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Maximum microwave conversion efficiency from a modulated intense relativistic electron beam
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We calculate the power transfer from an intense modulated electron beam to an external load. The

simple model fully incorporates various eA'ects such as nonlinear beam loading, finite transit time, ac
and dc space charges, and the beam's initial velocity modulation. We show that a fully modulated

beam may deliver up to a maximum of 57% of its power to a load without forming a virtual cathode.

PACS number(s): 41.75.Ht, 52.75.Ms, 85.10.Jz

A fundamental question that remains unanswered in
ultrahigh-power microwave generation [I] concerns the
maximum rf power that a load can extract from a modu-
lated intense electron beam. Although an almost com-
plete understanding has been achieved in the case of a
weak beam, as in a conventional klystron [2], the exten-
sion to an intense beam is an open question because of the
substantial potential energy that always accompanies an
intense beam [3]. The interaction between an rf circuit
and the beam involves three types of energies: the energies
of the circuit, the beam's kinetic energy, and its potential
energy, all having the same order of magnitude. In this
paper, we adopt a simple model (Fig. 1) that accurately
accounts for the exchanges of these energies. We also
determine the optimal conversion e%ciency of a modulat-
ed intense electron beam, using this "standard" model,
but pushing it to the new regime in which virtual cathodes
are on the verge of being formed at the gap. It is in this
high current regime ~here the relativistic klystron
amplifiers at the Naval Research Laboratory operate [3].
Such devices are currently considered as one of the most
promising in the production of coherent microwave power
beyond the gigawatt range.

The beam's intense space charge may inAuence the
beam-gap interactions in the following ways: (i) It may
act as a dielectric, thereby loading the gap [3-5]. (ii) Too
much space charge would lead to virtual cathode oscilla-

I; (t) =In[1+ (Ii/Io)sinrut],

v; (t ) =vo[I + (v ~/vo) sin (rot +8)), (2)

tion at the gap, destroying the stability of the device. (iii)
Since the self-fields of the space charge are significant, an
individual electron experiences not only the rf electric field
of the gap, but also the space charge forces due to other
beam electrons. Thus, the familiar "transit time factor"
in beam-gap interaction needs to be substantially
modified. (iv) Because of the above, the available ac
current that drives the load is rather different from that
entering the gap, and the optimal conversion efficiency be-
tween the beam and the load cannot be assessed, if one is
to rely only on the experience with the conventional kly-
strons. To accurately account for these space-charge
effects, and to unambiguously identify the current l~(t)
that drives the load (after taking into account the various
beam loading effects), we use a parallel plate model for
the gap but calculate the gap voltage Vs(t ) and I~(r ) that
are consistent with the nonlinear, time-varying electron
motion [6,7].

The model consists of an electron beam impinging upon
a gap formed by two parallel plates, K and A, located at
x 0 and x D, respectively [Fig. 1(a)]. The electrons
enter plate K, carrying a current I;(t) and a velocity v;(t),
given by
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where Io and vo are, respectively, the dc beam current and
velocity, I } and v } are their respective ac components with
frequency co, and 8 is the relative phase between the
current modulation and velocity modulation when the
beam enters the gap. All of these quantities are assumed
to be known, as they characterize the properties of the in-

put beam. [In Fig. I, I;(t) is positive in the direction
shown, since the electron carries a negative charge]. In
contrast with conventional klystron theory, we do not as-
sume I}&(Io nor L'} C(L&{j.

We next assume that the load is represented by an RLC
circuit, connected across the gap [Fig. 1(b)]. In response
to a driving current Iz(t), whatever it may be, the termi-
nal voltage Vs(r) across the simple RLC circuit [Fig.
l(b)] is governed by

d 0 d 2 ~0& d
2

+ +run Vs(t) =— [I,(r ) —I,l,
dr Q dr Q dr

FIG. I. (a) The gap and (b) its connection to the load. (3)
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which is the sum of the convection current I(x,t) =Apv
and the displacement current. Here, A is the surface area
of the plate, —p and v are, respectively, the volume
charge density and the flow velocity within the gap.

Since Eq. (4) is independent of the position x, we may
evaluate I~ (t ) right in front of plate K at x 0+, in which
case 1(0+,t) is simply the input current I;(t) defined in

Eq. (1). The remaining quantity —Aao8E(0+, t)l/at in
Eq. (4) is then the current that is shunted by the loaded
gap. It may be further decomposed into two components:
the shunted current Co8Vg(t)/r)t due to the vacuum gap
capacitor C =oAg/oD and a remainder INL(t) which ac-
counts for all of the space-charge and transit-time effects.
In the limit of a weak beam and a low gap voltage, we re-
cover [4] from INL(t) the small signal beam loading ad-
mittance that is formulated in the classical klystron theory
[2].

The surface electric field E(0+,t) is obtained after we
solve for E(x,t), p(x, t), and v(x, t) from the force law,
the equation of continuity, and the Poisson equation:
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(5)

Equations (I) and (2) are the respective boundary condi-

where rvo is the natural frequency and Q is the quality fac-
tor of that resonant circuit. Since Io is constant, it is at-
tached to the right-hand side of Eq. (3) without loss of
generality, so as to signify that it is the ac part of Iz(t)
which drives the load in Fig. 1(b).

The crucial step lies with the proper definition, and then
the calculation, of the current I~(t). In general, it is not
equal to the input current I; (t). An exact formulation is
available for the one-dimensional model shown in Fig. I.
It is given by [2,4]

l, (t) -I(x, t) A~—I)E(x,t )

tions, at x 0, for the current I—=Apv and for the velocity
v. The electric field E(x, t ) satisfies the constraint

t D—„,dx E(x, t ) = V, (t) .

We have solved the system of equations (3) (7)-, sub-
ject to the conditions just stipulated. The density and
current distribution of electrons within the gap were
solved by both a particle code and a Eulerian code that
have been validated [4]. The following parameters need
to be specified: R, L, C, Io, vo, I~/lo, v ~/vo, tv, and 8. Our
problem is to find suitable combinations of these parame-
ters, so that the average rf power delivered to the load is
maximized. There is one requirement, namely, that no
virtual cathode is formed at the gap. We consider that re-
quirement satisfied if no reflected particle is detected at
x 0+ in the particle code. To reduce the above parame-
ter space, we fix the beam's dc kinetic energy at 511 keV
and roD/c 0.681; all other parameters are allowed to
vary.

Tune sensitivity is shown in Fig. 2, in which we arbi-
trarily set I~ I;(t) [i.e., pretending the idealized situa-
tion where all the input current I; (t) can drive the load],
and set v(t) vo=0866c, Q 300, ruD/c =0681, R
=Rl,,/(moc /e) =5, lo/I, 1.33, and I~/lo 0.56. Here,
I, =(Aso/D)(mac /e)/(D/c) is the current scale. Figure
2(a) shows the normalized power Pt —= IqVg/(l, ,m—oc /
e) that can be delivered to the load when there is a perfect
tune between the drive frequency in the current modula-
tion and the resonant frequency. Figure 2(b) shows PL
when 1% of stray capacitance is added. In Fig. 2, t =rut
Note the substantial reduction in the power PL in Fig.
2(b). A similar degree of sensitivity to tuning has also
been observed in experiments [8].

The effect of beam loading is shown in Fig. 3. We use
the same parameters as in Fig. 2, except that we lower Q
to 5 (to reduce the rise time in the numerical computa-
tion) and reduce R by a factor of 2.5. Figure 3(a) shows
PL in the idealized situation: All of the input current I; is
delivered to the load (i.e., I~ I;, no loading due to the
beam or to the vacuum gap capacitance). The circuit is
perfectly tuned to the driving frequency in the current
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FIG. 2. The power Pi delivered (a) to a perfectly tuned load and (b) to a load including a 1% stray capacitance.
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FIG. 3. The power PI deliver. ed to the load when (a) there is no gap loading nor beam loading, (b) there is only vacuum gap load-

ing, and (c) both gap and beam loading are present. The dashed curves show the theoretical asymptotic values.
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FIG. 4. Optimal e%ciency in the power transfer to a resistive
load, by an input beam with 10% velocity modulation. The dc
beam energy is 511 keV.

modulation. In Fig. 3(b), we keep the same frequency,
but include in I~ not only I; but also the quantity
CndVs/dt, which is the current shunted by the vacuum

gap capacitance Co. We see that the asymptotic peak
value of PL is reduced from 1.1 in Fig. 3(a) to 0.39 in Fig.
3(b). This reduction is due to the loading of the RLC cir-
cuit by the vacuum gap through which the beam passes.
In Fig. 3(b), beam loading is absent. In Fig. 3(c), we use
the exact relation (4) for I~ and thus include all loading
effects: the loading by the vacuum gap and beam loading.
We see that the asymptotic peak power is further reduced
by beam loading.

We next performed an extensive search of the parame-
ter space to maximize the rf power that can be delivered
to the load without the formation of a virtual cathode. To
reduce the sensitivity due to tuning, we considered the
simple case, where the load in Fig. 1(b) consists only of a
single resistor. After an extensive search, we found that to
deliver maximum power to the load, the beam needs to be
fully modulated and therefore the dc current is about half
the ac limiting value [4]. The load resistance cannot be
too high (to avoid virtual cathodes) or too low (to allow

appreciable power dissipation at the load). The efficiency
can be improved somewhat (by about 20%) if the phase of
velocity modulation lags that of current modulation by
about 30'. When these conditions are satisfied, close to
60% of the beam power can be delivered to the load. Fig-
ure 4 shows the conversion efficiency rt, defined to be
(Vs/R)/(Pb), where (Pb) is the average beam power car-
ried by the incoming beam. The parameters used for Fig.
4 are as follows: the dc beam energy is 511 kV, the
dc beam current is 2.41„I~/In =1, r! ~/vn =0.1, R
=0 8(rrtnc /. e)/l„ruD/c =0.681, and 8= —x/6. The
average conversion efficiency q in this figure is 57%. If the
beam is only partially modulated, e.g., I~/In=0. 6, the
maximum efficiency is found to be only 35%, a value con-
sistent with experimental observations [3].

In conclusion, we present here an analysis of beam-
circuit interaction where the beam's instantaneous current
may reach the limiting value. The study of this new re-
gime strictly adheres to the formulation laid down in the
classical klystron theory. Although the idealized gap
model reveals many features observed in the Naval
Research Laboratory relativistic klystron amplifier experi-
ments [3], there is one aspect that is particularly puzzling
to us: The increase in the rise time in the current modula-
tion that was observed [8] in the experiments and in the
earlier particle simulations of the real geometry. Our nu-
merical results obtained thus far [using the model of Fig.
1(b)] failed to show a similar lengthening in the rise time.
It remains to be determined whether this increase in the
rise time is a result of the specific geometry used, namely,
that of an annular beam interacting with coaxial cavities.
We can think of two major differences between the
present model and those in the two-dimensional particle
CONDOR simulations [9] and experiments: the geometrical
effects just mentioned and the inductive effects that were
ignored here.

We acknowledge useful discussions with M. Friedman,
3. Krall, and V. Serlin. This work was supported by the
Strategic Defense Initiative Organization/Innovative Sci-
ence and Technology Office, managed by the Harry Dia-
mond Laboratory.



R2182 D. G. COLOMBANT AND Y. Y. LAU

[I] See, e.g. , Intense Microwave and Particle Beams, edited

by H. E. Brandt, SPIE Conference Proceedings No. 1407
(International Society for Optical Engineering, Belling-
ham, WA, 1991).

[2) M. V. Chodorow and C. Susskind, Fundamentals of Mi-
crowave Electronics (McGraw-Hill, New York, 1964),
Chap. 3; C. K. Birdsall and W. B. Bridges, Electron Dy-
namics of Diode Regions (Academic, New York, 1966),
Chap. l.

[3] M. Friedman, J. Krall, Y. Y. Lau, and V. Serlin, J. Appl.
Phys. 64, 3353 (1988); Phys. Rev. Lett. 63, 2468 (1989);
Rev. Sci. Instrum. 6l, 171 (1990). An exposition of these
works, in particular the various roles played by the space-
charge effects, was given in IEEE Trans. Plasma Sci. PS-
IS, 553 (1990).

[4] D. G. Colombant and Y. Y. Lau, Phys. Rev. Lett. 64,
2320 (1990).

[5] S. C. Chen, G. Bekefi, and R. Temkin (Ref. [I]).
[6] Z. D. Parkas and P. B. Wilson, SLAC Publication No.

4898, 1989 (unpublished). This paper analyzed the rather
complicated electron motion in a one-dimensional gap, in

the absence of self-fields but including the fringing fields
of the gap. Here, we take the opposite approach, ignoring
the gap's fringing field but including the space-charge
effects which are calculated self-consistently in response to
an external load. Other aspects of beam loading are ad-
dressed in Ref. [7].

[7) M. A. Allen et al. , Phys. Rev. Lett. 63, 2472 (1989); also,
SLAC Publication No. 4650, 1988 (unpublished).

[8) M. Friedman et al. , in Intense Microwave and Particle
Beams, edited by H. E. Brandt, SPIE Conference
Proceedings No. 1226 (International Society for Optical
Engineering, Bellingham, WA, 1990), p. 2.

[9] J. Krall and Y. Y. Lau, Appl. Phys. Lett. 52, 431 (1988).




