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Recovery of the Navier-Stokes equations using a lattice-gas Soltzmann method
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It is known that the Frisch-Hasslacher-Pomeau lattice-gas automaton model and related models pos-

sess some rather unphysical eA'ects. These are (l) a non-Galilean invariance caused by a density-

dependent coefficient in the convection term and (2) a velocity-dependent equation of state. In this

paper, we show that both of these eA'ects can be eliminated exactly in a lattice Boltzmann-equation

model.
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Although the lattice-gas automaton method has provid-
ed a fast and efficient way for solving partial-differential
equations, there exist some fundamental problems in this
method in simulating realistic fluid Aows obeying the
Navier-Stokes equations. Besides its intrinsic noisy char-
acter which makes the computation accuracy difficult to
achieve, it contains certain properties even in the fluid lim-
it. As a result, its possible advantage over other conven-
tional computational methods is greatly obscured. Unless
these problems are resolved, the lattice-gas automaton
method can hardly be used as a satisfactory tool for doing
numerical computations for Auids.

A typical lattice-gas model consists of identical parti-
cles on a two-dimensional (2D) hexagonal or a 4D face-
centered hypercubic lattice (FCHC). If all the particles
have the same speed and obey Fermi statistics, then the
allowed collisions, restricted by mass and momentum con-
servation, lead to a Fermi-Dirac single-particle equilibri-
um distribution [I]:

(I)

where a = I, . . . , b and e, is the particle velocity in the a
direction. a and P are determined by the conservation
laws. In the case of small velocity, it can be shown that
the above distribution can be expanded in powers of veloc-
ity u as
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where Q„j=e„e,t —(I/D)b;j. For a one-speed lattice-gas
model of lattice dimension D,g(p) =(D/D+2)(b —2p)/
(b —p). In the above, p and u are the averaged particle
density per site and the fluid velocity, respectively. In ad-
dition, c is the particle speed which is equal to one lattice
unit per lattice time for a hexagonal lattice, and is equal
to J2 lattice units for FCHC, while b (=6 for a hexago-
nal lattice, =24 for FCHC) is the total number of states
on a lattice site [I].

The lattice-gas fluid momentum equation in the small
velocity limit can be written explicitly as follows:
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f, (x+e„I+I) =f, (x,t)+0, , (4)

where f, is a positive single-particle distribution function.
The collision integral 0, which contains only local infor-
mations, satisfies mass and momentum conservation at
each lattice site. Therefore, a LBE still preserves the ad-
vantage of doing parallel computing. In addition, the re-
quirement for using Fermi statistics is no longer neces-
sary. This provides much more freedom in the functional
form of the equilibrium distribution. This can be under-
stood intuitively. A particle in a LBE can be viewed as a
package of infinite subparticles of mass approximately
zero. It can be infinitely separated. Thus, there are
infinitely more ways of doing collisions satisfying the mass
and momentum conservation compared with those in a

where the pressure p =c,p[I —g(p)u /c ] with c, =c /D
and v and (' are the kinematic viscosity and the bulk
viscosity, respectively. From the above we see that the
lattice-gas fluid momentum equation cannot be reduced to
the Navier-Stokes equation in general because of two fun-
damental problems. The first is the non-Galilean invari-
ance property due to the density dependence of the con-
vection coefficient g(p). This limits the validity of the
lattice-gas method only to a strict incompressible regime.
Second, the pressure has an explicit and unphysical veloci-
ty dependence. This effect causes unphysical fluid kinetic
energy oscillations even in a uniform density case [2,3]. It
should be mentioned that, by adapting multispeeds in a
lattice-gas model, both of the above nonphysical proper-
ties have been greatly reduced but not completely elim-
inated [4].

Unlike a lattice-gas model, a lattice Boltzmann-
equation (LBE) model is not noisy so that the accuracy is

easily controlled [5]. More importantly, we show in this
paper that both of the nonphysical properties mentioned
above can be completely eliminated in a rather straight-
forward way in a LBE. Therefore, the resulting Auid

equations derived from the LBE model presented below
exactly obey the realistic fluid equations for any density
distribution.

A LBE for simulating Auid adapts essentially all
lattice-gas kinetic rules except it uses real numbers in-
stead of integers and neglects the particle-particle correla-
tions [5]. Basically, in a LBE, we solve the following ki-
netic equation:

R5339 1992 The American Physical Society



R5340 HUDONG CHEN, SHIYI CHEN, AND WILLIAM H. MATTHAEUS

(f feg)I
(6)

The distributions f, and f, correspond to the identical
values of p and u at each lattice site, and fP can be
chosen to have either the functional form (5) or any other
form. The constant r, which is generally required to be
greater than one half, on the basis of stability analysis,
determines the single relaxation time scale for approach to
the desired equilibrium distribution. The single-relaxa-
tion-time collision integral is not only easy to implement
computationally, but possesses some other desirable
features. For instance, it produces a particle-density-
independent viscosity [7]. Since the equilibrium distribu-
tion has g(p) =1, we immediately see that the resulting
fluid equations are fully Galilean invariant for any parti-
cle density distribution.

The elimination of the velocity dependence of the pres-
sure, however, is not possible with a one-speed LBE. This
is because the equilibrium distribution given above is

unique for a one-speed LBE in order to satisfy the require-
ments of mass and momentum conservation as well as the
Galilean invariance. However, in a one-speed model
particle-number conservation and energy conservation are
equivalent, therefore, the flow energy corresponding to u
must diminish the random kinetic energy and therefore
the pressure. Consequently, one-speed models must admit
a pressure decrease with the increase of velocity. We
show below that this velocity-dependence eflect can be el-
iminated if we include rest particles in a LBE.

Physically, introducing the rest particles is like having
included a particle reservoir. At a given spatial location
where there is relatively higher fluid velocity, the part of
pressure due to the moving particles becomes relatively
smaller. At such a position, we allow rest particles to be
excited and transformed isotropically into moving parti-
cles so that the pressure is increased and restored to its
proper value. As a consequence, the overall pressure does
not depend explicitly on velocity but on the total particle
density only.

If we include rest particles, then, in addition to the lat-
tice Boltzmann equations given above for the moving par-
ticles (with speed c), we have an equation governing the
evolution of the rest particles:

fo(x, t +1)=fo(x, t)+ Oo, (7)

lattice-gas automaton model. Consequently, it can pro-
duce basically any desired equilibrium distribution as long
as we select the collisions properly. For instance, we can
immediately see that the non-Galilean invariance problem
can be completely eliminated if the system has the follow-

ing equilibrium distribution,

„q ~~ pD . + D(D+2)
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which is just the lattice-gas equilibrium distribution in the
small velocity limit with g(p) =1. There are many
choices of the collision integral 0, that could generate
this equilibrium distribution, but the simplest one is to
have a linearized form [6], with a single relaxation time
[7]

fo —do+ 'fou

The coefficients y, yo, d, and do can be used for eliminat-
ing the velocity dependence of the pressure, and for satis-
fying the following constraint relations derived from the
conditions of mass and momentum conservation:

p =do+ bd,

3'0+p +bX —o.(D+2)
2c2

(1O)

Using the above equilibrium distributions, the ideal part
of the momentum flux tensor can be shown to be

2
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which, when substituted into the resulting fluid momen-
tum equation, again satisfies the requirement of Galilean
invariance as in the one-speed LBE above. However, it
can also be seen immediately that in this latter model the
velocity dependence of the pressure is eliminated if we let
y= pD/2bc . —

Solving the constraint relations we further get that
yo= —p/c . The choice of do is, however, rather arbi-
trary. This remaining freedom is useful in generating
some additional desirable properties. For the purpose of
simplicity, we use do=pp/(b+1) in this paper, where the
constant po is the averaged particle density [=(total par-
ticle number)/(total lattice sites)]. Since do is a constant,
d is seen to be linearly dependent on the total particle den-

sity p the same way as in the one-speed LBE. As a conse-
quence, the fluid equations will be exactly the same as
those derived from the one-speed LBE (with the same
sound speed), except that the pressure is now related
correctly to the total particle density only, having a form
of an isothermal ideal gas,

p =cs p.
Therefore, we have completely obtained the correct
Navier-Stokes fluid equations for arbitrary particle densi-
ties through the pressure-corrected LBE (PCLBE).

The code for the present model, similar to others [8] is

simple and e%cient. The measurement of the viscosity
gives at least four significant figures compared with the
analytic results through two-dimensional channel flow and
the Couette flow. A number of two- and three-di-
mensional applications of the present model, including
two-dimensional back-step flow, three-dimensional Bal-
trarni flow, and Green-Taylor vortex and three-dirnen-

where Qo can also be chosen to have a linearized single re-
laxation time form, Ao= —(1/r)(fo f—o ). Moreover,
we have freedom to assume that the equilibrium distribu-
tion for the moving particles has the general form,

pD . D(D+2)fg'" =d+
~ ea' U+p 4 ep&epjutuJ+ 7llc'-b 2c "b

and the equilibrium distribution for the rest particles has
the form
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FIG. 1. Numerical results of free decay of the total fluid ki-
netic energy U = —,

' f,,pu' as a function of time obtained by solv-

ing two LBEs. The solid line is the result from the PCLBE and
the dotted line is from the one-speed LBE (both in the lattice
unit). The lattice size for these computations is 40& 1000 lattice
sites. Periodic boundary conditions in both x and y directions.
The initial velocity is u, . =0 and u, =0.3sin[(2s/1000)yl in the
unit of the lattice particle speed e. The time is scaled with the
lattice time unit. The unphysical oscillations in one-speed LBE
are completely absent in the PCLBC.

sional turbulent flows, will be shown in the next paper [9].
We now present briefly two numerical tests illustrating
the elimination of the velocity dependence of the pressure
elfects. First, if a LBE exactly solves the Navier-Stokes
fluid equations, then the total kinetic energy of fluid
U =fz —,

'
pu should decay monotonically in time for the

case of zero-forcing, periodic boundaries, and a shear flow
initial velocity profile, u(x, tII) =u„(y)x with a uniform in-
itial density distribution p(x, to) =const. Two LBE simu-
lations were performed for this case, as shown in Fig. 1.
The solid line is the total kinetic energy as a function of
time obtained by solving the PCLBE discussed above. It
demonstrates that this LBE correctly captures the physi-
cal behavior of the Navier-Stokes fluid equations. The
dashed line is the total kinetic energy obtained by solving
the one-speed LBE above. Although the fluid equations
produced from the one-speed LBE are Galilean invariant,
the model contains a nonphysical velocity dependence in
its pressure. Therefore, its total kinetic energy is shown to
have unphysical oscillations [2]. The second test is a
channel flow case. If a model correctly reproduces the
Navier-Stokes fluid equations, the steady-state particle
density across the channel should be uniformly distribut-
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FIG. 2. Numerical results of the particle density distribution

across the channel in a driven channel flow. The diamonds rep-

resent the steady-state distribution of the particle density, re-

sulting from the solution of the PCLBE; the squares represent
the distribution when the unphysical pressure eA'ect is not

corrected (one-speed LBE). No-slip boundary conditions are

imposed, and the fluid is forced along the channel uniformly

with a magnitude f=0.0001 per lattice site. The averaged par-
ticle density per site is 2. 1. The total lattice size is 100x 100.
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ed. It is seen that the distribution (diamonds) obtained by
simulating PCLBE indeed satisfies this requirement.
However, if the unphysical pressure eA'ect is not corrected,
the resulting particle density distribution will have a
higher value at the center of the channel where the veloci-

ty magnitude is greater, as shown by the squares in Fig. 2.
This phenomenon is also known in the lattice-gas simula-
tions [10].

We conclude that the present lattice Boltzmann model,
by using the single-time relaxation approximation and a
particular Maxwell-type distribution in (8) will give the
complete Navier-Stokes equations and possibly provide an
efficient parallel numerical method for solving various
fluid problems. Recent studies on the square lattice by
Qian, d'Humieres, and Lallemand [11] give very similar
results.
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