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Analysis of atomic electric dipole moment in thallium by all-order calculations
in many-body perturbation theory
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A procedure is presented for calculations of double-perturbation problems in the coupled-cluster for-

malism. With use of this method to include to all orders the correlation effects of single and pair exci-

tations, the enhancement factor R- —585 is obtained for the electric dipole moment (EDM) in atom-

ic thallium. Equations for EDM perturbed single-excitation amplitudes are solved by diagonalization

to take into account mixing between excited core states, and perturbed pair functions are introduced to
incorporate correlation effects. Considering contributions from higher-order perturbation terms, we es-

timate the accuracy of the obtained enhancement factor is approximately at the 5-10% level.

PACS number(s): 31.20.Tz, 31.90.+s, 35.10.Wb, 35.10.Di

The neutral thallium atom, due to its high Z and high
polarizability ao, has been extensively studied to search
for a possible electric dipole moment (EDM), which can
exist only if parity (P) and time-reversed invariance (T)
are violated [1]. According to Sandars [2], the ratio of
the atomic to the electron EDM is of order Z3a tto,
which indicates that the enhancement factor for Tl is ex-
pected to be greater than 100. The first experimental lim-
it for the EDM of the 6p~lq state in Tl was obtained by
Gould [3], dT~=(1.3+2.4)x10 ' ecm. Since then,
continuous efforts have been made to lower the upper lim-
it by 3 orders of magnitude. In a recent atomic-beam ex-
periment, Abdullah etal. [4] obtained a limit dT1=(1.6
+ 5.0) &10 ecm, which, when converted to the elec-
tron EDM, is close to the range capable of testing some
theoretical models of charge-parity (CP) violation. In
fact, the value of d„() 10 ecm) produced by a
Higgs-Boson model [5] is already at this level. Motivated
by progress in experiments, several atomic calculations
have provided the enhancement factor R for Tl. Johnson
etal. [6] obtained R —1041 by calculating first-order
corrections in many-body perturbation theory (MBPT).
Further calculations to consider correlation effects, how-
ever, gave dramatically reduced results, namely, R

—301 by Kraftmakher [7] and R = —179 by Hartley,
Lindroth, and Martensson-Pendrill [8]. All these abinitio
calculation results were quite different from the sem-
iempirical estimates, e.g., R —716 given by Sandars
and Sternheimer [9], R —500 by Flambaum [10],
R —502- —607 by Johnson eral. [6]. Therefore it is
clearly of great interest to obtain a reliable value of the
atomic EDM enhancement factor for Tl, which not only
provides an important parameter to set the upper limit of
the electron EDM, but also can clarify the discrepancies
of different calculations.

The ground state of Tl has one unpaired electron 6pig
outside closed shells, so that it can be treated as an alkali-
metal atom. However, the last filled shel16s is relatively
loosely bound, and can mix strongly with the valence 6p]g2
state and virtual 6py2, 6d3i2, 6dy2 states. The correlation
effects between configurations consisting of these states

play significant roles. Thus the behavior of Tl in MBPT
differs from that in alkali-metal atoms, as discussed by
several authors [7,8, 11]. In particular, Kraftmakher [7]
carried out a calculation to treat the mixing between the
6s 6pilz and 6s6p~i2 states which gave R= —356, and
pointed out that the uncalculated corrections of higher or-
ders might also be large. It is obvious that only when con-
sidering all important correlation effects together can one
obtain improved results for the accuracy required by the
recent EDM measurement.

In this paper we report our implementation of a general
two-step procedure to take into account correlation effects
due to two perturbation interaction terms, namely, a re-
sidual electron-electron Coulomb interaction Ht- and an
effective CP violating interaction HEoM induced by the
electron EDM [12],

H FoM = —d„(p —1)cr VH;„, (1)
where P is a Dirac matrix, tr are Pauli matrices, and H;„
includes the nuclear potential and the electron-electron
Coulomb interaction. In this work the exchange part of
the interelectron interaction in Eq. (1) is omitted, and

HEpM is treated as a one-body interaction. The outline of
our procedure is as follows.

The Hamiltonian of the double-perturbation system is
taken as

H =Hp+Hp+HEDM,

where Hp is a solvable zeroth-order Hamiltonian with

Hp Pp =Ep% p, and we use the Dirac-Fock operator for Hp.

H = g A+A+ A A+ —gA; UHt;(r;)A. + (3)l

i j ri &j i

where UHp is the Hartree-Fock potential in Hp, the
positive-energy-state projection operators A; are intro-
duced to avoid the continuum dissolution prob-
lem as discussed by Sucher [13]. A wave operator 0
=[exp(T)][exp(S)] in normal-ordered exponential form
[14] is then used to express the exact wave function %' as

0 =Q+p. (4)
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The first step is to solve for the cluster operator S associat-
ed with Hr from the equation

(Hp+ H( ) [exp (S)l 1m
-E [exp(S )] pro, (5)

which is the open-shell extension of the standard coupled-
cluster (CC) approach [14,15]. When S is truncated to
one- and two-body parts, the single- and pair-excitation
amplitudes SI and S2 can be incorporated to all orders by
solving equations

valence

core f

DISI —V2(SI+S2)+S2 (V2S2)3 q

D2S2= V2(l+SI+S2)+ V2 2 S2,

(6a)

(6b) II «(t)

where D; (i =1,2) is an energy factor associated with the
amplitude S;, given by the difference of the single-particle
orbital energies between occupied and virtual states in-
volved in the ith-particle excitation. When the occupied
orbitals are valence electrons, the correlation correction to
the valence removal energy should also be included in the
energy factor [14]. We use the V ' Dirac-Fock (DF)
potential in Ho, so the one-body part in Hc vanishes. The
two-body part in Hr is denoted as V2, and its order of
magnitude can be denoted as O(g). Therefore S2 and SI
are O(g) and O(g ), respectively. When one keeps all
terms up to O(g ), Eqs. (6a) and (6b) are obtained. The
term S2+(V2S2)3 in Eq. (6a), where the notation of
(V2S2)3 represents a triple excitation term coming from
the combination of V2S2, is added by the Hermitian for-
mulation of the CC approach [16]. Alternatively, this
term can be added by considering contributions from tri-
ple excitations [17], or in a variational CC approach
[18,19]. By using the latter two methods, intermediate
normalization can be retained. After solving Eqs. (6a)
and (6b) for S I and S2, which describe a correlated
many-electron wave function including relaxation effects,
we then solve for the amplitudes TI and T2 of the EDM
perturbed cluster operator T from the equations

DI Tl = HEDM(1+SI+S2)+ V2(TI+ T2)

~( ) Ij e(l) I' iI«(f)

II «(t)

(~) (b)

FIG. 1. Two basic processes in the EDM-induced transition:
(a} valence excitation, (b) core excitation. Downward lines

denote core states or holes; upward, excited states or particles;
and double-arrow line, valence state. Lines with a cross repre-
sent HppM, and lines with a circle the dipole operator. Graphs
with interchange of HqpM and dipole operator lines are not
shown.

excited to a vacancy in the 6p I ~2 state. These two process-
es are evaluated by the lowest order Z(TI)„„+c.c. and
Z(TI)„„I„„,„+.c c , res. p.ectively. Since the 6s(g state has
the same principal quantum number as the valence elec-
tron 6p(~2, both the inverse of the energy denominator and
the matrix element of HEDM are substantial. Thus the
two processes in Figs. 1(a) and l(b) are both important,
which can be seen later in Table III. In order to obtain
the all-order energy correction and the correlation of the
6sIy2 state with other core states, we solve Eq. (7a) as a
matrix equation

+ V2TlS2, W(T )...„=B (9)

D2T2 HEDMS2+ V2(TI + T2) + V2TIS2 ~ (7b)

+S2+ZT l S2+c.c.+M"" (8)

where c.c. means complex conjugated terms, and M" ' is
the contribution from the normalization factor [2Q].

We next discuss basic processes described by Eq. (8).
In the lowest order, there are two major EDM-induced
transitions as shown in Fig. l. One is the valence electron
6p]g2 excited to a virtual slg2 state. Another is the core
electron 6s ~~2 with an opposite spin to the valence electron

where terms up to O(d, g ) are kept. We consider the or-
der of magnitude of TI as O(d, ), so T2 is O(d, g). The
amplitudes of the conventional and EDM perturbed clus-
ter operators can then be used to evaluate the matrix ele-
ment of the dipole operator. Up to O(d, g ), the matrix
element can be expressed as

~ =&+Izl+&&&+I+&

= Z(TI + T2)+SI+ZTI +S2+Z(TI + T2)

by diagonalizing the matrix

3 —D l V2 V2S2,

where the inhomogeneous term

B =HEDM(1 +SI+S2)+V2T2.

One of the advantages of the method is that eigenvalues
and eigenvectors of the matrix A need be calculated only
once. After each iteration to calculate the perturbed pair
function T2, we can easily update (TI)„„,. This method
offers an efficient way to solve Eq. (7a) to all orders.
More details are referred to in Refs. [21] and [22]. Table
I shows excitation energies for core electrons excited to
their 1owest possible virtual state. As far as the ener-

gy correction for the excited state 6s 6p Ig2 (i.e.,
6s 6p(g 6s6p(g2) is concerned, the term shown in Fig.
1(b) from the lowest order to all orders gains a factor of
about 2. In order to compare with the previous lowest-
order result [6], we apply the matrix diagonalization tech-
nique to
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TABLE I. Energies of excitation states by diagonalizing the
matrix A in Eq. (10), and compared with energies obtained
from DF orbitals.

Excited states

6$ I /2 6P I /2

5dsp~ Sfqp
5dy2 6pyp
5p3/2 6d y2

5p I/2 7$ [/2

5$ ]/2 ~ 6p ]/p

Eigenvalues of A

0.2624
1.0456
0.7703
3.3340
4.0434
5.3991

DF energies (a.u. )

0.4898
1.0420
0.9943
3.4288
4. 1554
5.6864

D] T] 0ppM+ V2T]+ T)+ V2, (12)

which one recognizes as the equation in the random-phase
approximation (RPA) for the EDM interaction. A full
RPA calculation has been performed in Ref. [6] for both
the EDM and dipole interaction. However, Eq. (12) is
the basic equation to produce perturbed orbitals and plays
an important role in the other MBPT calculations [7,8].
In Eq. (12) the excitation energy of 6s 6p~yz is shifted
from 0.4898 to 0.1396 a.u. due to the RPA terms. After
diagonalization, which is equivalent to solving Eq. (12)
self-consistently for all core orbitals, the energy is shifted
further to 0.08565 a.u. This reduced energy factor is re-
sponsible for the highly overestimated enhancement factor
R= —1906 [6]. The overestimation of RPA results was

previously analyzed by Kraftmakher [7]. Physically, this
overestimation is caused by the exclusion-principle-
violation (EPV) diagrams in the RPA which allow for un-

limited numbers of 6s 6p~g2 excitations and are unphys-
ical.

In the previous MBPT calculations by Kraftmakher [71
and Hartley, Lindroth, and Martensson-Pendrill [8],
correlation effects involving the simultaneous excitation of
two occupied orbitals were obtained by modifying the
valence electron orbital to an approximate Brueckner or-
bital. In the present work we introduce the EDM-
perturbed pair function T2 instead to incorporate the
correlation effects. Although this double-perturbation CC
approach is computationally demanding, it provides a sys-
tematic calculation scheme to obtain high-accuracy re-
sults. It avoids contributions from the unphysical EPV
terms which cause unstable convergence behavior [7,8].
Introducing pair functions in our calculation ensures the
major correlation effects between electrons are taken into
account. In Fig. 2 we plot the large component of the re-
duced part of the EDM-perturbed pair function of a chan-
nel from 6p]/2, 6s~/2 excited to p]/2, p]g2 states with cou-
pling angular momentum L, =1.

We use the Fock-space CC formalism [23], so that core
equations for N —l electrons are independent of the
valence state, and the valence equations have the effect of
adding the Nth electron. The dominant correction term in

Eq. (8) attributed to the influence of the valence electron
on the process of core electrons excited by HppM comes
from ZT2+c.c. Our calculation is implemented with a
relativistic finite basis set generated by B splines [24]. We
choose the number of B-spline basis functions n =32, and
the order of the piecewise polynomial of B splines

k —
1 =5. Summation over the last ten states is omitted

FIG. 2. EDM-perturbed pair function of the channel from

6p~/2, 6$]/q excited to p]/2, p]/q states with coupling angular
momentum L 1. Radial mesh is logarithmic and denoted by
the number of points. Vertical height is relative to the electron
EDM d„.

TABLE II. Valence energy for T1 6p[/2 state obtained from
Eq. (6a).

Contribution from Energy (a.u. )

DF
VPSI
V2S~

$2+ (V2Sp) )

Total
Expt. "
Other"

"'Reference 1251. "Reference II I I.

—0.19968
0.002 30

—0.028 41
0.001 92

—0.223 87
—0.22446
—0.2239(7)

without loss of numerical significance. The upper limit for
angular momenta of the intermediate excited states
L „„=6fot the cluster operator S and L,.„=4 for the
perturbed cluster operator T have been found to be neces-
sary for proper convergence. The coupled-electron pair
approximation scheme [15] is used to simplify the non-
linear term 2 S2. A further approximation is to consider
only core orbitals 4s and higher; and for the iteration solu-
tion of pair functions T2 the terms V2T2 of Eq. (7b) in-
volving 4s, 4p, 4d orbitals are omitted. With all the above
restrictions, the calculation was able to be carried out on
an IBM RISC/6000 workstation.

We present in Table II the ionization energy of the
6p~~q valence state, which agrees well with a recent third
order plus partial fourth-order MBPT calculations of
Blundell, Johnson, and Sapirstein [11]. We summarize in

Table III the final result of the enhancement factor for
Tl. The first four terms of column A in Table III shows
the results from solving Eq. (12), which give a sum of
—1908. For the whole column A, we add DqT2
=HpoMS2+ V2T )+ (V2T2) pj's tyn, to be solved together
with Eq. (12), where S2 comes from D2Sq=Vq, and the

enhancement factor is obtained from M=Z(T~+T2)
+(S2+ZT))RpAtypg, This scheme is close but not exactly
equivalent to the full RPA result in Ref. [6], because it
misses certain higher RPA terms for the dipole operator
[20]. Apparently, all higher-order terms in the present
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Contribution from
Enhancement factor R

B

Lowest order in Z(T~)lfJ[gpge

Lowest order in Z(Ti)„,„
Higher order in Z(TJ)YQ[ggg e

Higher order in Z(Ti)„„
ZT2

S+ZT]
S2+ZT]
S2+ZT2

Sp+ZT]S2
M hOI'm

Total

—267.3
—153.2
—455.8

—1031.2
470. 1

336.3

—1101

—267.3
—153.2
—102.5
—342. 1

240.9
22.4
49.3

—36.9
—2.2

6.5
—585

work given in column 8 show more stable behavior. This
is because of exclusion of the EPV terms and inclusion of
screening, relaxation, and other correlation effects for
Coulomb interaction.

The main error in our calculation comes from trunca-
tion of the CC expansion. Our calculation is complete
through pair excitation contributions in MBPT. A rela-
tive error 0.3% for the Tl 6pit2 removal energy indicates
that the omitted higher excitation terms for the operator S
are not significant. Other important and more sensi-
tive results, such as hyperfine structure and oscillator
strengths, are to be presented elsewhere [l9]. The omit-
ted terms in triple and higher excitation for the perturbed
operator T and matrix-element calculations are partly ac-
counted for by coupled-cluster terms TiS2 in Eqs. (7) and
(8). It turns out that the terms T~Sz account for 2% of

TABLE III. Contribution of matrix element calculations of
Eq. (8) by two different schemes to the enhancement factor R
for TI. In column A Eq. (12) is used as the perturbed orbital to
start, and in B Eq. (7a) is used instead. Each term includes its
complex conjugate counterpart.

the total results. We expect that contributions from omit-
ted terms are at the same order of magnitude. Another
possible error source is uncertainty in the numerical pro-
cedure. In the present work the size of the 8-spline basis
and the number of partial waves included in the complete
set give —1% accuracy for the correlation corrections.
Only if one needs higher accuracy would an increase in
the basis set size be required. The third type of error
arises from interaction terms neglected in the Hamiltoni-
an of Eq. (2). However, as discussed by Lindroth, Lynn
and Sandars [12], the nuclear part and direct electrostatic
interaction part in the (P —I) form are dominant over
other a terms by about 2 orders of magnitude, so that we
can neglect the exchange part of electrostatic interaction
in Eq. (I), the transverse photon interaction, the virtual-
pair effect, and other QED corrections as long as a null re-
sult for the EDM has been obtained by measurements. In
view of the factors mentioned above, we assign a rough es-
timate of uncertainty of 5-10% to the final result in Table
III. If necessary, including all O(g ) terms in Eqs.
(6)-(8) would be able to improve the accuracy of the
enhancement factor of Tl to below the 5% level.

In conclusion, we have presented a general approach to
treat a system with two external perturbations. Our cal-
culation of the EDM enhancement factor for Tl, R
= —585, is complete to second order of Coulomb interac-
tion in MBPT, and includes the most important correla-
tion effects from pair excitations to all orders. Our result
has eliminated the discrepancy between the semi-
empirical evaluations [6,9,10] and the previous ab initio
MBPT calculations [6-8]. The procedure in the present
work can also be applied to other double-perturbation
problems of interest, such as weak interaction induced
electric dipole transitions [6] or atomic polarizabilities.
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