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Microscopic-growth morphologies in binary systems
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Microscopic solidification morphologies of binary systems are simulated with a Monte Carlo model
that accounts for bulk diffusion, attachment and detachment kinetics, and surface diffusion. Through
variation of interaction energies and undercooling, a broad range of microstructures is obtained, in-

cluding eutectic systems and layered and ionic compounds.

PACS number(s): 61.50.Cj, 05.50.+q, 81.30.Fb, 68.45.Ax

We introduce a powerful Monte Carlo (MC) model to
simulate the growth morphologies and microstructures of
binary crystals. Explicit consideration is given to mutual
interactions between like and unlike particles at the solid-
liquid interface. Previous treatments of the morphologies
of binary systems have either been macroscopic continu-
um theories, which deal with dilute binary alloys [1] or
binary eutectics [2], or microscopic theories [3-7]. Apart
from the work of Karma [8], microscopic theories have in-
volved statistical models that ignore bulk diffusive trans-
port. Although restricted to systems with two nonfaceting
pure phases, Karma's work represents a significant step
toward understanding steady and unsteady growth mor-
phologies in eutectic systems.

Our MC model deals with an isothermal two-compo-
nent system that is contained in a rectangular region with
a square grid. Initially, most of the region is occupied by
a liquid that consists of particles A and B (with concentra-
tions given by the mole fractions Xz and Xtt =1 —Xz),
which occupy each grid point according to a preset con-
centration ratio. Diffusion in the liquid is modeled by ran-
dom walks on the grid [9]. Periodic boundary conditions
are used on the grid sidewalls. The system temperature T
is less than the equilibrium melting temperature T,

„
i.e.,

the liquid is undercooled by hT=T, , —T. In order to
"seed" solidification, the grid initially has two base lines
that are considered as solid, and that are fully but ran-
domly occupied by either 3 or 8 particles according to the
bulk liquid's X~. Depending on the simulation conditions
(see below), solidification may lead to a solid solution or
two solid phases. Lattice mismatches between adjacent
solid phases are proscribed. Although we invoked the
solid-on-solid assumption [10] in the solidification process,
it is not required by our formulation.

In state si, the system contains A' particles of which N,.
are solid and )VI liquid. After a time step h, t, the system
changes to state s~, in which M particles in the liquid
phase have become solid. The master equation for this
transition is

dP(s. , t) =g[k (s ~,s2) P(s i, t ) —k (s2,s ~ )P(s2, t )],
dt Sf

where k(s~, s2) and k(s2, si) are the transition probabili-
ties for s] s2 and s2 s[, respectively. The individual

with

k(s l,s2) g
k(s~, s2)+k(sq, s~) 1+@ ' (3)

P( ) N M

g= = Pg; =P 0;exp[ P(hE; —hp;)]-,P(s i)

where hE; and hp; are the change of internal energy and
chemical potential, respectively, for the transition. hit~.

can be calculated from the undercooling hT and the inter-
facial concentration difference AX; between the melt L;
and equilibrium concentration X„[l1]:

Lp kT,,
hp;=hp; +hp; = h, T+ hX;-,

C'

(s)

where Lp is the latent heat of solution (with p designating
the specific solid phase).

The individual attachment probability for particle i is

exp[ —P[(hE;o hE; ) —hp;]}—
(6)

1+exp[ —P[(hE;o —bE; ) —hp;]] '

where the transition energy change hE;,„(toA or B) is

(for solid-solid particle interactions only)

hEiru 'f~rurul (nmru1 + eruru2nruru2+ &ruru) nruur /
+ erurupnmru2) r

with p,„,„~—=p,„denoting the pair (nearest-neighbor)
interaction energy which is assumed —1/r"' such that,
through appropriate choice of the exponent m, various
types of interaction can be approximated. The n„„],n„„2,
n„;„,, and n,„;„zrepresent the number of first, second,
"like," and "unlike" nearest neighbors, respectively. The
w terms denote the normalized bond strengths

&mm2 gmm2/Arum I r emru ~ 11'mur ~/Pmml r emur2 Pmru2//mme .

state probability is

N

P(sj, t) =A,,exp —P H[sj) —Pp,', , j 1,2, (2)
I

~here H[s~] and p,'J are the Hamiltonian and site-de-
pendent chemical potential for state sj, respectively, and

P 1/kT, where k is Boltzmann's constant, and the 0,,
are the product of individual vibration factors 0;. For de-
tailed balance, dP/dt 0 and the overall attachment prob-
ability is
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Thus the energy change associated with the attachment of
3 particle i to a kink site on the solid surface is

~E a 0 I [&10(1+rf 20(2& +2+ n lo(1 4 I )&,
„

+ n 2O (1 —(2 )e„,—.,],
where n~o and n~o are the number of occupied nearest
and second-nearest neighbors for a kink site, (I =n„„f/
(n„„f+n,„,-„f)and (2=If &„p/(n „2+n,.;„2).

The probability P," for selecting a specific interfacial
solid particle to detach from the surface can be calculated
from E;, the energy configuration [9] of site i, as
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+exp( PE;) '— (9)

and thus a particle with fewer solid neighbors will have a
larger detachment probability.

For surface diffusion, we assume [9] that the diffusion
rate depends on the occupation condition of both the site i
that particle occupies and the potential jump site j:
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K;, = v, exp( hE;,P), — (10) Ili,
~ I;I i Iflflj

I

~here v, is the surface vibration factor and hE;~ is the ac-
tivation energy. Note that, although there is no dimen-
sional limitation in our MC formulations, in this paper we

only consider a two-dimensional simulation.
The simulation begins by calculating the overall attach-

ment probability P+. A random number R is generated.
If R & P+, an attachment is considered. A "liquid parti-
cle" (either A or 8, depending on the mole fraction X;) is

selected at the interface. Then the probability P;,+„[Eq.
(6)] is calculated to decide whether attachment occurs. If
the particle attaches, the local configuration is changed
and the overall P+ is recalculated. If the liquid particle
does not attach, it will diffuse away by either surface or
bulk diffusion (i.e. , random walk), until it reaches the top
of the region, whereupon its motion is no longer recorded
[12], or reaches an interfacial site. If R & P+, a detach-
ment is considered. A "solid particle" is chosen on the in-

terface and its detachment probability calculated accord-
ing to Eq. (9). If detachment occurs, diffusion ensues,
just as for particles that failed to attach. Throughout the
simulation, a registration scheme is used to calculate the
concentration distribution in the liquid [9]. The local
mole fraction L.

&
is updated frequently to ensure the

correct selection of the liquid particle during the simula-
tion. Furthermore, the interfacial L~ data are used for
the calculation of the concentration term in Eq. (5). The
above process is repeated until the solid has reached a
preset size.

The following preliminary results involve systems with
X, =0.5, equal interaction between like particles (i.e.,
pq. ~ =fffaa), and various 1-8 interactions, including mod-
el ionic interactions and different values of the interaction
exponent m. Figure 1 shows results obtained at a fixed
undercooling Ap /kT=0. 5. The solid and open boxes
(for Figs. I and 2 only) represent component A and 8 in

the solid phases, respectively. Figure 1(a) presents a case
with equal interaction between unlike and like particles,
p,...f/k T=2.3, and where the strength of second-neighbor

I
I ~ I

(e)

FIG. 1. Microscopic growth morphologies of binary crystals
at fixed undercooling hp '/k T=0.5 and various interaction con-

ditions: (a) p„„~/kT=2.3, e, =I.O, e„~=a„„-,=O. I; (b)
~/kT = —2.3, m = I; (c) y )/kT= —2.3, m =3; (d) y )/

kT= —2.3, m =6; (e) P ~/kT=2. 3, e„-~=e ~ =0.I, @„-,
=0.05.

interaction is 10% of the first-nearest-neighbor interaction
(equivalent to m =6). One sees that no component
segregation results and the particle distribution in the
solid phase is random. For Figs. 1(b)-1(d), the interac-
tion energies between neighboring particles are all of ionic

type, with &,„,„I/kT=—2.3, E I
= E —

f
=1.0. The in-

teraction exponent was varied from m =1 [Fig. 1(b)1 to
m =3 [Fig. 1(c)] and m =6 [Fig. 1(d)]. As can be seen

from Fig. 1(b), the particles with Coulomb potential
(-I/r) prefer to pack in layers and columns of like

charge. Kith increasing m, the crystal structure changes
from layers to two-dimensional NaC1-like patterns [Fig.
1(c) and 1 (d)], with a critical value of m =2 for the turn-

over. %'e found that for m = I, a crystal can have NaCI-
like characteristics only when more distant-neighbor in-

teractions are included, which is consistent with the long-

range interactions in ionic crystals. This result is of in-
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terest, since it contrasts with those of earlier simulations
[7] of ionic crystal growth that considered only first-
nearest neighbors and neglected bulk diffusion. In Fig.
I (e) the interaction energies between neighboring parti-
cles are p,„„i/kT=23, e.„;„,=e„„q=0.1, and e„„-&=0.05.
This reduction of the nearest-neighbor interaction be-
tween unlike particles to l0% of that between like parti-
cles results in a lamellar structure of two solid phases that
are pure 3 and 8, respectively. If a particle A, by chance,
lands at a surface site with mostly solid B neighbors, the
weaker attraction between unlike particles will result in a
low attachment probability and a large detachment prob-
ability. The A particle will probably leave that site and
randomly walk in the liquid until it finds a more favorable
surface site with more particles of the same type.

In addition to the interaction energy, the undercooling
can also greatly influence the crystal-growth morphology.
This is illustrated in Fig. 2. Here the interaction energies
are all fixed (Q,„,„I/kT=3.9, e' —

i
E „2 0.1, and e „2-

=0.05). At low undercooling, hp /kT=0. 1, a lamellar
microstructure forms [Fig. 2(a)], which exhibits a wide
spacing (= 120 lattice constants) with local "facets," i.e. ,
regions of low surface roughness. In addition, deep
grooves are formed near the three-phase junction, where
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FIG. 3. Mole fraction X~ along the growth direction at the
center of lamella A (lower half) and B (upper half). O,o corre-
spond to Fig. 2(a); A, h to Fig. 2(b); and 0 to Fig. 2(d). Dis-
tance in units of lattice constant a.

solid A, solid B, and the liquid meet. At hp /kT=0. 5

[Fig. 2(b)], the lamellar spacing decreases. At hp /
kT=5.0 [Fig. 2(c)], not only does the spacing decrease„
but the interfaces also roughen. In addition, the grooves
at the junctions grow out and eventually disappear. This
is fundamentally different from growth behavior observed

by Karma [g], which is subject to the constraint of triple-
point equilibrium. Finally, at infinite undercooling [Fig.
2(d), hp /kT =~] there is no phase ordering. This is be-
cause the attachment probability is too high to allow par-
ticles to redistribute. Under these circumstances, the
solid-liquid interface becomes rough, and significantly in-

creases in width.
The coupling between local composition and solid mor-

phology is illustrated in Fig. 3, which shows profiles of Xz,
the mole fraction, along the growth direction for condi-
tions corresponding to Figs. 2(a), 2(b), and 2(d). Two
profiles are plotted for each situation: one lies along the
center of the solid phase A, the other lies along the center
of phase B. One sees that Lq has a minimum ahead of the
3-rich phase and a maximum in front of the B-rich phase,
reflecting, respectively, the depletion and rejection of 3 at
these phases. This nonuniformity in concentration dimin-
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FIG. 2. Microscopic growth morphologies of binary crystals
at fixed interaction energies p i/k T =3.9, E'

i
=E ~ =O. I,

e„„-,=0.05, and increasing undercooling: (a) hp /kT=O. I; (b)
hp'/kT=O 5; (c) hp'/kT=5 0; (d). hp'/kT=~.
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FIG. 4. Mole fraction X& parallel to the solid-liquid interface
of Fig. 2(b) at 2a (O), IOa (8), 20a (h), and 50a (H) into the
liquid. Distance in units of lattice constant a.
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ishes with distance from the solid-liquid interface. Figure
3 also shows that the segregation is highly dependent on
the growth conditions. %'ith increasing undercooling,
there will be less of a chance for liquid particles to relax.
This kinetic efTect not only results in a narrower lamellar
spacing (Fig. 2), but also narrower and steeper concentra-
tion boundary layers. The local character of segregation
is further illustrated in Fig. 4 for the case of Fig. 2(b) by
composition profiles parallel to the interface at distances
of 2, 10, 20, and 50 lattice constants into the melt. As can
be seen in this figure, the melt concentration periodically
changes with the lamellar solid phases. With increasing
distance into the melt, the concentration distribution
gradually becomes uniform.

In conclusion, we have shown via a MC simulation, the
importance of interfacial mass segregation and melt dif-
fusion in the ordering of binary systems during
solidification. Depending on the interaction energies be-
tween particles, the microscopic growth structures range

from complete mixing to complete segregation. For the
same interaction energy, the growth morphologies can
also be greatly aAected by undercooling. As undercooling
increases, the interphase spacing of lamellar eutectics de-
creases. Since we have chosen to describe the growth of
two-component systems using a combination of random
walk to model bulk diA'usion, and calculated transition
probabilities to model microscopic surface kinetics, our re-
sults are limited to length scales characterized by these
processes. At this stage, our results can be used only to
qualitatively predict morphological and microstructural
textures (for example, the relationship between velocity
and lamellar eutectic spacing); direct predictions of mor-
phologies in macroscopic systems cannot be made without
either increasing the size of the systems we simulate
(which would be computationally inefficient) or coarse
graining in such a way as to retain those aspects of micro-
scopic kinetics that are manifested in macroscopic mor-
phologies [13].
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