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Sine-Gordon kink-antikink generation on spatially periodic potentials
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A spatially periodic perturbation can lead to a breakup of large-amplitude sine-Gordon breathers
into kink and antikink solutions, each oscillating around a minimum of the perturbing potential. This
behavior can be understood by studying the effective potential experienced by the breather (bound
kink-antikink) or the (free) kink-antikink solution as long as kink and antikink are sufliciently far
apart. The resulting kinks and antikinks move independently and nearly radiationlessly in the
presence of the perturbation and can travel arbitrarily far for su%ciently large initial kinetic energy.
Upon interacting with each other they are strongly aÃected by the perturbation, lose energy by
radiating, and can end in a bound state having the character of a distorted breather.

PACS numbers: 03.40.Kf, 42.20.—y, 61.70.Ga

Adding spatial disorder to completely integrable non-
linear dynamics like the one governed by the nonlin-
ear Schrodinger (NLS) equation or the sine-Gordon (SG)
equation leads to a variety of novel effects having prac-
tical relevance [1]. Competition of the length scales in-
troduced by the perturbation and by the nonlinearity is
one example we have studied recently [2]. If these length
scales are very different from each other the perturbed
dynamics can support solitonlike or breatherlike excita-
tions. The motion of these excitations can be described
by a collective variable approach [3, 4]. On the other
hand, if the length scales are comparable localized ex-
citations break up or dissipate into radiation even for
relatively small strength of the perturbation. This be-
havior has been observed in the case of the SG equation
[2] as well as for the NLS equation [5].

Another class of effects induced by spatially periodic
perturbations can be observed in dynamics which allow
for topological solitons like the SG equation. Although
very many perturbed SG problems have been considered
in the literature (see, e.g. , [6, 7) for reviews), to our best
knowledge, only Mkrtchyan and Shmidt [8] and Malomed
and Tribelsky [9] have studied the motion of SG kinks
under the influence of a cosine potential. In this case
kinks (and antikinks) seem to move radiationlessly below
a certain velocity threshold. The question arises whether
kinks and antikinks also interact radiationlessly under
these circumstances. Finally it is interesting to see under
which conditions a breather can break up into a kink-
antikink (Ii-K) pair under the perturbation [2].

In this Rapid Communication we address the question
of how large-amplitude SG breathers behave under the
influence of spatially periodic potentials. These poten-
tials include the effects of discreteness as a particular
case; they also can be relevant to understand the inter-
action of domain wall excitations in discrete solid-state
and materials science problems governed by SG-like equa-
tions of motion, for example, dislocations in a crystal,
walls in ferroelectrics or ferromagnets, or discommensu-
rations in superlattices. A breather can be interpreted

This equation of motion is generated by the Hamiltonian
(see [6])

H = dz &u, + &u~+ 1+ icos kz 1 —cosu

(2)

We will use two different kinds of exact solutions of the
unperturbed SG equation (e = 0) as initial conditions:
breathers and Ia-K solutions. The solution for a breather
at rest has the form

u '(2. , t) = 4 tan ' (tan tt
cosh[(z —zp) sin p]

It is most important to realize that p is the parameter
governing the breather shape and size. As p ~ 0, the
breather becomes shallower, its frequency, given by ~b„——
cos p, grows, and it can be eff'ectively described by a NLS
equation [11]. On the other hand, when p ~ x, the
breather frequency goes to zero and it is actually very
close to a A-I~ pair.

As for the It-It solution, its expression at rest is given
by (,sinh[pv(t —tp)] )u zt =4tan ' v

cosh [7(z —zp)] ) (4)

with v ( 1, p = (1 —v ) I . Equation (4) can be
obtained as well by analytic continuation (see, e.g. , [12])
of Eq. (3) for the breather, letting p = s/2+ iW, with

as a bound Ii-Ix state (see a detailed account of the
physics of breathers and kinks in [10], for instance). Un-

der a sufficiently strong potential these virtual kinks and
antikinks can become independent of each other. The
opposite effect of binding previously free kinks and an-
tikinks in a breatherlike excitation will also be addressed.

The perturbed SG equation we investigate is

u« —uxx + [1+c cos(kz)] sinu = 0 .
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0
p

dz(2u'- + 1 —cosu) .

The amount by which the total energy is changed in

the presence of the perturbation is given by

Vea = dz c cos(kz)(1 —cos u) . (6)

For a breather at rest with t0 ——0 one calculates

exp W = p(1 + v). Equations (3) and (4) can be derived
following standard methods [10, 11].

The energy of an unperturbed breather at rest, as
obtained from Eq. (2) evaluated for Eq. (3), is Ep"
16sin p, whereas the same computation for an unper-
turbed K-K solution with its center of mass at rest is

E0 ——16'. In the absence of any perturbation the en-

ergies for breathers and A'-I~-solutions at rest obviously

fulfill E0 ( 16 ( E0 . The perturbation may shift this
borderline between breathers and I~-I~ solutions. Of rel-
evance for our analysis will be the potential energy of an
excitation in the absence of any perturbation:

the effect of the coupling between the translational and
the internal degrees of freedom of the breather or the K-
Ii solution will be addressed in [13]. Here we restrict the
analysis to breathers and K-K solutions at rest.

A breather is a bound state solution of the SG equa-
tion which oscillates around u = 0 with a period T =
27r/ cos p. For sufficiently strong perturbations the to-
tal potential energy Ep &

——E, + V,g can have other
minima besides u = 0 around which the solution can
oscillate.

In Fig. 1 we show the potential energy Ep & for
breathers (a) and I~ I~ so-lutions (b). We set zp ——0,
c = 0.1, and k = 7r/2. Figure 1(a) refers to a range
of breathers each having reached their maximum ampli-
tude and spatial extension and therefore their kinetic en-

ergy vanishes (t = 7r/2 cos p). For p approaching 7r/2
the breathers become increasingly extended and V,fi os-
cillates increasingly fast, whereas foi p ~ 0 the potential
energy goes to 0 rapidly. For ~ = 0 Ep & would be a
monotonous function with only one minimum at p = 0.
As can be seen from Fig. 1(a), when c g 0 new minima
and maxima appear.

8 tanh z
Epo& 8 sin p +

sin p
8z sin p (1 —cots p sinh z)

sinh z cosh z

is.s—

4irc sinh z cos(kzp)
etr zp~ z

sin p cosh z sinh(Ii ir/2)

sin(It z)x + Ii. cos(Ii z) sinh z
~cosh z

0a. 16.0—
LLJ

where Ii = k/ sin p and z, defined by sinh z
tan @sin(t cos p), is a measure of the distance between
the kink and the antikink bound in the breather.

For a I~-A' solution at rest with t0 = 0 one Ands cor-

respondinglyy

8 tanh z 8pz(1+ v~ sinh z)
pat ~ + ~ 3sinh z cosh z

(8)
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V,tr (zp, z) = 4irc sinh z cos(kzp)

y cosh z sinh(Ii ir/2)

(sin(I~ z)
x

~

+It. cos(Kz)sinhz
~cosh z

0a. 16.0 —;
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where Ii, = k/p and z, defined by sinh z—:v i sinh(pvt),
is a measure of the distance between the kink and the
antikink.

The effective potential V,fI depends on the distance
between the (virtual) kink and antikink (z) and on the
center of mass z0 of the I~-K solution or the breather.
For nonrelativistic velocities (p 1) V,tr(zp, z) can be
used to calculate the inHuence of the potential on the
motion of the center of the excitation as well as on the
relative distance between kink and antikink in an adia-
batic approximation, assuming that the parameter z can
be considered as a second collective variable. This and
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0.0 50.0
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FIG. 1. The potential energy for c = 0.1, k = a'/2, zp = 0.
(a) Different breathers with t = n/2cosp, . The parameters
t and z are related by sin(t cosy, ) = cot tzsinh z. (b) A'-K

solutions with v = 0.1 for 0 ( t ( 100. The parameters t and
z are related by sinh(pvt) = vsinh z. The dashed curve shows

the total energy E = El,;„+E~ t. Both curves a.re symmetric
around t = 0. A full explanation is given in the text.
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Starting with a breather of vanishing kinetic energy
at a maximum of E&,(p) and allowing for an infinitesi-
mal change in p amounts to testing the stability of the
breathers against slight changes of its size. Therefore we

expect that for p ( pq 1.5355 [left side of the first max-
imum in Fig. 1(a)] the breather still behaves breatherlike,
oscillating around u = 0, although with a different period
T. For p ) p~ the breather will split into kink and an-

tikink. As the second maximum at p2 1.57 is slightly
higher than the erst, kink and antikink will oscillate in-

dependently around the minimum of E&,t(p) betweeen

p, q and pg. Figure 2 shows the results of numerical simu-
lations of Eq. (1) which confirm the predictions in detail.
It is interesting to note that there is no radiation visible
as long as kink and antikink are sufFiciently far apart, In
striking contrast to this the amount of radiation increases
drastically as kink and antikink approach each other and
the solution evolves through u = 0.

Figure 1(b) shows the potential energy Ez t for a It'-It
solution with small relative velocity (v = 0.1) for a time
interval. In addition, the dashed curve indicates the to-
tal energy for each initial condition. We can see that the
minima of E& t, are suKciently deep to allow for bound
states. Starting on one of the maxima with negative ve-

locity v separates the kink and the antikink. Starting
with positive v leads to a collision and E& t drops rapidly
to 0 as the relative distance vanishes.

For example, inspecting Fig. 1(b) for initial conditions
with ~t~ ) 22 we predict oscillatory behavior of kink and
antikink independently around the second minimum in

Fig. 1(b) at ~t~ 37. Starting the Ii IC s-olution on the
second maximum at t = —60 kink and antikink have
suKciently large kinetic energy to collide. In Fig. 3 we
show the corresponding numerical simulations of Eq. (1).
Again these results confirm our predictions. Concerning
radiative effects we again find that as long as kink and
antikink are sufficiently far apart radiative losses are neg-
ligible. But as kink and antikink collide [Fig. 3(b)] these
losses become so importa»t that they lead to a trap-
ping of the kink and antikink around the minimum at
u = 0. This breatherlike trapped state continues to radi-
ate. Starting with a larger relative velocity (for example,
v = 0.2 for e = 0.1 and k = s'/2) kink and antikink will
separate again after the collision.

In conclusion we found that simple energy consider-
ations leading to Eqs. (7) and (8) allow for a predic-
tion of the behavior of breathers or It-K solutions at
rest under the influence of a spatially periodic pertur-
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FIG. 2. Numerical simulation of Eq. (1) with the param-
eters c = 0.1 and k = 7r/2 for a breather initial condition
[Eq. (3)] with xp = tp = 0, t = s'/2 cos p, . (a) p = 1.535; (b)
p = 1.536.

FIG. 3. Numerical simulation of Eq. (1) with the param-
eters e = 0.1 and k = s /2 for a breather initial condition [Eq.
(4)] with sp = tp = 0, v = 0.1. (a) t = —23; (b) t = —60.
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bation. Our results also explain the numerical findings
concerning breather breakup in [2]. In addition, we found
that radiative effects, which play an important role for
strongly interacting kinks and antikinks, are negligible
for isolated kinks with small velocities. These radiative
aspects will be addressed in a future publication.
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