji =1.2) for which
p(~) =0.6. Hence, we argue that the scaling analysis
favors the SABP exponent even though our simple
analysis of [og(V) vs logN in Fig. 2 gives p =1.2, in agree-
ment with Ref. [11].

We now address the issue of why our value of p for
closed membranes at a =0 is larger than that expected for
SABP's. In Ref. [12], configurations with long thin
ramified structures of cross sectional width O(a) appear
at modest values of N. Such structures are prevented in
our simulations at small N. In our simulations, the mem-
brane surface is defined by triangles, and all triangles
defined by three vertices which are nearest neighbors to
each other live on the surface. Thus, a cross section taken
through an arm of a branched polymer configuration
shows a minimum of four vertices in our simulation. In
contrast, in Ref. [12] a separate label is kept for the sur-
face triangles, thus allowing a given tether to be common
to three triangles, only two of which are surface triangles.
A cross section through a branched polymer arm in Ref.
[12] shows many regions where only three vertices define

the arm. In other words, the lower length scale cutoff is
larger in our simulations than in Ref. [12]. Hence, we
must go to larger values of N to observe the same
branched polymer configurations as observed in Ref. [12].

In conclusion, we have investigated the scaling behavior
of the shapes of self-avoiding fluid membranes in three di-
mensions as a function of a. We find that at x =0, both
the open and closed membranes behave like a three-
dirnensional SABP at large N. The shapes of closed mern-
branes at nonzero x can be described in terms of the scal-
ing variable y =N'i /x. This scaling behavior is governed
by an unstable rigid fixed point at x =~. We find that
there is a large regime in y space (0,~] over which the
scaling form holds. As in Ref. [4], we speculate that the
reason for this might be due to the presence of nonlinear
scaling fields. Thus, at any finite value of K the membrane
exhibits SABP behavior at large length scales. This im-
plies that the SA fluid membrane is crumpled at all
nonzero temperatures.
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