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Critical behavior of self-avoiding walks on percolation clusters

Carlo Vanderzande and Andrzej Komoda*
Department Wiskunde Natuurkunde Informatiea, Limburgs Universitair centrum, 3590 Diepenbeek, Belgium

(Received 6 November 1991)

We study the critical properties of a self-avoiding walk on percolation clusters using exact enumera-
tions, in both d=2 and d=3. Calculations of the exponent g, which measures free-energy fluctuations,
clearly show the existence of two distinct phases, one for strong disorder (at the percolation threshold),
the other for weak disorder (above the percolation threshold). The v exponent is, within numerical ac-
curacy, the same in the two phases. However in d=3, its value, v=0.64~0.015 is significantly larger
than on a pure lattice.

PACS number(s): 64.60.Ak, 36.20.Ey

The effect of quenched randomness on the properties of
a polymer in a good solvent is a problem which has at-
tracted much interest in the last ten years [1-14]. Despite
extensive theoretical work, there is not yet any definite
answer to the question whether or not critical properties of
the polymer are modified by the randomness. In such
theoretical studies the polymer is often modeled as a self-
avoiding walk (SAW) on a lattice. Most attention has fo-
cused on the behavior of the average squared end-to-end
distance (Riv) of an ¹tep SAW (here () indicates an

average over all SAW configurations, while the overbar
denotes the quenched average over randomness). For N
sufficiently large, one expects

(Rtv)-N ".
In the absence of randomness, one has in d =2, v = —,

' [l 5]
and in d =3, v =0.592. . . [16].

Extensive Monte Carlo simulations [6] seemed to indi-
cate that critical properties, such as the exponent v, of the
SA W are not affected by quenched randomness, neither in

two nor in three dimensions. In these calculations the ran-
domness was modeled by performing the SAW on the
clusters of a site percolation problem where sites are
present (absent) with probability p (1 —p).

In contrast, renormalization-group calculations [7],
both of real-space and of field-theoretic type indicated
that the critical properties of a SAW are modified at the
percolation threshold p p„(but not for p&p„) for
d) 2.

Parallel to, and independent of, these developments a
considerable understanding was achieved of the (simpler)
problem of a directed polymer (DP) in a random environ-
ment [17], a model which is of importance for such
diverse issues as fractal growth and flux lines in high-T,
superconductors [18]. The results found for the DP have
more recently been apphed also to the study of a SAW in
a random environment.

Exploiting some similarities with the DP problem led
Obukhov [10] to conjecture that in d=3 v would be
changed to —,', independently of the strength of the ran-
domness, while in d=2 excluded volume effects dominate
and v would stay unchanged at 4 . A similar conclusion
(at least for d=3) was reached on the basis of a Flory-

like theory [9].
Most recently, Le Doussal and Machta [13] found nu-

merical support for the ideas of Obukhov from exact
renormalization-group calculations on hierarchical lat-
tices. However, they find within their calculations a
different behavior for the cases p p„and p & p, . To be
more specific, consider first a slightly more general prob-
lem of a SAW which can step on all sites of a regular lat-
tice. To each site i of the lattice a random energy E; is
given according to the following distribution (indepen-
dently for all lattice sites)

ZN =+exp( PE,), — (2)

where the sum is over all ¹tepSAW's.
As usual in systems with quenched randomness we are

interested in InZtv. When p=0, we recover from (2) the
well-known case of a SAW without randomness. For
P ~, only configurations of minimal energy (i.e., where
the SAW at each step visits a site with energy 0) contrib-
ute. In this limit, we thus recover the statistics of a SAW
on site percolation clusters.

In Ref. [10] it was argued that for any finite P the mod-
el would, under renormalization, (low to a zero-tem-
perature (or disorder) fixed point. Indeed, the work of Le
Doussal and Machta [13] shows that this is the case on
hierarchical lattices, but they find that there are two dis-
order fixed points, one for p =p„, the other one for p & p„.

At such a fixed point, sample-to-sample fluctuations in
the free energy become relevant and define a new ex-
ponent g:

[var(lnZtv)] —= [(InZlv) —(InZtv) ]-N s. (3)

In the present work we present results for the exponents v

and g. As we will see, especially the latter exponent is
very helpful to understand the problem. Our results were
obtained from extensive numerical calculations. The

0 with probability p
EI'

1 with probability 1
—p'

A particular SAW a is then given an energy E, which is
the sum of the energies E; of the sites visited by the SAW.
We can then define a partition function,
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technique which we used was an exact enumeration, up to
N =30 steps of all SAW's (for the smallest values of p
considered, we went up to N =35) on a great number of
percolation configurations, both in d=2 and d=3 (the
number of configurations depended on p, and varied from
a few hundred for high p values to = 10 for the smallest

p values).
This same exact enumeration method was already used

successfully by us to investigate the behavior of InZ~ [12].
In that work we found

InZ~ —~lnp~
" N, (4)

where v„ is the v exponent in absence of randomness.
Figure l(a) shows our results for In(RJv) vs lnN for

several diA'erent p values in d=2. The estimates for the
exponent 2v which we get from these data are, within nu-
merical accuracy, the same for all values of p and equal to
2v = —'. Our best estimate is 2v=1.49~0.02 [19].

The situation is far more interesting in d=3 [Fig.
1 (b)]. Again all estimates of v are the same (within the
accuracy of the data, of course) independently of p. How-
ever, the value which we obtain is significantly different
from the value at p =1. Our estimate is 2v=1.28 ~ 0.03,
to be compared with 2' =1.184. . . . Our result is only
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FIG. l. (a) Numerical results for ln(Rg) vs InN for different

p values in d =2. (b) The same as in (a), now in d =3.

slightly lower than that obtained from Flory-like argu-
ments [9,10] 2v= —', .

We would like to point out that our results thus contra-
dict the conclusion from Monte Carlo calculations that v

does not change in d=3. However, it should be pointed
out that the exact enumeration method gives more accu-
rate results for the range of N values to which it can be
applied.

Before closing the discussion of the v exponent it may
be interesting to remark that when we restrict our SAW
to the "infinite" (or lattice spanning) cluster at p, . we find
in d=2 a higher value of v; we estimate 2v=1.54+ 0.02,
in agreement with recent Monte Carlo results [14]. We
have no results for the infinite cluster at p,. in d=3. In
this paper our results always are obtained by allotting the
SA W on all possible clusters.

We now turn to the exponent g. When P ~ in (2),
Z~ becomes equal to the number of self-avoiding walks of
minimal energy (i.e., walking on the percolation clusters).
We would like to point out that a successful calculation of
InZ~ [or (InZ~) ] crucially depends on the use of the ex-
act enumeration technique. We have also performed some
calculations using standard Monte Carlo techniques for
SAW's (with the purpose of extending our results to
larger N values) but noticed that already after a few steps
the value of lnZ~ deviated appreciably from the exact
ones.

Our results for g are qualitatively very similar to those
obtained by Le Doussal and Machta on hierarchical lat-
tices. We find a diA'erent value for g when p ~ p„or when

p) p, In Fig. 2(a) we show our results for 2ln[var(ln
Z)] (in d=2) as a function of lnN at p= & (&p, ).
From these data we find 2@=1.33+0.04. A similar
value, 2@=i.29~0.04 is found at p, . In contrast, Fig.
2(b) shows the situation at p =0.65 (above p, . ). Here we

find that there is a crossover in the data when 1V increases;
the data for A'& 8 fit a straight line leading to the esti-
mate 2g =0.86 [20].

In d=3 (Fig. 3) we encounter a similar situation. For
p~ p, our data lead to 2@=1.28~0.04 [Fig. 3(a)l (a
value which is surprisingly close to the d =2 value), while

for p & p, . we find a g value which is considerably lower,
2@=0.64 [20] [Fig. 3(b)]. Again, we see a crossover in

the data that occurs at lower N values when p —p, is in-

creased.
In Table I we give a summary of our exponent esti-

mates. Notice that these all satisfy the exact inequality
[13,21]

(5)

When we compare our values for g with those obtained on

hierarchical lattices [13], we see that they are consider-

ably lower, especially for p ~ p, .
Our numerical results for g thus strongly favor the ex-

istence of two disorder fixed points, one at p =p, the other
one for p & p, . This is evident from the difference in g
values but also follows from the crossover in the data
above p, . Below the percolation threshold there are few

allowed walks on clusters which may look like those at p,
[22]. Because we restrict our averages to those config-

urations on which at least one 1V-step SAW can be per-
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FIG. 2. (a) Numerical results for 2ln[var(lnZg)] vs InN in

d=2 at p= j. (b) The same as in (a), now at p=0.65. The
straight line gives the best fit through the data for N ~ 8.

FIG. 3. (a) Numerical results for 2ln[var(lnZN)] vs lnN in

d 3 at p p, =0.3I 17. (b) The same as in (a), now at p =0.4.
The straight line gives the best fit through the data for N )6.

formed, this may explain why our data at and below the
threshold give the same results.

It is our feeling that the v exponent is also different in

the two regimes but that the difference is too small to be
detected with the present numerical accuracy (for exam-
ple, on one of the hierarchical lattices considered by the
authors of Ref. [13],one has v=0.8488 at p„, v=0.86 for

p )p„, while v„=0.8465), though of course there is no a
priori reason why v could not be the same at two different
fixed points.

In conclusion, we have presented extensive numerical
calculations for the SAW on percolation clusters using ex-
act enumerations. These calculations are very time con-
suming. Our results clearly show that, at least in d=3,
the v exponent increases with respect to its value in a pure
system, and is not too different from the Flory estimate,
v= 3. Results for the exponent g which describe the
zero-temperature energy fluctuations clearly point to the
existence of two distinct low-temperature phases for the
problem, one for small disorder (p )p„), the other one for
strong disorder. It is now clear why previous calculations
which only looked at the behavior of the distance failed.
Indeed, it turns out that the exponent v does not discrim-

TABLE I. Overview of exponent values.

d=2

co glv

p —pr'

p,. (p&1

p —pe

p, . &p(1

0.745 ~ 0.01
0.75 w 0.01

d=3

0.635 +' 0.01
0.645+ 0.01

0.65 w 0.02
0.43

0.64 ~ 0.02
0.33

0.87
0.57

1.01
0.50

inate (or only a very little bit) between the two phases.
However, these phases do show up very clearly in the
free-energy fluctuations. We feel that in this way the
problem of a SAW in a quenched random environment is
much better understood. We are currently further ex-
tending our calculations in order to determine also the
crossover exponent at the percolation threshold fixed
point. Of course, the understanding gained here is only
numerical, and one needs also to get a better analytical
understanding of the problem.
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