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Vortex morphology and Kelvin's theorem
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The Clebsch form of the Euler equations provides an intuitive picture as to how the circulation con-

straints direct the spatial organization of vorticity and favor the formation of vortex sheets. Porous
media convection models the basic mechanism and is also the simplest generalization of the inviscid

Burgers equation that allows for an incompressible velocity field. The finite time singularities of the
model are studied numerically. A related convection analog to the axisymmetric Euler equations is

discussed for comparison.
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a, (a,x,a.x, ) = —a.[p ——,
' (a, x, )'] (2)

from whence the consistency of the loop integral fv dx in

Lagrangian coordinates follows (Kelvin's theorem). The
natural question as to how these invariants constrain ge-
neric solutions is seldom asked because of the lack of a
tractable expression in terms of the Eulerian velocity and
the impracticality of Lagrangian variables.

The ideal compromise between these two descriptions,
already noted in 1859 by Clebsch [l,2], is based on repre-
senting the vorticity, m =Vxv, as VA, x Vp (possible local-
ly), which gives vortex lines a geometric interpretation as
the intersection of the level surfaces of a pair of scalars
(A, ,p). The circulation invariants then require that X,p
are passively advected by the flow, and thus are Lagrang-
ian markers. This representation is intuitively appealing
since it rephrases vortex stretching as the amplification of
the gradients of k, p, a process generic to passive scalar
advection. The dynamics of A, ,p is still nonlinear and to
proceed further, it is very useful to exploit an analogy with
convection which arises in two distinct ways. The first
case, porous media convection, is obtained if we model the
Euler equations, rewritten in terms of A, ,p by freezing the
gradient of one of the scalars. Alternatively, this model is
the simplest generalization of the compressible system

t), u+ul)„u =0 (3)
to higher-dimensional incompressible flows.

The second case is axisymmetric Euler flow where an
analogy with convection, this time described by the two-
dimensional Boussinesq equations, occurs and in fact be-
comes exact, when the flow domain is a narrow shell in ra-

The Euler equations,

t),'x(a, t) = —B„p

(where x is the position of a fluid element with Lagrang-
ian label a), describe free particle motion with the con-
straint of incompressibility. The circulation invariants ex-
press this fact, as is seen by rewriting (I ) in the form

(5)

dius. Without this restriction, the Boussinesq equations
are still a useful model of locally axisymmetric flow (see
Ref. [3] for details).

We will show how the vortex sheets, habitually seen in

Euler simulations [4,5], simply correspond to the leading,
high gradient edges of thermal plumes or bubbles that in-

tuition suggests arise very generally in buoyancy driven
flows. It is just this ability to qualitatively project the evo-
lution of general smooth initial conditions into a highly
nonlinear yet organized regime that has been sorely lack-
ing in numerical studies of vortex dynamics. We also ob-
tain a heuristic explanation for the vorticity-strain corre-
lations seen in the same simulations. Since we focus on
these qualitative aspects, as in studies of dynamical sys-
tems, questions as to the quantitative validity of the
porous media model, necessarily limited as to initial con-
ditions and time of evolution, are deferred to after the
n umerics.

We have also pushed our simulations far enough to pro-
vide ample evidence for a finite time singularity, a subject
of independent interest. While the Boussinesq model is
rigorously equivalent to axisymmetric Euler when this
occurs, singular solutions to the porous media equations
are strictly speaking only relevant as the incompressible
flow analogs to shocks in (3). As such, they may provide
some formal intuition for the unconstrained Euler prob-
lem.

Any incompressible velocity field can locally be written
in the form

v =pVX —VP, (4)
where p is fixed by incompressibility [1,6], which implies
a=Vs, xVp. The flux of ca through an infinitesimal sur-
face element is the Jacobian of X,p with respect to the two
tangent directions. The advection equations for A, ,p,
defined to be canonically conjugate, may be derived from
the Hamiltonian 'P = —. fv d x (N. B. the variation of p
with respect to X,p disappears by incompressibility)

+~-~~=0, ~,~+v
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They are equivalent to Euler's equation in two or three di-
mensions. I n the former case, area preservation plus the
Lagrangian character of )(.,p requires that 8()(.,((()/8(x, y),
which is nothing but the vorticity, is also Lagrangian so
the Clebsch formulation is not particularly useful.

Imagine now that VA, =y is frozen, then we have for p

(6)

If p is the temperature, and the buoyancy force is linear in

(u, then (6) represents porous media convection because
the velocity and not the acceleration equals the force. Of
course, since a single velocity advects both A, and (u, the
ansatz (V)(. =y") is not preserved in time and the precise
relation of (6) to (5) is discussed later. Equation (6) is the
porous media convection model and the generalization of
(3).

lt is very informative to contrast (6) and (3), which is

trivially solvable by transforming to Lagrangian coordi-
nates. For sufficiently smooth initial data, (3) exhibits a
universal singularity or caustic,
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FIG. 1. The maximum ~Vp~ vs r =(*—t for (6) simulated on

a 256'- mesh. The ordinate is scaled as suggested by Eq. (8).

u-r' 'f(x/r'') (7)

(r = t* —t),—which arises by inverting the variable change
from Lagrangian to Eulerian coordinates. The usual

physics of shock formation, implicit in (7), completely
fails for (6) since there is no incompressible velocity field
of the form v=(0,f(y)). Furthermore, since (6) is not
trivializable in Lagrangian coordinates, we proceed to its
numerical solution in two dimensions which suffices to
bring out the essential physics.

Using a Fourier code, we found, as expected, that any
smooth temperature distribution evolved under (6) into a
series of rising or falling plumes. To go further, an adap-
tive mesh code was written to follow how Vp on the lead-
ing edge of a plume diverged. The entire plane was

mapped into the square (x,y~ ~ I and second-order accu-
rate finite differences were used in x,y. The point where

~V(((~ was maximum was maintained at the origin, where
the resolution was highest, by a uniform but time-
dependent velocity added to (6). The developing singular-

ity was of comparable size in x,y so it was very convenient
to add a time-dependent dilation to (6), 8(p 8(p
+ax V(((, with a(t) chosen to keep f(V((() d x constant.
In this way, only minimal coordinate adjustments "by
hand" were necessary to maintain resolution.

A IO' increase in max~V(((~ was observed with no

impediment to further integration (Fig. I). The fit to t

controls the height of the last peak which was placed in

line with the previous two. The jump in p across the inter-
face may be read oA from the contour plots to —20% ac-
curacy and slowly decreases. This probably accounts for
the secular trend seen in r)Vp~. The shape of the inter-
face is approximately periodic in In(r ) if we look modulo
the local symmetries x —x, y

—y, e.g. , the interface
can revert from concave to convex in the neighborhood of
max~Vs~. The other salient feature of the flow is that the
interface thickness a and loca1 curvature a- maintain the
relation c( ~ (c(T~cq where c; are constants (Fig. 2).
Since the singularity is pointlike, and the dynamics are lo-

cal, many equivalent singularities would emerge elsewhere
along the interface.

The regular cycles in Fig. I have been seen before [7],
and qualitatively have a similar explanation. The ~V(((~

grows most rapidly when (err is largest (N. B. if the inter-
face were flat the velocity locally would be uniform by in-

compressibility). By volume preservation, the compres-
sion of contour lines is accompanied by their elongation.

FIG. 2. Contour plots of ~Vp ~
in the vicinity of its maximum

from a simulation of (6) (a) at a time corresponding to the

second minima in Fig. l and (b) at the following maxima. The

tic marks show the computational mesh.
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This strain also stabilized the interface against further
folds [8] until x.cr has decreased appreciably and new in-

stabilities can occur.
We can therefore plausibly write the solution to (6) as

p =r "M(x/r '+",Inr)
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with the proviso that the dependence of M on its second
argument be weaker than exponential. We find g=0. 1 in
contrast to (7), although )Vp~ —r ' in both cases as sug-
gested by a simple scaling treatment of the respective
equations.

To derive the Boussinesq approximation for axisym-
metric fiow (with swirl), in a shell r~ ~ r ~ rz, we work in

cylindrical coordinates (r, 8, z ), assume p (r,z ), X =0
+ho(r, z), and observe in (4) that p is a function of (r,z)
only. The Hamiltonian then separates into a kinetic piece
—,
'

v, - and a (centripetal) potential piece, —,
'

ve = —,
'

p /r;
p and Xo remain canonically conjugate.

In the small rz/r~ —I limit, after rescalings and elim-
inating a term —fp d r (a constant of the motion), the
Hamiltonian becomes P = —.

' f(v —yp )dxdy, where
r —r( y, z x, and the two-dimensional (2D) veloci-
ty, v(x,y), obeys (4). The equations of motion for p and
the vorticity become

tl(p+ v. Vp =0,
(9)

tl, co+v. Vco =pel, p,
which describe 2D Boussinesq convection, with tempera-
ture p'/2, suitably nondimensionalized.

The numerical results [3] for (9) (Fig. 3) may be fit by

p —r "M(x/r +",Inr), ro r'-n(x/r +",lnr), (10)

g-0.2~0.2. The physics of the singularity is similar to
(6) in that the plume tip shows Rayleigh-Taylor instabili-
ty when xo is suSciently small but the simulation is more
delicate technically. The singularity is not associated with
the roll up although that does occur and may be responsi-
ble for making the dependence on lnr more irregular than
for (6). This is most evident in the contour plots for p and
co where one finds substantial changes in shape. Note that
for (10) the three-dimensional vorticity, ro, is dominated
by its r, z components computed from Vp (N. B. p =ne)
The enstrophy is almost singular in that faro( +'d r
diverges for e) rI.

Finally, what is the relevance of these two idealizations
to the full three-dimensional Euler equations~ The porous
media model applies to those vorticity distributions for
which VA, and Vp vary on very different scales. The one
with the most slowly varying gradient, say, A, , is frozen
and defines the local direction of gravity. This condition is
not as restrictive as it seems since there is a gauge free-
dom, X,p 1I,', p', such that 8(A, p)/B(A', p,

') =1, w. hich al-
lows any two-dimensional flow to be written as A. =y,
p =f 'ro(x', y)dx'. Hence by continuity, any quasi-two-
dimensional flow satisfies our criterion over a region set by
the slow scale.

The correct Euler dynamics requires both A, and p to
evolve under the same strain. When )VA, ) is much greater
than ~Vp~ initially, the approximation Vk-const will be

8
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reasonable for some period of time. Note that under these
conditions, the vorticity scales with Vp, so meaningful
concentration and amplification can occur. At later times,
some of the distortion in k can be removed by a gauge
transformation, but in three dimensions, not all. We have
been unable so far to develop any asymptotic expansion of
the WKB variety to treat later times.

Although largely qualitative insights into Euler dynam-
ics, that we now recapitulate, can follow from the porous
media analogy, the same intuition never emerged from
direct numerical simulations. Plumes will form in three
dimensions as well as two. If x'a is substantially less than
one, as we have found, the three-dimensional vorticity will
appear concentrated in structures that are locally sheet-
like (miniature shear layers), and on a slower time scale,
the sheets increase in area. This self-organization implies
the unexpected vorticity-strain correlations seen in
Navier-Stokes computer simulations, namely, the rate of
strain matrix has one eigenvalue much smaller than the
other two in magnitude with the vorticity aligned along
the corresponding eigenvector [9,10].

The same conclusions follow for axisymmetric flows
after we translate back from 2D Boussinesq convection to
3D vorticity. The "plume" implies a sharp jump in p,
which is nothing but the conserved circulation rvq. Since
"buoyancy" is actually centripetal force, the plume tip is
tangent to r =const, the maximum vorticity is from tl, v&

and is directed along z. The dominant strain originates
from the same term and is predominantly in (r, e).

Globally, the plumes generate vortex sheets, the edges
of which roll up leading to ring vortices when vie~ed in
three dimensions. More generally, we may speculate that

FIG. 3. The maximum "temperature" gradient for (9)
(equivalent to the maximum 3D vorticity), scaled so as to re-
move the expected divergence [cf. Eq. (10)] vs r t* —t The.
various extrema correlate with shape changes; the original
plume first becomes unstable around r -0.5-1.0, and for r -25
the point of maximum gradient moves oA' the x —x syrnme-

try axis. The irregularities and jumps in the data are due to
coordinate adjustments, and indicate the resolution errors (Ref.
[3)). Note the 10' increase in [Vp [ in the "scaling" regime.
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the vorticity typically organizes into sheets, even without
axisymmetry, which then roll up leading to the vortex fila-
ments seen many times in Navier-Stokes simulations
[9, l I] and recently in experiment [12].

Analogies with convection provide an alternative pic-
ture for energy transfer in turbulence that is closer to
Burgers' equation than to the usual vortex stretching
ideas. The latter follow tautologically from the vorticity
equation. If the strain is prescribed, this equation is linear
and the vorticity can be made to assume any shape that
preserves the topology. When the strain due to the vorti-
city is included, nothing can be said about the vortex mor-
phology. By contrast, our models are nonlinear, yet intui-
tively comprehensible, and do select a generic vortex mor-
phology. Alternatively, the Clebsch variables plus analo-
gies with convection provide a reinterpretation of vortex
stretching in terms of Burgers-like shocks.

Equation (6) in 2D is analogous to Euler in 3D since

the number of spatial dimensions is one greater than the
number of conserved fields, and the velocity is divergence
free. Simple caustics, e.g. , (7), arise generically when a
finite number of scalars are transported by a velocity field
than can be expressed as a (x, t) independent function of
the scalars. It is in this sense that (6) is not finite dimen-
sional, and any theory for the generic singularities of the
2D area preserving maps defined by the velocity field in
(6) on par with what one has for caustics, could well have
important implications for the Euler equations in three di-
mensions.
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