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Motivated by the hypothesis that "self-organized criticality" is a common source of l/f noise, we

construct and analyze a class of nonlinear nonequilibrium models describing the dissipative dynamics

of interacting particles injected stochastically at the system boundaries. We show that such noisy

boundary problems may be analyzed by renormalization-group methods and find that the noise spec-

trum for the particle number is I/f in all dimensions in the absence of an external driving force or
noise. Addition of such a force or of bulk noise changes the spectrum to I/f2, or I/f 1, respectively.

These results explain several recent numerical experiments on dissipative transport.

PACS number(s): 05.40.+j, 5.60.+w

Years of research into the sources of I/f noise in many
different physical systems have produced little evidence of
the simple, universal explanation which the ubiquity of
the phenomenon suggests [I]. Recently, though, it has
been conjectured [2] that such an explanation resides in

the ability of a broad class of nonlinear nonequilibrium, or
driven, systems to exhibit scale invariance or "self-
organized criticality" (SOC)—infinite correlation lengths
and the concomitant algebraic decays of correlations in

both space and time for arbitrary parameter values Since.

temporal scale invariance immediately implies power
spectra that behave like f ' for small f, SOC seems on its
surface a promising mechanism for generating I/f noise.
One must, however, demonstrate that a values close to
unity (0.8 ( a ( 1.4 is the rough experimental range), and
reasonable noise magnitudes emerge naturally from it.

While several classes of tnodels of dissipative transport
capable of generic scale invariance and hence of I/f' fluc-
tuations have been discovered, few of them have produced
values of a close to I for spatially averaged quantities [I]
of interest. For example, the sandpile models often taken
as prototypes for SOC have been argued [3] to give a =2,
under the assumption that the signals from individual
avalanches may be linearly superimposed. Models acted
upon by external (e.g., thermal) white noise, which are
well understood to yield (with few exceptions) generic
scale invariance whenever the transport obeys a local con-
servation law [4], trivially give, as shown below, a=2
spectra for the mean value of the entity being transported.

Prompted by the observation of I/f noise in the spec-
trum of fluctuations of the number of flux lines piercing a
region of superconducting material just above the onset of
flux flow [5], Jensen [6] has constructed simple lattice-gas
models which provide a notable exception to this pessimis-
tic generalization. The models are appealing schematic
representations of many transport processes wherein par-
ticles are injected stochastically at the boundary of a sarn-

pie, move interactively and deterministically through it,
their total number being locally conserved, and are re-
moved at the other end. They are similar in spirit both to
the models (such as sandpiles) studied as paradigms of
SOC, and to the nonlinear stochastic theories of dissipa-
tive transport ("driven diffusive systems" [7]) used to
model superionic conductors. Jensen has studied numeri-
cally the fluctuation spectra of the total particle number in

a variety of such models, and found I /f' with a very close
to unity under a wide range of conditions. Andersen, Jen-
sen, and Mouritsen [8] have studied similar models
wherein the particle motion in the bulk of the sample is
stochastic, obtaining I/f 1 spectra. Motivated by these
findings, we construct and analyze a class of Langevin
equations [9] which explain most of the results, and pro-
vide simple criteria for the occurrence of I/f noise in such
transport processes. We cast the problem in a language
suitable for renormalization-group (RG) analysis, which
allows a treatment of the nonlinearities neglected in ear-
lier related models. We show that a = I requires that sto-
chastic behavior and driving forces occur only at sample
boundaries (not in the interior), for any physical system
whose density is bounded. Relaxation of any of these con-
ditions produces crossover to a I/f or I/f 1 power spec-
trum. We also comment on the relationship of these mod-
els to the flux flow experiments, to boundary-driven sand-
pile models, and to other driven diffusive systems.

The idea that noisy diffusive processes might be respon-
sible for I/f noise is hardly new: It has been around for
40 years [10]. We are by no means trying to repudiate the
consensus that such theories are probably inadequate to
explain I/f noise in condensed-matter systems such as
metals [I]. It is unlikely that SOC is the origin of I/f
noise in all systems, and particularly in metals, where the
extremely small driving currents which produce the
phenomenon, and the absence of long-range spatial corre-
lations [Il, make activated processes [I] a more plausible
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explanation. Rather, our intention is to analyze a class of
nonlinear dissipative transport processes suSciently broad
to encompass several nonequilibrium systems currently
under investigation. The exploration of many such
universality classes will ultimately decide the viability of
SOC as a realistic explanation for I/f noise in diverse
physical situations.

We model particles which are injected stochastically at
the left boundary of a d-dimensional system, move in-

teractively and dissipatively through the medium, and are
removed at the other end. The motion in the bulk may be
either deterministic or probabilistic, and the particles may
also be propelled from left to right by a driving force.
This process can be described by the Langevin equation
[9]

Bn(x, t) = —V J[n}+8(x)J)Jp(x, t) . (I)
8t

Here n(x, t) is a coarse-grained density field, J [n} is the
current associated with the local conservation of n(x, t),
and Jp is the rate at which particles are injected at the
system's left boundary, the (d —I)-dimensional hyper-
plane x))=0. [Here II and J denote, respectively, the
direction transverse to, and the (d —I) directions in, that
plane. ] A boundary condition such as n(x))=L, t) =0 is

typically imposed at the right edge of the system, though
one can also consider a semi-infinite volume by sending
L ~. Periodic boundary conditions are assumed in the
& directions.

To have any chance of obtaining from (I) I/f spectra
in the total particle number or k=O Fourier mode,
N(t)=n(k=O, t), one must prevent the density from in-

creasing without bound. To see this, imagine taking
L =~ and treating Jp as purely stochastic, Jp(x j,t )
=rt(x&, t), ~here tI is a white-noise variable with correla-
tions (tI(x~, t) (txI'~, t')) =2I b(x~ x'~)8(t —t'—) for
some constant I . Then N(t) executes a random walk,
8N/Bt = tI(k~ 0, t), whereupon the power spectrum
(~N(f)~ ) diverges like I/f, the trivial Brownian result.
This conclusion is very general, depending only on the
conservation of n(x, t) embodied in the V J[n} term of
(I), and not on the form of J[n} or the spatial dependence
of the noise [though obviously tI(k =0,t) must not vanish
[I I]]. The boundary condition n(x)J=L) =0, which al-
lows particles to escape through the boundary at x}}=L,
solves the problem for finite L, but a solution that works
even when L =CJCJ is to include in Jp a term that "pins" the
density in the first layer, making it saturate before it ran-
dom walks to arbitrarily large values, i.e.,

Jp(x, t) = —rn(x, t)+ rt(x, t),
where g is a noise variable, and r a positive constant. This
choice for Jo incorporates the energetic constraint in real
systems against the density (of, e.g. , flux lines in the su-
perconductors of Ref. [5]) growing unboundedly; in

lattice-gas models [6-8] this constraint is manifest in the
hard-core condition. This saturation effect is a key to ob-
taining I/f noise, rather than I/f, from Eq. (I) [11].
[Note that Eq. (2) is equivalent to imposing a noisy
boundary condition, i.e., n(x)J =O, x&, t) =rt(x&, t). Cast-
ing general, nonequilibrium problems that involve noisy

boundaries in the form of the Langevin equation (I), how-
ever, enables one to apply the RG to analyze the non-
linearities. ]

To see this, consider first the simple diffusive or mean-
field theory obtained by taking the current j to be —van,
where v is a diffusion constant [12]:

Bn(x, t ) =v& n(-x, t) —rb(x)))n(x, t)

+S(x)J)rt(x~, t) . (3)

Since particles are added stochastically at x)) =0, with
some positive average rate, hp say, we take rt(x&, t)
=hp+ rt(x~, t ), where rt represents white noise of strength
21, as above. The field n(x, t) is conveniently separated
into steady state and fluctuating parts: n(x, t) =np(x)J)
+h(x, t), where np(x))) =(n(x, t)), and (h(x, t)) =0;
np(x)J) satisfies 8 np/Bx)J =0, and the boundary condi-
tions np(0) =hp/r and np(L) =0, i.e., np =h p(1 —x)J/L)/r.
The fluctuating piece h(x, t) then obeys an equation iden-
tical to (3), but with rt replaced by rt. For an infinite sys-
tem, this equation is readily solved by Fourier transforma-
tion:

h(k, f) =gp(k, f)rt(kj. ,f)/[I+rl(k~, f)], (4)

with gp '(k f)—:( if+ vk—) and l(k~,f)=Jdk)J—
x gp(k,f)/ 2tt.

For small f, 1(k~=0,f)-f 't~, whence h(k=O, f)
-rt(k& =O,f)/f V . Hence ()N(f) ~

) diverges like I/f as
f 0. More precisely, the I/f behavior is obtained for
f &f,-r /v; for f)f, one gets I/f . The only
significant effect of incorporating the correct boundary
conditions [13] in the finite region 0 ~ x)J ~ L is to make
the spectrum saturate at fL —v/L, approaching a con-
stant value -I L~/r as f 0, rather than diverging.
This reflects the boundedness of N(t) in the finite region
0~ x}}~ L.

Thus a pinned, noisy boundary in the mean-field
(linear) diff'usion problem produces I/f' noise with a = I

in any dimension [14]. One can verify that this result
holds in situations wherein the system is "pinned" and
subjected to white noise in a boundary region more realis-
tic than the first layer of sites. Consider, e.g., the model

Bn(x, t )
8t

= v& n(x, t) —r J (x J))n(x, t)+r2(xJJ) rl(x t) .

(s)
Provided r J(x)J) and r2(x)J) decay from x)J =0 with some
characteristic lengths (exponentially, say), the I/f result
derived for the 6 function case continues to hold.

Before arguing about the effect of nonlinearities on this
result, we study two difl'erent linear (mean-field) theories.
First consider model (3) in the presence of a uniform driv-
ing force that gives the particles a drift velocity across the
sample from left to right. Such forcing (present, e.g. , in

the overdamped motion of charged particles in an electric
field), breaks the x)J —x)J symmetry of Eq. (3), and so
permits the extra linear term —«r)n/r)x)) on the right-
hand side, for positive constant K. The solution of this
problem is still given, for f)fL —v/L, b) Eq. (4), with

gp now given by gp =—( if+ixk)J+vk )—; correspond-
ingly, l(k~ =O,f) const as f 0, whereupon
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(~N(f)~ ) grows like 1/f for small f. Thus the uniform
driving produces a noise spectrum which is Brownian in

any dimension, rather than 1/f. More precisely, the spec-
trum crosses over from 1/f to 1/f for f's less than
f„-N. /v, before ultimately saturating at -I L /r for
f's below fI..

Next consider model (3) without a driving force, but
with white noise that conserves the number of particles in

the bulk. Such noise is represented by the random
variable iI(x, t), with (rI(x, t)rl(x', t')) = —2I V b(x —x')
x b(t —t'), for some I . Fourier transformation now yields
the solution [15] (~N(f)) )-1/f ~ for f small, but still
larger than the finite-size cutoff fI. proportional to L
It is easy to verify that the combination of a driving force
and conserving bulk noise produces a 1/f spectrum.

We must now determine how the hitherto neglected
nonlinear parts of the current J(n) affect the spectrum.
As usual, only terms consistent with the symmetry of the
problem can occur, those of lowest order in both n(x, t)
and gradient operators being most relevant, or having the
strongest effect on small-f properties [16]. Consider first
nonlinear diffusion without external driving, i.e., with
x [[

—x [[ invariance. The lowest-order nonlinearity
which respects this symmetry (and the conservation
of particle number in the interior) is JNL (XiVi+
X~V~)n . Again separating the field n into steady state
(np(xi)) and fluctuating (h(x, t)) parts, and setting
A, i =A, ~ =—A, (which simplifies the notation without chang-
ing the results), one obtains

unusuall~ low. (The coupling constant k decreases like
b t +' when lengths are rescaled by the factor b.) De-
tails of this calculation, which, owing to the lack of
translational invariance in (6), is considerably more com-
plicated than in typical problems, will be given elsewhere.

In the presence of a driving force which breaks the
x[~

—x[[ symmetry, the leading allowed nonlinearity in

Ji is n (this is clearly the most relevant nonlinear opera-
tor that can occur for any symmetry). This produces a
nonlinear fluctuating term of the form Bh /Bx~~. Again,
one can check that this term is irrelevant, and fails to alter
the 1/f spectrum of the linear theory with driving. One
can, however, consider situations with slightly diff'erent

symmetries, e.g., problems with a "particle-hole" invari-
ance [4] under the transformation h —h, xi —xi.
In such systems the xnter'm of J~~ is forbidden (so that the
linear theory yields a 1/f spectrum), but the n piece is

still allowed. Power counting shows that this term is ir-
relevant, so the 1/f result is valid, for all dimensions down
to the upper critical dimension d, . =l. With bulk noise,
the 1/f result holds down to d, =2.

The results described here are, with one exception, in

agreement with the numerics of Jensen [6] who finds, for
several difl'erent one- and two-dimensional lattice-gas al-

gorithms (which are varied by the introduction of next-
near-neighbor interactions, of pinning centers that trap
particles temporarily, or of stochastic particle sources at
more than one boundary), a spectrum consistent with

a =1 or a =2 in the respective absence and presence of a
driving force. The single discrepancy is the one-
dimensional model without driving, where the a=1 ex-
pected theoretically has so far been observed only when

identical stochastic boundary conditions are applied at the
two sample boundaries, thus producing a constant density
profile. For boundary conditions yielding a nonuniform
profile, the exponent a =1.5 seems to occur instead. It is
not yet clear whether this signals a crossover from a =1 to
Q =2.

Our results are also in agreement with the numerics of
Andersen et al. [8], who study models similar to that of
Ref. [6], but with conserving noise in the bulk, finding
a= —', in the absence of driving. Jensen [14(d)] has stud-
ied sandpile models [2] in which particles (or, more pre-
cisely, units of slope), are added stochastically at certain
(closed) boundaries of the system, move through the sys-
tem according to the deterministic algorithms of Ref. [2],
and can leave at other (open) boundaries. If, as seems
reasonable, the macroscopic behavior of such systems can
be described by our model without a driving force or bulk
noise, then one would expect a 1/f spectrum for the total
slope. This is exactly what is observed numerically.

It is tempting to attribute to model (1) the 1/f fluctua-
tions observed in the flux flow experiments of Ref. [5], at
certain current levels just above the threshold value where
depinning and vortex motion first occur. One might argue
that at threshold the driving and impurity pinning forces
exactly balance, so the vortices experience no net driving
force. Moreover, vortices presumably get introduced sto-
chastically at the edge of the sample, there are obvious en-
ergetic constraints against their density diverging, and
thermal noise in the bulk is negligibly small, so the prob-

h =(v —2knp)V h —rb(x~~)h+u(np, h)
t

where

2B np Bnp
u(np, h) —= —2A. h —4X

Bx
Pi

Bh

Bxi

Before considering the nonlinear V h term of (6), we
discuss the linear terms which involve the static density
profile, np(xi); np is determined by the equation
BJi/Bxi =0 (where Jg=xp' J), or B (vnp —Anp)/Bx~~ =0,
and the boundary conditions np(0) =hp/r, and np(L) =0.
The solution takes the form np(xi) =A —(8 —Cx~i/L) '

for constants A, B, and C, which are independent of L.
Thus Bnp/Bxi is proportional to 1/L, so the u(np, h) pieces
of (6) can be neglected in the large-L limit. [They pro-
duce crossover effects for f~ O(L ), as discussed above
[17].] Next consider the knpV h term. For small A, it
is easy to show that np(xi) is linear in xi. np hp(I
—xi/L)/r, with nonlinear corrections of order Ahp/vr. In.
this limit, it can be verified by RG power counting [16]
that the npV h term has no efl'ect on the small k and f be-
havior of model (6). This is not surprising, since the
noV h term is very similar to the ordinary V h one, but is
reduced by a factor of the small parameter A, hp/vr.

Thus for small X and large L, model (6) differs from (3)
only by the presence of V h . Again, power counting
shows that this nonlinearity is irrelevant for any d, so the
mean-field 1/f spectrum survives the inclusion of non-
linear fluctuations, i.e., the upper critical dimension is
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lem seems well described by our model without driving,
which gives I/f. The true situation is more complicated,
however. The experiments actually record fluctuations in

the number of vortices piercing a small region of the sam-
ple, rather than the whole. Our model does predict I/f
behavior for this quantity, but only for f's in the range
/JL «f«L~, where /JL and L~ are respectively the
width of the small region and the shortest distance
separating this region from the edge of the sample where
the vortices are introduced. It is also likely that impurities
play a crucial role right at the depinning transition.
Significantly above threshold (i.e., in the "quasilinear" re-
gime of Ref. [5)) the impurities can be ignored more plau-

sibly, and the situation should reasonably be described by
our model with a driving force. In this case the fluctua-
tions in the number of vortices piercing a small region is
straightforwardly found to behave like I /f for f)f„and
is constant for f&f, , just as is observed experimentally.
However, the characteristic frequency f, dec. reases in our
calculation like h,L, whereas it seems to be independent
of width in the experiments.
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