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Dynamics of spiral waves in a spatially inhomogeneous Hopf bifurcation
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%'e study numerically the behavior of some topological spiral defects, their dynamics being governed

by a complex Ginzburg-Landau equation with space-dependent coefficients. We show that the interac-
tion between a spiral and the gradients of the coefficients can counterbalance the repulsion between de-

fects of identical sign and lead to topologically stable patterns. Configurations of several defects with

the same topological charge have been observed recently in nonlinear optics experiments.

PACS number(s): 05.45.+b, 42.65.—k, 47.20.Ky

The appearance of a Hopf bifurcation in a two-
dimensional system can be described by a complex order
parameter A (r, t ) slowly varying both in space and time,
obeying a generalized Ginzburg-Landau equation [I]:

a~ =pg+av g —PILI 3+@ vA, (I)

where p, a, p, and 7 are complex coefficients and V'-

stands for the two-dimensional Laplacian operator. In the
limit of real coefficients, topologically stable solutions of

(I), called vortices [2], are known to exist. These solu-

tions correspond to phase singularities of the field A,
around which the circulation of the phase gradient is

equal to + 2x:

A(r, t) =R(r, t)e'~" (~ VP dl= ~2tr=2z7', . ,' ~r
where I stands for any closed path surrounding the singu-
larity and T, for the topological charge of this same
singularity. The isophase lines are straight lines centered
on the singularity and a single vortex is stationary. When
the coefficients are allowed to be complex, there exist
similar solutions, called spiral waves. These solutions still
correspond to phase singularities around which there is a
nonvanishing phase circulation, but the isophase lines
have a spiral shape, analogous to the Archimedes spiral,
and the structure as a whole rotates around its center with
constant angular velocity [31. Topological solutions of the

type mentioned above are also called topological defects,
and the region close to the singularity is called the defect
core.

Because of the translational invariance in space of Eq.
(I), the response of a topological defect to a very small
perturbation is expected to be an adiabatically slow dis-
placement of the defect solution. This assumption lies at
the root of numerous recent numerical and theoretical
studies on the movement of a topological defect due to the
eflect of boundary conditions [4] or the presence of other
defects [5,6]. Although the various results do not com-
pletely agree, all these studies report, at least for suffi-
ciently small distances, that the interaction between two
defects is repulsive when the defects have the same topo-
logical charge and attractive otherwise.

The reduced equation (i.e., omitting spatial derivatives)

aA =(p„+tp;)A —(P, +ip;) IA I

describes the evolution of a single nonlinear oscillator,
with an amplitude R=(iu, /P, )' and angular frequency
to=(p;P, —p,p;)/P, . Equation (I) can thus be interpret-
ed as describing the large scale spatiotemporal evolution

of a set of nonlinear oscillators, coupled together by
diffusion and dispersion, and as such, it naturally emerges
in various domains of physics. In this Rapid Communica-
tion we consider a collection of such nonlinear oscillators,
with the addition that their characteristics (R, tu) and

their coupling are allowed to be weakly varying functions
of space. The interest in studying such a system is not

limited to pure theoretical aspects, as it corresponds also
to real situations. The one-dimensional Ginzburg-Landau
equation with coefficients slowly dependent on space has
already been used to describe open flow systems like shear
flow or wakes behind a circular cylinder [7]. In two di-

mensions, this same system has been used to describe the
electric field in a transverse section of a laser. Actually it

has been shown recently that the Maxwell-Bloch equa-
tions [81, which describe the interaction of an electromag-
netic field with a two-level nonlinear medium, can be re-
duced to a complex Ginzburg-Landau equation with

space-dependent coefficients [9]. These coefficients de-

pend on the distance r from the center of the laser beam,
as a consequence of the presence of finite-size spherical
mirrors and space-dependent pumping profiles. Moreover
the presence of optical vortices, corresponding to the
phase singularities of the electric field, has been confirmed
both by precise numerical simulations of the Maxwell-
Bloch equations [10] and by preliminary results of experi-
mental researches in laser physics [11].

Our aim in this paper is to make a qualitative study of
the dynamics of topological spiral defects, in the presence
of spatial inhomogeneities. We restrict our study to the
case where the coefficients of the complex Ginzburg-
Landau model are function of the radius r only, so that
the rotational symmetry of the equation is preserved. We
show numerically that spatial inhomogeneities can confine
defects of the same topological charge in a small limited
region of space, and we report about the various stable
patterns associated with a given total topological charge.
These solutions (which are unstable for spatially indepen-
dent coefficients) broaden the range of application of the
Ginzburg-Landau picture, extending direct comparisons
between these models and experimental results from
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FIG. 1. p, (r) —2tanh[4(r —10)l —I, P; 0.5, p;(r) = —tanh(0. 1r), P, (r) —tanh(0. 1r)+1.3, and a, =u; =0.2. The initial

topological charge is equal to + I, and the contrast of the various pictures has been reinforced by choosing white and black colors for
lower and higher intensities, respectively. (a) Spatial distribution of the modulus of A, (b) spatial distribution of the real part of A,
and (c) lines where the phase of A is equal to 0, ir/2, —z/2, and ir, respectively.

different branches of nonequilibrium physics ranging from
optics to chemical oscillations and hydrodynamics [12].
For example, Arecchi et al. have recently reported about
the long-term stability of patterns containing six vortices
with the same topological charge in an optical oscillator
with photorefractive gain medium [13].

The amplitude equations describing the Hopf bifurca-
tion are obtained by a perturbative calculation in the
neighborhood of the bifurcation, the scale of variation of
the order parameter 3 being given by the square root of
the distance to the bifurcation threshold. Thus, it can be
seen that if the parameters of the system vary spatially on
a much larger scale than the typical variation of 8, the re-
sulting Ginzburg-Landau can be written as

=p(r)A+a(r)V A P(r) ~A ~
A+ y'(—r).VA, (2)

~here p, P, a, and y are complex coefficients slowly vary-

ing in space. Numerical simulations of Eq. (2) were per-
formed using second-order space and time finite difl'erence

codes on a massively parallel computer (Connection
Machine) in the case of @=0. The number of collocation
points varied from 128X 128 to 512x 512, the time step
being equal to 0. 1 and the space step varying from 0. 1 to
0.3 without any qualitative diAerence. Although we used
a square numerical grid with rigid boundary conditions
for our simulations, the results are in perfect agreement

with the axisymmetry of (2). For completeness, we have
checked that a cylindrical grid yields the same qualitative
results.

When all the coefficients are constant (and y=O), the
homogeneous trivial solution A (r, r ) =0 is stable for nega-
tive p, but unstable otherwise. As we want to simulate the
radial profile of the pumping process of a laser, we have
chosen an axisymmetric hyperbolic tangent shape for p(r)
so to enhance high light intensities around the beam
center and vanishing electric field away from it. Other
coefficients were chosen with numerous and various
shapes.

Our first result deals with the stability of the topological
defect. We have observed that although the shape of a
spiral wave is usually altered by the gradients of the
coefficients, the phase singularity at the defect core is still
present and moves as in the presence of an external force.
With our choice of p(r), c(r), . . . , this pseudoforce is
sufficient to maintain a defect in the region where ~A ~

is
nonvanishing. Because of the axisymmetry of (2), the
center of the grid plays a special role becoming an attrac-
tive stable point to which all single topological defect are
driven by the action of the coeflicient gradients. Figure 1

shows a typical stable situation with a single topological
defect localized at the center of the grid and rotating
around its core with constant angular velocity. %'hen the
total topological charge is higher than one, each spiral de-

(a) (b) (c)
FIG. 2. SPatial distribution of the modulus of A in the presence of (a) three, (b) four, and (c) five spiral defects. The parameters

are the same as in Fig. I, but with different initial topological charges. Each phase singularity rotates around its core, while the whole
pattern rotates around the center of the grid.
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FIG. 3. Spatial distribution of the modulus A for the same parameters of Fig. 1 and total topological charge equal to 8. The
diA'erences in the asymptotic states are due to the initial configurations only. (a) Seven defects rotate around one defect localized in

the center of the grid. (b) All the defects rotate around the center of the box and in the same direction. There are, however, two cir-
cular trajectories, the inner one containing two defects, and the outer one containing six other defects. (c) The two trajectories con-
tain the same number of defects.

feet interacts both with the gradients of the coefficients
and with all the other defects. For the same choice of pa-
rameters, the system then usually admits several stable
states with various total topological charges. However,
when the initial topological charge is higher than a critical
value, the repulsion between defects prevail over the ac-
tion of the gradients and some of the spiral defects are
ejected from the active region (where ~A ( is nonvanish-

ing). Figures 1, 2, and 3 illustrate such situations, with

total topological charges equal to 1, 3, 4, 5, and 8, respec-
tively. It should be noticed that the distance between a
defect and the center of the grid increases with the total
topological charge. The symmetry of these regular pat-
terns, arising from the balancing of the repulsion between
defects and the drift force induced by the gradient of the
coefficients, affects not only the positions of the defect
cores but also the phase p of the order parameter A. The
entire structure rotates around the center of the plane
while each spiral rotates around its own core, keeping,
however, the phase difference between two adjacent de-
fects constant. Another interesting feature of (2) is the
coexistence of different configurations of defects with the
same total topological charge. Figure 3 shows some stable
patterns in the case of eight singularities; a single defect in

the center of the grid is found at equilibrium with a rotat-
ing circle of seven defects [Fig. 3(a)1; groups of defects
rotating on circles of different radii find their balance by
moving with different angular velocities [Figs. 3(b) and
3(c)]. Moreover, for certain initial conditions, a spon-
taneous creation of a pair of topological defects with op-
posite charge occurs during transients. This yields asymp-
totic patterns where the value of the total topological
charge is different from the total number of defects. Simi-
lar stable configurations of defects, which, however, do not
rotate, neither around their core nor around the center of
the grid, have been obtained in the case of purely real
coefficients of Eq. (2).

The spontaneous creation, random displacement and
mutual annihilation of defects in a regime of phase insta-
bility [14] has already been identified as the primary
mechanism of the onset of turbulence in the complex
Ginzburg-Landau equation (1) [15]. This is still the case
when the coefficients depend on space. But now, due to
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FIG. 4. Same parameters as in Fig. I, but P; (r)
=tanh(0. 4r) —1.4. The four panels show the time evolution in

the case of irregular motion of defects.

the existence of regular patterns with high topological
charge, the first steps of the transition to a turbulent state
are associated with a complexification of the motion of the
phase singularities and with a progressive destruction of
the spatial order. This is illustrated by the four instan-
taneous plots of Fig. 4 which show the time evolution of
an initial configuration with total topological charge equal
to 4, after transients have been discarded. Interactions
and drift forces are now responsible for the erratic motion
of the defects, generating partial loss of spatial correla-
tion. The possibility of detecting and studying these inter-
mediate states makes equation (2) an excellent prototype
for the analysis of the transition to turbulent states. Our
present efforts are leading in this direction.

Stable patterns with total topological charges different
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from zero have been shown to be coexisting and common-
place for partial differential equations with spatially inho-
mogeneous coefficients. A practical use of this phenom-
enon in nonlinear optics can be immediately envisaged.
Multistable patterns can be utilized to increase the alpha-
bet of a coded signal, i.e., the amount of information
transmitted in an optical channel. The experimental re-
sults of Ref. [13] confirms that our predictions may have
effective applications in this field. In addition to nonlinear
optics ~here the spatial inhomogeneities are intrinsic to
the system [9], we may also imagine modifying experi-
mental systems known to contain spiral waves solutions.
For example in the case of the Belousov-Zhabotinsky

chemical reactions [16], the space variation of the
coefficients may be obtained by an inhomogeneous distri-
bution of the species concentrations. Such an experimen-
tal apparatus (which already exists [17,18]) should be
able to originate some regular beautiful arrangement of
spiral defects.
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