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Anomalous diff'usion in the nematic phase of thin disks
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We report molecular-dynamics simulations of the anisotropic diffusion of infinitely thin platelets in

the nematic phase. Our simulations are used to distinguish between the predictions of two different

theories. The first theory, based on a mapping of the nematic phase of ellipsoidal particles on the

hard-sphere fluid, predicts that both the longitudinal and transverse diffusion constants decrease mono-

tonically with increasing density. This is in stark contrast to a scaling argument which suggests that
the transverse diffusion constant of platelets in the nematic phase in fact diverges with increasing den-

sity. Our simulations support the scaling argument.

PACS number(s): 61.20.Ju, 61.30.By, 64.70.Md

Anisotropic short-time diffusion is a characteristic
feature of the fluid phases of anisometric molecules. Such
behavior is a consequence of the locally anisotropic envi-
ronment of such molecules, where motion in certain direc-
tions (referred to as molecular axes) is favored over
motion in other directions. For molecules with pro-
nounced anisometry, and at sufficiently high densities, not
only is the local molecular environment anisotropic, but
globally certain symmetries may be broken, leading to an-
isotropic fluid phases with overall orientational order.
Nematic order in systems composed of prolate or oblate
ellipsoids is an example of such orientational order In.
such phases, the long-time diffusion is anisotropic with
respect to the axis that characterizes the molecular align-
ment.

A simple theory of the closely related problem of the
anisotropic viscosity in perfectly aligned phases of ellip-
soidal molecules was proposed some time ago by Baalss
and Hess [1]. Recently, Hess, Frenkel, and Allen [2] ex-
tended this theory to describe diffusion in more realistic
models of liquid crystals. In the modified version of the
theory, the condition of perfect orientational alignment
has been relaxed. In the theory of Ref. [2], the diffusion
coefficients D~ and Ds for diffusion perpendicular and
parallel to the nematic director are related to the isotropie
diffusion coefficient Do of a system of spherical molecules
via an approximate affine transformation which maps the
system of ellipsoidal molecules onto the corresponding
system of spherical ones. This theory accounts adequately
for the diffusion coefficients in the nematic phase of a
variety of systems of ellipsoidal molecules with aspect ra-
tios in the range —,', ~ a/b ~ 10 where a/b is the ratio of
the major to minor axes.

However, such a theory which related anisotropic
diffusion to a reference system of spherical molecules may
be expected to break down in cases where the molecular
anisotropy is extreme. A case in point is a system of
infinitely thin platelets (a/b =0), which are objects with
zero volume. This system orders into a nematic phase at a
density pB2 = 4 (82=d tr /16) [3], where d denotes the
diameter of a platelet. For such platelets this nematic
phase is stable at all finite densities with pBq~ 4 (and

Dp- I/pg(a), (2)

where g(a) denotes the value at contact of the radial dis-
tribution function of a hard-sphere system at density p.
Since the volume fraction of a system of infinitely thin
platelets is zero, the corresponding hard-sphere fluid is al-
ways in the limit of vanishing density, for which g(a) = I

[5]. The predicted behavior of D~(p) of platelets in the
Hess theory is therefore

(3)
In other words, the transverse diffusion coefficient is ex-
pected to drop with increasing density. As we shall show
below, the prediction for the density dependence of the
diffusion constant of platelets, based on Eqs. (I) and (3),
is wrong quantitatively and, more interestingly, qualita-
tively. The fact that this should be so can be anticipated
from a simple scaling argument. Consider an assembly of
smooth hard platelets of diameter d at a density p in
which the system is in the nematic phase. The transverse
diffusion coefficient for such a system can be estimated
from a knowledge of the initial slope of the velocity auto-
correlation function (VACF) (assuming that this function
decays exponentially with time). This slope is given by

(v~ hvr)
1 r~=-

(vi v~i&
(4)

where I is the rate at which molecule i suffers collisions
and hv is the velocity change per collision. Assume that
the normal to the plane of molecule i is inclined at an an-
gle 0 from the nematic director. A simple geometrical

therefore its nematic order parameter can be made arbi-
trarily close to I), in contrast to molecules with finite
proper volume which freeze at high enough densities. In
this nematic phase, a naive application of the Hess theory
predicts that D& behaves as [4]

D =( —')'"D (p)p"'

where Dp(p) is the (known) hard-sphere diffusion
coefficient. In Enskog theory this diffusion coefficient
behaves as
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(5)

construction shows that [3]
10—

zd p
I, the collision frequency, goes as

I —pc,d (6)
where v, is the average relative velocity of the platelets at
contact. i,. contains contributions from the relative
translations and rotations of the platelets. In the nematic
phase, v, is dominated by vt and rotations, and is only
weakly dependent on density. Also ~Av~~ ——8 v~, since
the impulse imparted at a rim-platelet collision is always
perpendicular to the plane of the platelet which suffers the
collision. (Note that v& is the velocity parallel to the
plane of the platelet. ) In other words,

(v (0)i (0+))- —(v~(0)) (7)
d

where the reduced density p* =pd has been substituted
in (7), and some numerical factors have been omitted.
Hence integrating the VACF over all time we obtain

(g)

Thus we arrive at the remarkable conclusion that the
diffusion coefficient diverges with density. Physically this
divergence can be understood simply as a consequence of
the fact that as the density increases, the efficiency with
which collisions can transfer momentum decreases (owing
to the increased nematic order), so that the platelets are
able to slide past each other with greater and greater ease.
A similar scaling can be given for the longitudinal
diffusion coefficient as well. In this case, a platelet must
diffuse a distance of the order d parallel to its plane, be-
fore being able to move longitudinally an amount
6'r

~]
—Od. Therefore

&&rii &Di/d' &'Di-—I/p*. (9)
The corresponding Hess theory prediction for this
difl'usion coefficient is D~~-I/p ~ . In other words, while
both theories predict a drop in Dt with increasing p, the
scaling argument predicts a much slower fall than the
Hess theory. Indeed the difl'erence in the exponents of p
predicted by two theories for the longitudinal diffusion
coefficient ( —', ) is the same as that predicted by the two
theories for the transverse diffusion coefficient. Inciden-
tally, a scaling argument similar to the one sketched above
has been applied to diffusion in an isotropic system of
infinitely thin needles. In the latter case, the scaling
theory predicts a divergence of D with (p*) '~ [6].

We have carried out molecular-dynamics simulations of
a system of infinitely thin platelets in the nematic phase in

order to verify the unusual diffusive behavior predicted by
the preceding scaling argument, particularly for the trans-
verse diffusion coefficient. Recent simu1ations by Allen
[7] of prolate and oblate ellipsoids in the nematic phase
indicate a narrow range of densities, just beyond the
isotropic-nematic transition, in which the longitudinal
diffusion constant increases to a local maximum before
decreasing. This behavior, however, can be explained
qualitatively by the Hess theory. A monotonic increase of
the diffusion constant in the nematic phase, predicted by
the preceding scaling argument, however, has not been ob-

served thus far.
Molecular-dynamics calculations have been carried out

on a system of N =500 smooth, hard platelets, placed in a
periodic truncated octahedral box. Only uniform platelets
(moments of inertia I~ =Md /16) were considered. Ro-
tation around the molecular symmetry axis cannot relax
and was therefore excluded. Technical details of imple-
menting molecular-dynamics simulations of hard mole-
cules have been given in [8]. Briefly, the platelets move
ballistically between collisions. The outcome of a collision
between a pair of platelets is determined entirely by the
fact that the total linear and angular momentum is con-
served during the collision, as is the kinetic energy, and by
the fact that the impulse imparted at a rim-platelet col-
lision is perpendicular to the plane of the platelet which
suf'ers the collision, while during a rim-rim collision, no
momentum is transferred tangential to either rim. Forth-
coming collisions are detected by the method of Rebertus
and Sando [9].

Molecular-dynamics calculations have been performed
in the density range 5 ~ p82 ~ 12, which corresponds to a
regime with pronounced nematic order (0.92 (S (0.99)
(S is the nematic order parameter, which was computed in
the standard way [10]). Typical runs consisted of equili-
bration runs of 5&10 collisions and production runs of a
similar length. The temperature T was set such that
k~ T =1, giving an energy per platelet in reduced units of

Runs at densities higher than pB2=12 were ham-
pered by the necessity not only for larger system sizes but
also for longer runs. The diffusion coefficients D j and Di
were determined by examining the long-time limit of the
mean-square displacement curves.

In Fig. 1, we have plotted the diffusion coefficient D&
against pBq, and in Table I we give the values for the
diffusion coefficients Dt and D~ at the densities studied.
It is clear that the largest contribution to the diffusion
constant comes from D&, i.e., diffusion perpendicular to
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FIG. 1. Density dependence of the diA'usion coefficient D& of
a system of infinitely thin, hard platelets in the nematic phase.
The diffusion constant is expressed in reduced units d(ksT/
M) '/'-
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TABLE I. Summary of the density dependence of the order
parameters S (column 2) and the diffusion coeflicients Dj and

Dt (columns 3 and 4, respectively), expressed in units of
d(ks T/M) '

1500-

pB2

5

6
7
8
9

10
11
12

0.925
0.952
0.964
0.973
0.979
0.982
0.986
0.987

Dj

0.025
0.032
0.043
0.049
0.053
0.054
0.060
0.062

0.0037
0.0029
0.0021
0.0017
0.0016
0.0016
0.0015
0.0014

Ia
1000-

500-

the nematic director, or equivalently, diffusion parallel to
the plane of the platelets. Second, D~ increases with den-
sity, as had been anticipated earlier by the scaling argu-
ments. At densities beyond p82=8, D~ apparently in-
creases approximately linearly with pB2, a result also anti-
cipated by the scaling argument. Further evidence for
this linear increase can be obtained by examining the vari-
ation of D& with S. Since S-I —I/p*, I/D~ plotted
against S should in this case give a straight line, with an x
intercept of 1. Such a plot is shown in Fig. 2, where it ap-
pears that at the highest densities studied we have entered
this linear regime. Since longitudinal diffusion is expected
to be 2 orders of magnitude slower than transverse
diffusion, accurate determination of Dt proved to be
difficult. Nevertheless, inspection of the figures given for
Dt in Table I indicates, apparently, a roughly I/p* depen-
dence of Dt—a result which is also consistent with the
scaling predictions.

The results of the molecular-dynamics simulations also
provide an a posteriori justification for one ansatz in our
scaling argument, namely, that the transverse VACF de-
cays exponentially. We found this to be the case
throughout the density range of interest.

In conclusion, what appears to be essential in the
diffusion of hard smooth platelets in the nematic phase is
that topological constraints force the molecules to move
between the two (undulating) surfaces defined by neigh-
boring platelets. This kind of motion is probably best de-
scribed by the term "floundering. " We do not expect the
results that we have obtained above to carry over directly
to diffusion in nematic colloidal suspensions of thin, disk-

0
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FIG. 2. I/D~2 vs the nematic order parameter S. According to
the theory of Ref. [2], I/D& should diverge as [I/(I —S)] 't . In
contrast, the scaling argument proposed in the text suggests that
I/Dj2 —(I —S). The simulation data appear to confirm the
latter prediction.

like particles. In the latter systems, the molecular motion
is diffusive rather than ballistic, owing to the presence of
viscous forces. This feature will change the qualitative
dependence of D on p, in much the same way that the
presence of a viscous solvent makes the Doi-Edwards pre-
dictions for the diffusion of rodlike polymers [11]different
from the behavior predicted for rods that move ballistical-
ly [6]. Yet, the presence of solvent should not change the
nature of the topological constraints that dominate the
diffusion of disklike particles in a lyotropic nematic phase,
even if the particles are no longer rigid. We therefore ex-
pect that the concept of floundering will apply in these
systems as well. In the case of flexible platelets, flounder-
ing would correspond to a two-dimensional reptation.
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