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Dynamics of a nondegenerate cascade laser
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A model for nondegenerate cascade laser instabilities is given. The linear stability analysis of the

resonant stationary solution reveals the existence of two independent Hopf bifurcations and a codi-

mension-2 point. The system exhibits a rich dynamic behavior with transitions to chaos through the

Ruelle-Takens-Newhouse scenario.

PACS number(s): 42.55.—f, 42.60.Mi

As has been shown over the last decade, lasers represent
an interesting class of nonlinear physical systems since
they exhibit a variety of dynamic behaviors and allow rel-
atively simple modeling [1].

In practically all the dynamical studies, the field mode
or modes are amplified through coupling with a unique
medium transition. In the present work we consider a sit-
uation in which two laser-field modes are coupled with
two different transitions sharing a common level (three-
level cascade scheme). A rich dynamics is to be expected
in this case, since in addition to the instabilities associated
with each mode, further instabilities should appear as a
result of the competition and coupling between both
modes through the intermediate-level population and the
induced two-photon coherence. At small intermediate-
level detunings this configuration corresponds to a cascade
laser, whereas at large detunings it can represent a two-

photon laser. In this paper we present a general model
(with several usual simplifications), which is solved only in

the case of the cascade laser, under restricted conditions.
Some literature has been devoted to the quantum

description of the cascade laser [2(a)], but, to the best of
our knowledge, no attempt has been made to describe the
dynamics of this laser. In the related case of the two-

photon laser, both its quantum description [2(a),2(b)]
and dynamics [3] have been considered, the latter, howev-

er, through a two-level model that does not contain the
cascade limit. Finally, some experiments on cascade
lasers have been carried out [4], although not in the dy-
namic version, raising the possibility for experimental
verification of the results provided by our model.

We consider a three-level active medium (levels 1, 0,
and 2; see the inset of Fig. 1), and two generated electric
fields, Cl and Cz, inside a ring cavity [5]. If the frequen-

cies of the dipolar transitions (2 0 and 0 1) are
suSciently diAerent, and the cavity is properly tuned, we

may assume that each field is coupled with only one tran-
sition (4'I with the lower one and Cz with the upper one)
(nondegenerate case). In the usual semiclassical formal-

ism (plane wave and uniform field limits) and considering
single-mode unidirectional emission, these fields can be

expressed as

C~(z, t) —,
' ejEJ(t)exp[ —i(0)jt+p~(t) —kjz)]+c.c. ,

(1)
(j 1,2), where z is the propagation direction along the

laser cavity, and e~, E~(t), k~, 0)~, and (I)~(t) represent the
polarization vector, slowly varying real field amplitude,
wave number, reference frequency, and phase of the field

CJ(z, t) Th. e total field is C(z, t) Cl(z r) +C 2(zr).
Denoting by bozo, ruol, and 0)zl the frequencies of the one-
photon (2 0 and 0 1) and two-photon (2 1) tran-
sitions, respectively, the detuning of the field 4'2 is given

by 8 0)2 —0)20, and the two-photon detuning by f=N2
+(ul —0)zl (inset of Fig. 1). Each level j (j=l,0,2) is

populated at a constant incoherent pumping rate A~, and
relaxation occurs at a rate yj. Inhomogeneous broadening
is not considered.

In the usual rotating-wave and slowly varying envelope
approximations, using the semiclassical density-matrix
formalism [6], the Maxwell-Schrodinger equations for the
laser system are

P22 yzpzz+ ~2 2az 1 m(poz)

poo- —yopoo+)Io+2azlm(poz) —2al Im(plo),

pl I ylpl I +XI +2al Illl(plo),

poz = —[I 02+ & ((12+ ~) ]poz+ iazD2+ ial p I 2,

Plo [I I +0I (PI ~+&)]plo+ia ID I
—iazpl2,

pl 2 [~l 2+ I ((i) I + It)2+ &)] pl 2 la2pl0+ &a I p02

a2(i) x2(I)a2(I)+g2(l) Im(p02(lo))

42(l ) (0)2(l ) 0)2(l ) ) g2(l ) Re(P02(lo) )laz(l ),

(2)

where pjj. (r) represents the (real) population of the level

j, D2—=p22
—

poo and D ~
=poo p~ ] are the population in-

versions, and p~l (t ) is the slowly varying complex ampli-
tude of the coherence associated with the transition j I
(j,i =1,0,2), which relaxes at a rate I ~l. 2a~ is the Rabi
frequency for the field C~, aj (t ) = (pp~". e~/2h ).E~ (t ),
where poj. represents the (real) electric-dipole matrix ele-
ment between states (0) and

~j) (plz=p~~ =0). xj. and g~. .

represent the cavity losses and the gain parameter
(g~ =0)~pp~ WI2eph, being N t.he number of active mole-
cules per unit volume) for the field CJ., and 0)~ (j=1,2)
represents the closest empty-cavity mode frequency.

System (2) is composed of eleven coupled nonlinear real
first-order differential equations, since those for pl (t) and

II)z(t) can be introduced into the remaining equations.
The amplitudes p02 and p~o are proportional to the medi-
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FIG. 1. Location on the x,r plane of the Hopf bifurcations rI
and r, (continuous lines), and the different regions of dynamic
behavior I, II, III, and IV (approximately limited by the dashed
lines), for y 0.2 and I =I.O (in this case, «L =1.2 and
«; 2.8). For an explanation see the text. The inset shows a
schematic of the cascade laser.

um polarizations at the field frequencies and p~2 is respon-
sible for the two-photon processes.

This general model properly represents a cascade laser
in the limit of small b, whereas, as mentioned above, it can
represent a two-photon laser in the opposite limit (~b(
»r„,ru, ) [7]. In the following we restrict the case to
that of a fully resonant cascade laser, i.e., b =@=0, choos-
ing coj roj' (j=1,2).

For the sake of simplicity, we will consider the particu-
lar case of identical parameters for both 2 0 and 0 1

transitions (y~ yu=y2 ——yi, I ~a=I'u2=y&), while the
constant relaxation rate for the two-photon coherence,
r„=r, is allowed to be different to that of the dipoles.
Under the above assumptions Eqs. (2) become the follow-
ing set of seven real equations:

D2(I ) QD2(I ) +~2(l ) 4a2(l )J 2(I ) +2a1(2)y I (2)

3 2(l ) 3 2( I )+ a2(I )D2(l ) + ( )a l (2)x

x = —I x+a2yl —aly2,

a I (2) & I (2)a I (2) +g I (2)y I (2)

(3)

1D2=DI =—x=0c 7 t

(4)

where r=(A. 2
—

A, ~)C/2y is the pump parameter. Note
that (4) is a scaled version of the stationary solution of the
Lorenz model [9]. x=0 denotes the absence of two-

where y~=—Im(p/Q) $2=1m(p02), and x=Re(p~2);
AQ A I

—XQ X, I. All frequencies are normalized to
y& and y= yi/y~. The rest of the variables not appearing
in Eqs. (3) are null.

The nontrivial solution (with a~ and a2 different from
zero) of Eqs. (3) is greatly simplified if one takes
C~ =C2—=C (C;—=g;/«;) [8] and F2=K~ (equal pump for
both transitions), becoming

a i
=a2 = +' &y(» —I )/2, y i i&i

=ai t2)/C,

photon coherence in this situation.
Equations (3) also have stationary solutions other than

(4) in which only one field is non-null. However, in this
particular case (IL2 X~, C2=C~), these solutions are al-
ways unstable.

The linear stability analysis (LSA) of solution (4) leads
to a seventh-order polynomial in the eigenvalues, from
which the instability thresholds cannot be derived explicit-
ly. Nevertheless, if one further assumes g2=g~ («2
=«.

~
——«, since C2=C~), the characteristic polynomial be-

comes factorized into a cubic and a fourth-order one, thus
greatly simplifying this LSA. Although this last assump-
tion is unrealistic in principle, the results we summarize
next provide a qualitatively good description of situations
for which 0.25 &g~/g2=«~/«i &4.

The cubic part of the characteristic equation is formal-
ly identical to that obtained in the Lorenz model, giving
rise to instabilities for r & rI. =—«(«+y+3)/(«. —

y
—1)

through a Hopf bifurcation if «& «L ——y+ I ("bad-
cavity" condition) [9].

From the fourth-order polynomial we obtain an in-

dependent Hopf bifurcation at I r„satisfying the equa-
tion

a(r„—I )2+ b(r, —I )+c=0,
where

a -2y'&(«-, . —«-),

b = 2y («+ I )(«., —«)+ y(y+I )ge

6~yN —~+r+ y+1) ',
c-yr(~+1)(y+r) e,

(5)

(6)

with «;.=2+(I +3y)/2, 8—= (ir+ I )(«+I + y+ I)+yI,
and g—=6«+ 3I + y. c is always positive, a & 0 for «& «.„,
and the sign of b depends on (ic, y, l ). These facts condi-
tion the existence of the Hopf bifurcation at r =r„ in the
following way. (i) If «& «,. only one solution exists for
(5), and instabilities occur for r ~ r, (ii) If «& «.„, Eq.
(5) predicts two Hopf bifurcations at r=r, whenever-
b &0 and b &4ac (otherwise no solution exists for r„);
under these conditions, instabilities hold for r„~r ~ r„+.

When both thresholds r„and rL exist, only the minor of
them makes sense, except when rL & r,+, in which case the
three thresholds (r„, r„+, and rL) are meaningful since in-
stabilities hold for r, ~r ~r,+ or r~rI. . Notice that
while r, is I dependent this is not the case for ri. .

By way of example, Fig. 1 shows the location of these
thresholds as a function of the cavity losses a for the case
y=0.2 and I =1.0 (in this case r, does not exist for
«& «;). Three main features can be observed: (i) Insta-
bilities appear only for x & xL, i.e., the "bad-cavity" con-
dition must be fulfilled. (ii) Upon increasing r the Hopf
bifurcation takes place at r =rL for a certain domain of
cavity losses (between «.L and, in the present case,
« =3.873), while above this domain the Hopf bifurcation
occurs at r =r, since r, & rL. (iii) The minimum value of
the threshold r, can be smaller than that of the Lorenz
model rL [by increasing I, the curve r, is lowered and
shifted to the left, becoming closer to the vertical line
«'=«I. . in the limit I ~—adiabatic elimination of the



R2676 G. J. de VALCARCEL, E. ROLDAN, AND R. VILASECA

Ol
1

0

(a) (b)
5 y
0

A
1

0

5 y
0

A
f

0

A
1

0

(e)

-J I I I I I I I I It IlI
(

I I l
J

I I.
l(I

II I I II I l li l l

(g)

~

(h)
5 y
0

20 40 —8 -4 0 4 8
A

FIG. 2. Dynamic behavior of the resonant nondegenerate
cascade laser for @=0.2, I =1.0, and x =10.0. Left column

shows the temporal evolution of field I and the right column

shows the corresponding attractor projection on the field-

polarization plane for increasing values of r I(a), (b), r = 15.0;
(c),(d), r=25.0; (e), (f), r=60.0; (g), (h), r =75.0]. The two

points marked in (b), (d), (f), and (h) indicate the projection of
the corresponding (unstable) stationary solution. All transients

have been removed.

two-photon coherence —r, =(rL+2)/3 ~ 2,
' rL].

Feature (ii), above, is related to the crossing between
the rt and r, curves which defines a codimension-2 point
[10] (tr=3.873, r =10.248 in the case of Fig. 1). This
point exists whenever r, does. The rich dynamics expect-
ed in the neighborhood of this codimension-2 point will be
the object of future work. Next we discuss the basic
dynamical features of the resonant nondegenerate cascade
laser.

Numerical analysis of Eqs. (3) in the dynamic domain
reveals the existence of periodic and chaotic regimes. In
Fig. 1 the zones of different dynamic behavior obtained by
hard-mode excitation are marked with roman numerals.
In region I a one-sided period-1 attractor is found [Figs.
2(a) and 2(b)]; in fact, there are two coexisting one-sided
attractors, corresponding to the symmetry properties of
Eqs. (3). Similar behaviors have been reported by Ning
and Haken in the Lorenz model by using the anomalous
switching technique [11]. In region II a chaotic two-sided
attractor is found [Figs. 2(c) and 2(d)]. The closer the set
of parameters is to region I the longer the trajectory
remains in each lobe of the attractor before jumping to the
other side. This indicates that the two-sided attractor ap-
pears as a progressive merging of the two symmetric one-
sided attractors of region I. In region III a two-sided

I

I I I I I I I I I t I I I I I I I I t

(c)

5 10 15 20

FIG. 3. Logarithm of the power spectrum S(to) of ai(t) for
pump parameters (u) r =66.35, (b) r =66.40, and (c) r =66.45.
Note the appearance of a frequency to2 (incommensurate with

to~) in (b) which denotes the existence of a torus T' (Other pa--.
rameters are as in Fig. 2.)

period-1 attractor is found [Figs. 2(e) and 2(f)]. Finally,
in region IV, which extends to arbitrarily large values of r,
chaos is again obtained [Figs. 2(g) and 2(h)]. Note the
differences with respect to the chaos in region II.

An inspection of Fig. 2 shows that a qualitative similar-
ity exists between the attractor projections and equivalent
ones in the Lorenz model [1,11]. In fact Eqs. (3), in this
particular case (A2=Kl, g2=gl, tr2=trl), always allow a
solution al (t ) =a2(t ), y l (t ) =y2(t ), D l (t ) =D2(t ),
x =0, for which these equations are decoupled into
(al,yl, Dl) and (a2,y2, D2), becoming isomorphic to two
equal (synchronized) Lorenz models. This isomorphism
applies not only to the stationary solution (4), but also to
any dynamic solution of the Lorenz model. In the cascade
laser, however, this dynamic solution actually represents a
repeller, since it is unstable with respect to any small per-
turbation (e.g. , any fiuctuation "turns on" the variable x).
From this point of view, the actual (attracting) cascade
laser solutions (Fig. 2) would be expected to be different,
rather than similar, to the Lorenz-type solutions. What
happens is that the cascade laser solutions differ with

respect to the Lorenz-type ones mostly in the "relative
phase" between field intensities al and a2, which locks to
half an intensity period in the cases of periodic regime

(i.e., al2 is maximum when a2 is near zero, and vice versa),
and becomes unlocked for chaotic regimes. Attractor pro-

jections on the variables associated to only one of the two

fields, however, retain in some cases Lorenz-type features,

since in both cases the attractive and repulsive directions

remain basically the same in these projections, as a result

of the mathematical similarity discussed above.
Nevertheless, there is an outstanding feature that

makes the dynamics of the cascade laser different than

that of the Lorenz-Haken model and most of the laser sys-

tems: In our case all the transitions from periodic orbits

to chaos occur through the Ruelle- Takens-Newhouse

scenario [12]. This is illustrated in Fig. 3, in which the

power spectrum S(to) of the field al (t) is shown for three

increasing values of r corresponding to crossing the border

between regions III and IV in Fig. 1 for x =10.0. The
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domain of stability of the torus T [Fig. 3(b)] involved in

this scenario lasts only a few hundredths of r (see figure
caption). The torus T possible in this route to chaos has
not been found. To our knowledge this is one of the few
cases [1,13] in which the Ruelle- Takens-Newhouse
scenario has been found in an autonomous-laser model.

ln conclusion, our analysis has provided evidence for in-
teresting dynamical features in the cascade laser model,

which should stimulate experimental verification in molec-
ular and atomic lasers.
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