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Asymptotic layer coverage in deposition models without screening
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The asymptotic large-layer behavior of the saturation converge in multilayer deposition without
screening is studied by analytical considerations and numerical Monte Carlo simulations. It is argued
that the convergence law to the limiting coverage is related to the problem of the random-walk survival

probability on a lattice with a partial trap at the origin. A model is introduced that has a logarithmic,
rather than power-law, asymptotic coverage behavior, con6rmed by numerical results.
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Recent experiments on colloid deposit [1-3] have
stimulated analytical and numerical studies of multilayer
adhesion models with the following properties. First, the
relaxation is neglected on the time scales of the deposit
formation. Second, overhang effects are partially or com-
pletely eliminated to emphasize the jamming features of
the deposition process due to the absence of relaxation.
The mean-field [4] approach provides the simplest type of
model which can be solved analytically. Some progress
has also been made in certain one-dimensional (ID) mod-
els [5]. However, most of the available information,
which is in fact quite limited, has been obtained by nu-
merical simulation [6,7] of lattice multilayer deposition
models with screening effects (overhangs) suppressed or
completely eliminated.

One of the central findings of the study [6] of deposition
without screening was the power-law convergence of the
jamming (saturation) coverage in layer n to the limiting
value for high layers. Thus, let 8„(T)denote the fraction
of the area covered in layer n at time T (the specific mod-
els will be defined later). Numerical data for several ID
and 2D models suggested

e.( )=8+
n~

where e and A were model-dependent constants but the
power tt was close to —,

'
in all cases. Indeed, recently

analytical considerations were offered [8] suggesting that
l

2 (2)

quite generally.
In the present work we reexamine the arguments of [8]

leading to the asymptotic law (I) and (2). We argue that
in certain cases the asymptotic behavior might be dif-
ferent. A model for which the convergence law is loga-
rithmic, —(lnn), is introduced and studied by numeri-
cal Monte Carlo simulation.

Deposition models without relaxation and overhangs
are defined here as follows. Consider a 2D or 1D lattice
substrate. In 2D studies of [6] the square lattice was used.
Since the deposition of monomers is uncorrelated and

therefore trivial (see below), we assume that the deposit-
ing "particles" (of fixed shape) consist of several lattice
units (squares for the square-lattice substrate, line seg-
ments in ID, etc.). The rate of the deposition attempts is
conveniently normalized to have one attempt per lattice
site per unit time which fixes the time variable T. Each
arriving particle is aligned with the lattice; the attempts
are randomly distributed. For a given attempt, the lowest
lattice layer n, where n ~ I, is identified in which all the
lattice sites covered by the arriving particle are empty. If
all the underlying sites in layer n —I are already occu-
pied, then the attempt is successful and the newly arrived
particle is deposited in layer n. Otherwise the attempt is
rejected. Initially, the lattice is empty in all layers n )0,
i.e., 8„-~ 2 (0) 0. For purposes of definition, the ini-
tially uncovered substrate is considered as layer n =0, and
all its lattice sites are fully occupied, eo(T) I, so that
any deposition attempt in layer n I succeeds.

The condition that the particles are fully "supported"
by the underlying layer prevents any overhangs. There-
fore there is no screening of the lower layers by the parti-
cles deposited in higher layers. The growth in the higher
layers proceeds in columns of occupied regions separated
by gaps which never get filled up. In the lower layers the
configuration of the depositing particles is dominated by
the jamming effects which were studied most extensively
for monolayers; see review [9] and references cited
therein. The time dependence of the coverage is nontrivi-
al, and the resulting state is a random jammed deposit of
coverage 8„(00). However, the fact that the higher-layer
deposition becomes uncorrelated, proceeding via growth
of separated columns, ultimately single-particle wide, sug-
gests that the higher-layer deposition may be approxi-
mately described by the simple mean-field relation

de„(T) =8„-,(T) 8„(T), — (3)
dt

which is in fact exact for the monomer deposition: see ex-
plicit results in [9]. Relation (3) integrates to
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There arises an interesting question if relations (3) and
(4) apply approximately from a certain value no on, or if
the onset of the columnar growth has no such intrinsic
perpendicular length scale.

Since the approximate uncorrelated-growth equation
(3) implies 8„(~)=8,—~(~), the empirically observed
relation (I) seemed to suggest that the latter conclusion
applies, i.e., that the loss of correlation is self-similar, with
no definite length scale no involved [6]. However, later
analysis [8] suggested that the growth law (I), with (2),
can be fully attributed to the last stage of the column for-
mation: two adjacent particle columns growing near each
other can get covered by one particle if it fits in the cross-
section shape formed by these two columns and if they
have equal heights during the deposition attempt. Since
the adjacent columns grow independently as long as their
heights are different, the "covering" of two columns to
form one column, which according to [8] is the dominant
mechanism for decreased saturation coverage in higher
layers, is diffusive and yields the power-law behavior (I)
and (2), as will be further described shortly. An interest-
ing conclusion is that while the simplest growth laws (3)
and (4) never become fully accurate, there is a length
scale no in the problem. It measures the layer height from
which the coverage decreases primarily by the "local"
mechanism just described.

The original numerical studies [6,8] of deposition mod-
els without screening were limited to square kxk shapes
(k & I ) on the 2D square lattice and to linear k-mers on
the I D lattice. The higher-dimensional deposition can
also be considered. Here, however, we focus on the ID
and 2D cases. First, note that in ID two adjacent parti-
cles can be always partially covered by one particle fitting
above. Therefore, the late stage of the deposition in

higher layers will be by growth of the remaining pairs of
columns which, when the pair heights are equal, can be
covered in such a way as to continue growth as a single-
particle column. The relative height coordinate evolves in

time as a one-dimensional random walk. Covering at
equal heights corresponds to a partial trapping probability
at the origin in the walk problem.

To be more precise, let us define s~ as the survival prob-
ability of an ¹tep random walk which starts at or near
the origin and has a probability 0& a & I of being
trapped at each (re)visit at the origin. The value s is

zero for one- and two-dimensional walks, and it is nonzero
for higher-dimensional random walks. However, what in-

terests us is the difference

ciding with one on these columns. This corresponds to the
decrease in coverage in later growth as a single column, in

layers from the coincidence height on. This decrease in

coverage is represented (up to a proportionality constant)
by the decrease in the number of walkers from l to 0 due
to trapping, in the single random-walk problem. Such
events follow the trapping random-walk statistics with the
identification of the number of steps N as proportional to
the column height n.

For higher-dimensional walks, the survival problem has
been studied extensively in the literature [11,12]. Howev-

er, the only additional explicit published result that we

found for the quantity of interest here was the two-
dimensional expression [12]

As~(a - I ) ee (D„,. (k =2) .1

lnN
(7)

For the ID deposition of k-mers, where k & I, an in-

coming particle in layer n can deposit on top of one or two

particles with the latter events only contributing to the
coverage decrease from layer n —I to layer n In t. he 2D
deposition of k it k particles on the square lattice [6,8], the
nth layer particle can fall on top of one, two, three, or four
adjacent particles in layer n —1. However, the deposition
on two particles is the dominant density decreasing pro-
cess because even if three or four columns do grow nearby
in the appropriate configuration, the two-column height
coincidences will be statistically dominant. Thus, the
dimensionality of the walk in the relative height coordi-
nate is D„.„g I, and the result (6) with the identification
n tx: N yields (I) and (2); see [8].

However, for deposition in D & I and with varying par-
ticle shapes, other possibilities must be considered.
Indeed, column configurations in which at least three
(D,. ~k 2), or more (D„.,~k& 2), particles are needed to
support a single depositing particle exist in many cases.
The configurations with the slowest asymptotic decay of
Asjv will dominate. The a I, D,. ~k 2 result (7) applies
most likely to 0& a & I as well, and furthermore for
D, ~k & 2 the behavior will be again power law (two is the

marginal dimensionality for the return-to-origin walk

problems). Therefore, whenever the three-column-only

AS~ SiiV S~ . (5)

Indeed, the asymptotic form of hs~ for large N should not
be sensitive to a but it will depend markedly on the dimen-

sionality of the walk, D„„.~k. For instance, for the one-
dimensional walks the problem has been solved exactly
[8,10] with the result

(6)

Adjacent columns of different height grow approximately
linearly with time. %'hen they happen to be of equal
height, there is a possibility of them being covered (with

probability less than one) by a particle not exactly coin-

FIG. 1. Square-lattice deposition of L-shaped oriented three-

site particles for which the late stage of the coverage decrease in

the higher layers is only possible by covering three particles by

one (shaded lattice sites), in the configurations of the type

sho~n, or 4S reAected.
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FIG. 2. Results of the Monte Carlo simulation on the square

lattice of size 100x 100, with periodic boundary conditions. The
data points shown are for n 20, . . . , 10000.

e„( )-e+ B
(inn) ' (8)

indeed applies with lit= 1, but it is quite difficult to ob-
serve numerically. Our simulations were on lattices up to
IOOX 100. We found that the onset of the logarithmic law
occurs for very large n values, n ~6 000. Our largest
simulation took about 2 CPU months on a SUN SPARC
workstation. The coverage buildup was measured for lay-
ers n ~ 10000. The time T of the runs, in units described

supported configurations are present they are likely to
dominate the asymptotic form of the coverage.

As an extreme example of this new coverage decrease
mechanism let us consider the deposition of fixed-
orientation L-shaped three-square particles on the square
lattice. Three such particles are shown in Fig. 1. The
configuration shown, and its 45' diagonal reflection, are
the only adjacent-column configurations which can be
covered by a single particle, depositing on the shaded lat-
tice sites in Fig. 1.

Our numerical Monte Carlo study of the jamming cov-
erages in this model revealed that the logarithmic behav-
ior of the form

FIG. 3. Same as Fig. 2, with n~ 6000.

earlier, was as long as 14000 to ensure convergence to sat-
uration for all the layers considered. The results were
averaged over 1435 independent Monte Carlo runs.

The results for the jamming coverages are presented in

Figs. 2 and 3. Figure 2 is the overall plot of the data for
n 20, . . . , 10000. Interestingly, the coverage actually
shows variation that looks slower than linear in (inn)
definitely, no power law applies. The approach to the
linear behavior is quite slow. However, the n ~ 6000 data
shown in Fig. 3 seem linear allowing for the statistical
noise.

In summary, our results illustrate that the asymptotic
convergence of the jamming coverage in deposition
without screening depends on the precise shape of the par-
ticles and may in some cases be logarithmic instead of
power law.
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