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Nonlinear adiabatic reflection of electrons by an electromagnetic wave in a plasma
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A theoretical model is developed for the investigation of the adiabatic reflection of electrons from a

spatially localized electromagnetic wave, taking into account the nonlinear trapping in the wave field.

A complete analytical description of the adiabatic motion is given via the constancy of the Hamiltoni-

an and the invariance of the adiabatic integral, The set of initial conditions for which reflection occurs
is determined in detail as a function of the field amplitude and of the wave frequency for the case of
electron-cyclotron waves in perpendicular propagation. The comparison with the results of the Lie
transform approach is performed. It is found that trapping effects strongly modify the reflection pro-

cess, giving rise to a substantial enhancement of the repulsive ponderomotive force. When trapping
occurs, reflection is observed for a large set of initial conditions for which the perturbative approach
predicts no reflection at any value of the perturbation.

PACS number(s): 52.35.Hr, 52.35.Mw

The adiabatic reflection of charged particles by a spa-
tially localized electromagnetic wave is a peculiar pon-
deromotive effect with important applications in plasma
physics and other fields. Accurate treatments of the pon-
deromotive force are based on the Lie transform approach
[1,2] (LTA). This method, however, cannot properly de-
scribe the cases where nonlinear alterations of the particle
dynamics, as trapping in the wave field, arise. In the
present paper we develop a theoretical model for the in-
vestigation of ponderomotive effects in the above-
mentioned conditions. The comparison of the present re-
sults with those obtained by the LTA shows very
significant differences, which are discussed in the follow-
ing. Moreover, the present results are shown to agree to a
great accuracy with those derived from the numerical
simulation of the particle motion.

We refer here, for definiteness, to the case of an
electron-cyclotron (EC) wave propagating perpendicular-
ly to a uniform magnetic field BO=Boe-, and character-
ized by a nonuniform amplitude E(z). This case allows
pointing out the essential characteristic of the results.
The detailed presentation of the method and the extension
to the more general case of oblique propagation will be
presented in a future paper.

Let the parameter e(z) =eE(z)/mero, where co is the
wave frequency, be suSciently small and slowly varying
so that the electron motion in the wave field can be con-
sidered regular and adiabatic. Moreover, let the flight
time of' the electrons in the interaction region be larger
than the trapping time so that nonlinear effects can take
place. Fixing our attention to the initial and final electron
states (where e=0), we intend to characterize the pon-
deromotive reflection by determining the electron momen-
ta of the electrons that are reflected by the wave.

The dynamics of the electrons in the regular regime, for
a wave frequency close to the nth cyclotron harmonic, is
conveniently described by the following time-independent

a(z) &q 8 I
4 al aH./al- (3)

The reflection implies the inversion of P- sign in the un-
perturbed initial and final states. From the Hamiltonian

relativistic Hamiltonian [3]

H =y —vl/n =Hp(I, P )+H~(z, P ,8,I), -

with Hp(I, P ) =I —vl/n, and H~ = —a(z)Pql" cosn8,
where I =(I+2I+P=') 'I-', v=ro/0 (with 0 =eBp/mc the
cyclotron frequency for rest electrons), and q 0, 1, for
the extraordinary and ordinary mode, respectively. The
given expression for H] is valid at lowest order in Larmor
radius. The parameter a(z) depends on the harmonic
number, the refractive index, and the polarization vector,
and is proportional to e(z). It is characterized by a single
maximum aM & I, which can be considered as the non-
linearity parameter. All variables are dimensionless. In
Eq. (l) the canonical momentum P is related to the kinet-
ic momentum p by the relation p=P+A, where A is the
vector potential; O, I are angle action variables; and, in ab-
sence of perturbation, I =p&/2 represents the perpendicu-
lar energy. In adiabatic conditions, 8,1 and z, P are the-
fast and slow variables, respectively, and the action in-
tegral J=(n/2n) fd81 is an adiabatic invariant, which is
constant during the motion except at the separatrix cross-
ing, where it may change abruptly.

In linear conditions, i.e., when trapping in the wave field
does not occur, a ponderomotive Hamiltonian Hp(P. , a,J)-
can be found by means of the LTA [4]. The average of H
over the 0 variation is expressed as

H =Hp(J„P )+Hp(a, J,P ), --
where J is constant on the whole motion and is equal to
the unperturbed value of the action Io, and the pondero-
motive H am il ton ian reads
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H(Z, P , e, l) =H()(l(-), P-()),

J(a(z), P , H p) =J, -
(5)

which represent the constancy of the Hamiltonian and the
adiabatic invariance of J. In the case of nonlinear motion,
the constant J has different values in each stage of the
motion: before trapping, J Ip,. and in the trapping re-
gime, J=J„J,being the area enclosed by the separatrix
when it is crossed [note that J, coincides with Ip when the
separatrix splits the (8,1) plane in two regions only ].

The condition for reflection can then be written as

J(an, P =O, H()) =J . -

From Eq. (6), the reAection region in momentum space
can be then obtained by means of the condition
ag(l(), P-()) ~ a~. Thus the above model solves the prob-
lem of the electron reflection by the wave. It is found
again that, owing to the P- factor in H ~, in the case of the
ordinary mode (at any harmonic) Eq. (6) does not admit

(2), the evolution of P ca-n be obtained as a function of a.
The condition for reflection is given determining the value

aR, corresponding to P- equal to zero, and requiring
aR ~aM ~

For the case under investigation, we can at first observe
that for the ordinary mode, reflection can never occur due
to wave polarization, i.e., to the Hp dependence on P- in

Eq. (3). Therefore we analyze here the case of the ex-
traordinary mode, and refer explicitly to the second har-
monic (n=2); in this case a=evNe —,N being the wave

refractive index, and e the right component of the polar-
ization vector. Note that the following analysis is valid
for wave frequencies not close to the upper hybrid fre-
quency, where the given expression for H) does not hold.

The analytical determination of the reflection regions is

performed in the weakly relativistic approximation, put-
ting I = l+P=/2+1(l —P='/2) —I /2 in -the expression
for Hp. The integration of the equation for dP /da leads
to the following expression for aR..

r

1 2 1 1

aR = P-p 3 — 2p+ —P-p
2( l

—I()) 21() 2

P2
+Ipln 1—

2p —Ip

valid for lp) 2p, where p=l —v/2. When Ip&2p, no
reflection can occur for any aM, only electrons with finite
values of the perpendicular energy are reflected.

Substantial modifications of the above conditions occur
when trapping is taken into account. A complete descrip-
tion of the average motion relevant to the Hamiltonian
(I), valid in both the linear and nonlinear regime, is given

by the two equations
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FIG. 1. Behavior of P= vs a for initial conditions P-O=O. OI,
I0=1.25x10, and p=0.02. The solid line is the solution of
the equation of the motion, the dotted line is the adiabatic result
obtained from Eq. (9), and the dashed line is the LTA result.

solutions for aR.
To illustrate how the nonlinear trajectories aA'ect the

electron reflection, in Fig. 1 we show as an example for the
extraordinary mode at the second harmonic the behavior
of P vs a as computed from Eqs. (5), in comparison with
the behavior deduced by the perturbation approach (2),
for a case with lp & 2p. The evolution of P- as obtained
by solving the equations of motion is also shown. Note the
very good agreement between the adiabatic result [from
Eqs. (5)] and the numerical result. Note also the inver-
sion of the ponderomotive force, and the corresponding
reflection, when the LTA foresees no reflection for any
aM. In general, due to trapping, when the LTA predicts
reflection, an increase of the repulsive ponderomotive
force and consequent decrease of aR is observed.

To analyze the reflection process, we consider again the
weakly relativistic approximation, where the adiabatic in-
variant J can be computed analytically, and the deter-
mination of ar( is then reduced to the determination of
zeros of a transcendental function. Using the procedure
presented in Ref. [3], we introduce the new action
(=I/~l, ~, normalized over 1„(P-)=p —P /2 (which rep--
resents the unperturbed resonant value for P=' ~ 2p), and
the function h = (H —

l
—P '/2)/I, which, --for n =2,

reads

h(0, $) =sg —( /2 —P(cos20,

where s =I„/~l„~and p=a(z)/~l,
~

The function h, w. hich
depends on two parameters only, s and p, describes the
electron motion in the fast variables 0, (. The adiabatic
integral J can be expressed as J =II,jI(s, p, h), with j(s,
p, h) =f(dO/)r. The computation of j is easily performed
in terms of elliptic functions for any value of s, p, and h:

j(s, p, h) =— d(
1 2h —( (g)

j[g- —2$(s —P)+2h] [ —g +2((s+P) —2h]]"
~here the extrema are the roots of denominator. The Eqs. (5) reduce to the following equation, which gives the function
P (a) in both the linear and no-nlinear regime:

I I, (P= ) Ij(s. p. h ) =J . (9)
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Note that P is a function of P a-nd a, and h depends on P
and on the initial momenta through Hp. The analysis of
the reflection process corresponds to the case P- =0 in Eq.
(9):

0.40-

0.30-

Iplj(s, p~, IR) =I, (10)

with P~=P(a,—P =0)-=a/~p~, and hR=—h(P =0)
= (H, —1)/p'-.

An example of reflection region for a given value of a~
and p & 0 is shown in Fig. 2, which puts into evidence the
substantial difference with respect to the LTA. Note that
the reflection region extends to lower Ip values and to
larger P-p, with a maximum P-p on the resonant curve.
The main modifications occur in the trapping region
characterizing the electrons that cross the separatrix dur-
ing the interaction. To determine this region, we observe
that a separatrix exists in phase space for any value of P
when s =1, and for P~ 1 when s = —1. The value of the
function h at the separatrix is h, =(1 —P) /2 for P & 1,
and h, =0 for P& 1, so that h, & 0 for any P. This im-
plies that electrons with initial conditions corresponding to
Hp(lp, P-p) & 1 can never be trapped in the wave field. In
the region of momentum space defined by the condition
Hp & l, the LTA will then give results very close to those
obtained from Eq. (10). Inside the trapping region a par-
ticular role is played by the electrons, which can experi-
ence a net energy change due to the nonlinear interaction
with the wave. They define the nonlinear-interaction re-
gion, introduced in Ref. [3], which extends around the res-
onance curve. This region, which saturates for a~ =p, is
defined by the inequalities P p~ 2p, I —~-lp ~ I+, where
I~ =l, (P , )(1+j,/2) for -P(aM, P , )~1, and I+=-.21„
I- =0 for P(aM, P , ) ) I, the la-tter case corresponding to
the saturated region. In the above expressions the index s
refers to the separatrix crossing, and j, is given by

j,. =4[arcsin Jp+ Jp(1 —p)]/z.
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FIG. 3. Reflection region in momentum space for p 0.02
and different a~ values. Curves a, b, c refer to a~ 2, 4,
6x 10 -, respectively. The solid lines are the results obtained
1'rom Eq. (9) and the dotted lines are the linear results obtained
from Eq. (4). The dashed curve is Hp(P-p, lp) I, the thin
curve (e) is the linear resonance curve, and the thin solid line
(d) delimits the nonlinear-interaction region.

Electrons with initial momentum belonging to this region
experience an energy transition hy= v(p —P.-p/2 —Ip),
with probability —, [3]. In this condition, electrons with
initial momentum P pand energy -yp are split by the
reflection process in two populations with two different
final energies yp and yp+hy, and the same final P.-
= —P-p.

The behavior of the reflection region with a~ is repre-
sented in Figs. 3 and 4, where the reflection regions ob-
tained from Eq. (10) for different asr values are compared
with the linear regions for positive and negative p. In both
cases strong modifications with respect to the linear cases
are observed. From the analysis of Eqs. (8) and (10), the
following considerations can be made. For p) 0, the
reflection region starts enlarging from the resonant point
P-p =0, Ip =p, when a~ =0, and for increasing a~, it ex-
tends up to a maximum P-p given by

P ~p =2[[v'-+ asr (a~ +2p)] ' —vj

—aM (aM +2p)

for Ip=l (P-p), i.e., on the resonant curve, and finally
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FIG. 2. Reflection region in momentum space for p=0.02
and a~ =6X 10 '-. The shaded region corresponds to reflected
electrons, the thick dotted curve to the linear result, and the
dashed curve to Hp(P-p, lp) = I, which delimits the trapping re-
gion. The thin dotted curve is the linear resonance curve
lo=p —P=o/2, while the solid thin line delimits the nonlinear-
interaction region, where a net energy variation can occur.
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FIG. 4. Same as in Fig. 3 for p —0.02.
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overlaps the saturated-nonlinear-interaction region when

a~ =J2p —
p (Fig. 3). For p(0, the reflection region

extends up to the axis Io 0 (p ~ 0) for P o-
~ max(an't+ p, 0) (Fig. 4).

In conclusion, we have developed a theoretical model
that allows the computation of the adiabatic reflection of
the electrons due to the ponderomotive force in the pres-
ence of trapping. The investigation is based on the relativ-
istic Hamiltonian formulation of the problem and allows
the determination of the reflection region in momentum
space. A strong enhancement of the repulsive ponderomo-
tive force and a substantial modification of the reflection
region in momentum space with respect to the LTA have
been pointed out. The case of the extraordinary mode at
the second harmonic has been analyzed in detail. The ob-
tained results are quite general, since it is found that for a
trapped particle the ponderomotive force is repulsive. No
reflection is found in the case of the ordinary mode be-

cause of polarization effects.
Finally, we note that the enhancement of the pondero-

motive force due to trapping effects, discussed here, may
play a significant role in the self-focusing process of the
localized electromagnetic wave. Modifications with
respect to the estimates found in the literature [5] should
mainly occur for extraordinary waves with frequency
around the cyclotron harmonics. On the other hand, a
large interval of parameters exists where trapping strongly
modifies the reflection mechanism, while self-focusing is

negligible. In fact, referring to a Maxwellian plasma of
temperature T,„reflection occurs mainly in the strong-
ly nonlinear regime [3], where a+ T,,/mc-, while the
condition for an effective self-focusing requires a
& (T,,/mc-) ' '-
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