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Spinodal decomposition in a Hele-Shaw cell
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As an experimentally realizable two-dimensional fluid system, we perform a cell-dynamical system
simulation of a binary incompressible fluid that undergoes spinodal decomposition after a critical
quench in a Hele-Shaw cell. Fluidity enhances fluctuations of interfaces, resulting in a form factor
that continuously depends on the fluidity of the system. In this system, finite size coupled with the
effect of incompressible flow is found to have a severe accelerating effect on the growth law.
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The late-time behavior of systems undergoing spinodal
decomposition is still an unresolved problem in nonequili-
brium statistical physics [1]. Analytic theories of ordi-
nary binary-alloy spinodal decomposition in the asymptot-
ic, late-time regime are still unsatisfactory. Hydrodynam-
ic interactions make this problem only more difficult.
Two-dimensional (2D) fluid systems have been studied by
various computational methods [2], but most of these sys-
tems appear to be either physically unrealistic or experi-
mentally difficult to realize and none of these systems
model incompressible flow. Recently, small-scale 3D fluid
systems have also been studied [3], but we believe that
careful large-scale studies of 2D fluid systems must be
done to discover possible difficulties with future studies in
3D. As we show, we can expect very severe finite-size
effects.

It is difficult to imagine a physical, free-standing 2D
fluid system. A physically realizable situation may be a
thin film of incompressible liquid sandwiched between two
solid planes. Such a system is essentially a Hele-Shaw
cell, used to study Saffman-Taylor fingering [4], for ex-
ample, in which the fluid flow obeys Darcy's law. In this
Rapid Communication, we present the results of a compu-
tational study modeling the spinodal decomposition of an
incompressible symmetric binary fluid system after deep
critical quench in a Hele-Shaw cell. Our main aim is to
examine the effect of incompressible flow on the asymptot-
ic behavior of spinodal decomposition. The numerical
method is based on the cell-dynamical system (CDS)
model of spinodal decomposition of a binary alloy [5].
This paper is a preparatory step to a large-scale 3D sys-
tem with hydrodynamics.

If we allow a binary fluid mixture to undergo spinodal
decomposition in a suitable Hele-Shaw cell, we may ex-
pect that the mean domain size will eventually be larger
than that of the interplate spacing. At this point the fluid
motion will be essentially 2D. Further the fluid motion
should be slaved to the overall slow process of the phase
separation. We expect in this situation that Darcy's law
will be obeyed, with the modification that the force on the
fluid will be due to the gradient in the chemical potential,f= —yVbPco/by [6], where y, the order parameter, is
proportional to the concentration difference between the

two types of fluid, and where Pco is a coarse-grained phe-
nomenological free energy. The velocity field will then
obey

d b~CG
v — Vp+ yV

V By
, Vv=0

where d is proportional to the interplate distance, v is the
viscosity, and p is the pressure determined by incompressi-
bility. Since we study a thin fluid layer, the effect of
differential wetting may be a serious experimental prob-
lem. This may be taken into account by a suitable choice
of the free-energy functional and modeling of the wetting
layer [7]. Here, we assume the effective free-energy func-
tional is symmetric and that there is no preferential wet-
ting of the cell walls.

Previous studies give us a workable cell-dynamical sys-
tem for the spinodal decomposition of a binary-alloy sys-
tem [5]. This model was successfully used to study the
asymptotic form factor for a 3D binary-alloy model after
critical quench [8]. The CDS model for spinodal decom-
position of a binary-alloy system is

y, + ~
(n) -y, (n) +M [I,(n) —((I,(n)))],

I, (n) =D[((y, (n)» —y&(n)]+7(y, (n)) —y, (n) . (3)

The double angular brackets denote an average of a
neighborhood of cells [9], D is a positive constant, and
y, (n) denotes the order parameter in a cell at n at time t.
The injective map P() models the local cell dynamics.—I is an effective chemical potential. M is the mobility
of the system. The map chosen for Eq. (3) is P(y)
=Atanh(8y), where B=tanh '(I/A). This map has
stable fixed points at I and —l for any A &0. The
boundary conditions are periodic. We will call this model
of spinodal decomposition the ordinary system.

To add fluid dynamics, we model the flow as described
previously by Eq. (1). We will refer to the model as the
Hele-Shaw system. The velocity of fluid flow in a cell is as
follows:

v (n) =(1/ —c') [[V]qp, (n) —y, (n) [V]dI, (n)},
[V ldp, (n) = [V)q[y, (n) [V]dl, (n)},
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where c CL (d /v) ' is a positive constant. The [ld nota-
tion denotes the discrete version of the enclosed operator
[10]. A standard fast-Fourier-transform technique solved
the implicit pressure equation (4). We update the order-
parameter field and then the velocity field is used to com-
pute the next time step from the updated order-parameter
field [11]:

y*(n) =y, (n) +M [I,(n) —((1,(n)))],
I)I + / (n) =y —[V]q [y*(n)v, (n )]

We study the form factor: S(k, t) =(yk(r)y z(r)),
where yk is the Fourier transform of the order parameter
and () denotes ensemble averaging. Define S(k, t) as the
circularly (in k-space) averaged form factor after normal-
ization by fd k S(k, t) =l. If we may assume that there
is only one relevant length scale l(t) [12], we can assert
from dimensional analysis S(k, t ) =I"(t)F(x), where
F(x) is a dimensionless form factor, and x =kl(t).

The most convenient characteristic length [13] can be
defined in terms of
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dk kS(k, r)

(k)(t) = "',
dk S(k, r)

(k)(t) is essentially the reciprocal of l(t), the characteris-
tic length scale of the domains in a well decomposed sys-
tem. If scaling holds, we may look for a growth exponent

p such that (k)(t)-t ~ in the limit of late times.
Using Eq. (1) we may follow Kawasaki and Ohta [14]

and form an interfacial equation of motion. Dimensional
analysis then gives p= —,

' as in the case of the ordinary
spinodal decomposition for both bulk diffusion and the hy-
drodynamic flow. The relative effectiveness of the diffu-
sive mechanism to the hydrodynamic mechanism is thus
controlled by the factor Mc . Therefore, F(x) may now

be dependent on Mc'.
We have studied several systems to investigate the

finite-size effect and Mc dependency. For parameters
A =1.5, D =0.4, M =0.1, c =1.0, Mc =0.1, we studied
the following: two samples of sizes 128, one sample of
size 256 and 512, and eight samples of size 384 . Addi-
tionally we studied a system with parameters A =1.5,
D 0.4, M=0.5, c =2.0, Mc =1.0, eight samples of
size 256 . Experience has shown that the system self-
averages well only for k/(k) ) 2 when examining the form
factor and so one must have many samples to have an
overall reliable form factor. However, in[(k)(t)] fluctu-
ates mildly from sample to sample and usually one sample
is sufficient to discern the gross behavior of In[(k)(t )l. As
a reference, we have also computed a 2D symmetric ordi-
nary system with parameters 2 =1.3, D=0.5, M=1.0,
with 25 samples, of size 256 . We will call the system
with Mc =0.1 the high-fluidity system, and the one with
Mc = 1.0 the low-fluidity system.

Figure 1 (a) exhibits the log-log behavior of (k)(t) for
the high-fluidity ensemble of size 384 . After a long tran-
sient phase, the slope appears to settle at —

3 as expected
from dimensional analysis. For the time range observed,

systems of size 256 to 512 show almost identical behav-
ior. However, there is a clear acceleration due to finite-
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FIG. I. (a) Log-log plot of (k) over time step. Solid squares
and open diamonds are data from high-fluidity systems. The
small system of size l 28 (solid squares) shows a clear accelera-
tion in growth law. The large system of size 3842 (diamonds)
obeys the expected ——,

' law. Samples of size 512 and 256 had

nearly identical behavior as the 384 ensemble. The crosses ex-
hibit behavior of a system that had numerically pinned domain
walls. (b) Log-log plot of &v & over time step for high fluidity,
size 384' system. Inset: The same plot for a single 384' sample
over the time step 10000 to 40000.
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I IG. 2. Comparison of form factor for hardened data of high

fluidity, size 384-'systems over time and the hardened form fac-
tor for the late time (time step is 25000) ordinary system.

size effects for the high-fluidity system of size 128 . A
mild acceleration was expected due to finite-size effects,
however the actual effect is great.

We found a further hazard in simulating hydrodynamic
effects. In Fig. 1(a) we also show behavior of (k)(t) of a
system, 3 =1.5, D 0.2, M =0.1, c =1.0, Mc =0.1, of
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FIG. 3. Comparisons of plot of x'F(x), or Porod plot, using
hardened data from high-fluidity system of size 384, low-
fluidity system of size 256, and ordinary system.
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FIG. 4. Log-log plot of form factor for high-fluidity system of
size 384'- (time step is 40000) and the ordinary system (time
step is 25000).

size 192, which exhibited a gradual pinning of the
domain walls. This system gradually slowed down be-
cause low-curvature domain walls would become flat,
freezing onto the underlying lattice. This type of effect
has been seen in previous computational studies of
coarse-grained models of late stage spinodal decomposi-
tion [15]. Essentially, this eff'ect is due to "overcoarse
graining" of the model. However, this effect was unex-
pected at the given parameters since the freezing or me-
tastability did not appear in the ordinary model for these
parameters. Flow appears to facilitate the system to rear-
range itself locally, hence accentuating the tendency of
domain walls to align with the computational lattice. To
eliminate this effect, we broadened the walls slightly by
increasing D, which is equivalent to decreasing the
coarse-graining length.

The finite-size effect and numerical pinning have oppo-
site effects on (k)(t). In fact, a very preliminary high-
fluidity study on a small system nearly exhibited the ex-
pected (k)(t)-t 't, however this appears to have been
to a fortuitous cancellation of effects. We expect similar
problems in simulating 3D hydrodynamic systems.

If the v field scales asymptotically with the single length
scale I a- (k) ', we expect from simple dimensional
analysis that (v )-I /t -t +~, where the brackets
denote sample average. Although we have obtained
the scaled velocity-velocity correlation function C,,, (r)
=(v(r) v(0))/(v ), here, we will only consider the time
dependence of (v ). We see in Fig. 1(b) that the (v )(t)
log-log plot also reaches the expected scaling behavior at
roughly the same time that (k) reaches scaling behavior.
In the inset of Fig. 1(b), (v ) of a single sample shows
very intermittent behavior. The jumps appear to coincide
with the rapid absorption of a droplet into a larger like-
phase domain.

To numerically estimate the asymptotic form factor, we
study the form factor of the order-parameter field after it
is hardened by y(x) sgn[y(x)]. This procedure has
proved useful in a previous computational study of the 3D
binary-alloy model [8]. Figure 2 shows that the hardened
S(k) scales well over a range of times, but also shows that
the form factor is somewhat different from the ordinary

case. Using a Porod plot (Fig. 3), we clarify the dif-
ference for x-2. Note that the form factor has no discer-
nible second hump in the high-fluidity case and that F(x)
continuously depends on the fluidity of the system.

For small wave vector, we examine the log-log plot of
the unhardened form factor. Figure 4 shows that the rela-
tion F(x)-x, x«1 [16] is not obeyed by the high-
fluidity Hele-Shaw system. In fact, F(x)-x seems
more plausible. This could be a case of finite-size effects
coupled to the wall fluctuations of large domains due to
long-ranged hydrodynamic interaction.

Clearly there is a significant redistribution of structure
to larger and smaller wave vector in the high-fluidity
Hele-Shaw case from the ordinary case. By visual inspec-
tion, the patterns appear to be more "kneaded" and frag-
mented than that of the ordinary system. Small circular
domains are trapped, and do not participate strongly with
hydrodynamics. Their size is only changed by the slower
(Lifshitz-Slyozov) diffusive mechanisms [17]. Hence
there are many persistent small "drops" that probably
enhance the form factor at small scales. Further, in-
compressible fluid dynamics allow small disturbances to
have a large-scale effect. Visual inspection of patterns
shows many events where an initially small change in pat-
tern formation rapidly becomes a larger-scale reconfigu-
ration of the domains about the small change, for exam-
ple, the rapid merging of a droplet after contact with
another domain. The higher the fluidity, the more pro-
nounced should be these intermittent effects [18]. In 2D,
the inevitable fragmentation of the domains, due to the
constraints of dimension, allow opportunities for these
events to exist in many places. For critical quenched sys-
tems in 3D, the domains may be always intertwined and
percolated, but su%ciently off-critical systems may be
affected.
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