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Quenched disorder in tethered membranes
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We study the effect of quenched disorder on the behavior of tethered membranes using both analytic

and numerical methods.

Disorder is introduced via a random spontaneous curvature and a random

preferred metric. The presence of impurity-induced spontaneous curvature is found to stiffen the
long-wavelength bending rigidity, stabilizing a new disordered flat phase at temperature 7=0. This
new phase, like that of pure membranes at 7> 0, is characterized by anomalous statistical and elastic
properties. Since its origin is purely mechanical, it can, in principle, be constructed from an appropri-

ate array of macroscopic springs.

PACS number(s): 64.60.Ak, 87.22.Bt, 68.60.Bs

Flexible *“tethered membranes” are two-dimensional
generalizations of one-dimensional polymers [1]. Theory
suggests [2] that such membranes can exist in a crumpled
state analogous to that of linear polymers. To date, how-
ever, such a state has only been observed in simulations on
non-self-avoiding phantom membranes [3] and not at all
in membranes with self-avoidance [4). Unlike linear poly-
mers, tethered membranes at temperatures 70 have a
flat phase with an infinite orientational persistence length.
The nonzero temperature flat phase is characterized by an
anomalous elasticity [5-7] with elastic moduli that vanish
and a bending rigidity that diverges with decreasing wave
number.

Recently Nelson and Radzihovsky [8] considered the
effects of quenched impurities leading to random disorder
in the preferred metric tensor of D-dimensional manifolds
embedded in a d-dimensional space. They found, for
D <4, that the flat phase remains stable with respect to
such randomness at nonzero temperature [9] but becomes
unstable at zero temperature because of a disorder-
induced softening of the bending rigidity.

In this paper, we extend the work of Nelson and Rad-
zihovsky to include the effects of random spontaneous cur-
vature. This type of randomness could be caused by any
inhomogeneity that locally breaks the reflection symmetry
relating the two sides of a physical membrane. In the par-
tially polymerized lipid bilayers studied by Mutz, Bensi-
mon, and Brienne [10], for instance, such disorder would
naturally be expected to arise from a random distribution
of polymerizing crosslinks on the two sides of a bilayer.
Using an ¢ expansion below D =4, we find that the fixed
point controlling the nonzero temperature flat phase is
stable with respect to randomness. We find that the pres-
ence of a random spontaneous curvature tends to stiffen
the bending rigidity and gives rise to a new flat-phase
fixed point at T =0 not present if there is disorder only in
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the preferred metric. This disordered phase is character-
ized by a divergent long-wavelength bending rigidity and
anomalous elasticity similar to that found for the thermal
flat phase, but with different values for the appropriate
scaling exponents. Our numerical simulations of disor-
dered membranes confirm these predictions. We stress
that the anomalous properties of the disordered phase are
purely mechanical in origin, being the result of impurity-
induced rather than thermally induced distortions of the
membrane.

To define our problem, we introduce the position vector
R(x) specifying the position in R, of a mass point in a D-
dimensional manifold indexed by the vector x in Rp. We
choose a parametrization of the manifold such that
R(x) =x in the lowest energy configuration in the absence
of disorder. Deviations from this unstretched configura-
tion are described by a displacement variable u(x) € Rp
and a height variable h(x) € R;, where d.=d—D:
R(x) =x+u(x)+h(x). In the presence of a stress field
oar(x) (a,b=1,...,D) and a field c(x) € R, favoring
mean curvature V2h(x), the elastic Hamiltonian is

H=1 dex[luaza+2,uua2b +x(V2h)?2
=204 (X)ua(x) —2¢(x)-V2h(x)], (1)

where

uas(x) =% Bauy+8u,+9,h-3,h) (a,b=1,...,D)

is a truncated strain containing all relevant nonlinear
terms. The fields o, (x) and c(x) are random variables
with Gaussian probability distributions and variances

[0 (x)0ca (X)) =[A18258ca+ 28,1 apcal 8P (x —X') ,
()
[ci(x)c;(x")]=A,8;;6°(x—x"),
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where Ipa= ¥ (84c6pa+ 6448p.). Here and in what fol-
lows, square brackets [ ] denote ensemble averages over
quenched random variables. The stress tensor can also
be interpreted as a variation 8gg,(x) in the local preferred
metric tensor g%(x) via o (x) =% [A6,682(x)
+u8g% (x)]. Similarly, c(x) =xRg '(x) where Ry '(x)
is the local spontaneous mean curvature.

We can characterize random tethered membranes by
linear response functions

Hu,(q)) ah;(q))
w, Q= |———— 1, 200, Q= |—7—— 3)
Xuauy\Q [Gﬁ‘( Xhin\qQ [6f( )
and by Edwards-Anderson [11] correlation functions
Cuuy (@) =[ua (@)X up (— g1,
4)
C;,,;,j(q) = [(h;(q))(hj( —q))] ,
where q is the wave vector and f¥ and f!' (i=D
+1,...,d) are, respectively, external forces conjugate to
ug and h;.

The divergences of these quantities at zero wave vector
are controlled by critical exponents which we define via

2o @ ~q 2, (@ ~q T, (5)

and

Cunub(q)"‘q =Q2+n,) —(4—m,). ©)
In general, we can expect the primed and unprimed ex-
ponents to differ. Ward identities associated with rota-
tional invariance imply [6] n,+2n, =4—D in the T=0
flat phase, and n,+2n;=4—D in the new T =0 disor-
dered phase. The primed and unprimed exponents in the
disordered phase are related by an exponent ¢r=nj
—nn=n, —n, associated with the renormalization of
temperature near 7 =0 [12].

The elastic properties of random tethered membranes,
like those of nonrandom membranes [6,7], are charac-
terized by a non-Hookean stress-strain relation [{ug)]
~ Oext %, where oex is an external stress associated with
forces applied at the boundary of the membrane. In the
T#0 flat phase n,=27,/(D+n,) [6,7], and in the T=0
disordered flat phase we find n,=2n,/(D'+n,), where
D'=D+¢r.

As in previous treatments of membranes without ran-
domness, it is useful to derive renormalization-group
(RG) recursion relations in_terms of reduced variables
A-SD[IT/K 7\, SDA.T/K A =SDA T/K' A;‘ =SDA),T/
k2, and A, =A,/KT where (27t) bs) is the solid angle sub-
tended by a D-dimensional sphere. To study behavior in
the vicinity of T =0, it is useful to introduce a measure of
random spontaneous curvatuﬂre which remains finite as
T— 0, and we define g, =jA,. Using a replica formal-
ism, we derive [12] recursion relations for the variables
{6} =14, A, A,,,Al,g,,} by momentum-shell mtegratlon re-
moving components h(q) and u(q) withe ~/<g < 1.

To describe the long-wavelength behavior of mem-
branes with nonzero spontaneous curvature, it is sufficient
to consider an attractive invariant subspace of {6} defined
by A/fi=Ay/A,=—1/3. This three-dimensional space

» Cun(q)~q
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(shown in Fig. 1) is parametrized by /i & T as a measure
of renormalized temperature, g, as a measure of random
spontaneous curvature, and A, as a measure of random
stress. The recursion relations are

di _ . . dH12,  d.+24

dl TR T T T

dg, . . d.+18 d.+36

2 = + —_ A _ ~

dl gu|€et4A, 6 8u 12 i, @)
dA, _ 42k, —deF6 s _ det12 |, de .,
ar o |¢ 3 &6 128

where e =4 —D. We note in the above that a membrane
constructed with random spontaneous curvature (g,) but
without random stress (A,) will always generate random
stress upon renormallzatlon

The only completely stable fixed point (for D <4) is
the point P4, associated with the T=0 flat phase, with
u;éO and A =A,=0. Anothcr ﬁxed point, labeled PS5,
lies in the 4 “0 plane, with A,, JA¥=0. At exactly T =0,
P5 controls the long-wavelength properties of any mem-
brane with nonzero random spontaneous curvature (A,
> 0) and nonzero shear and compression moduli (u >0,
A+2u/D >0). The associated T =0 disordered phase is
rough but macroscopically flat, with frozen distortions de-
scribed by the correlation functions Cj,»,(q) and C,,.,(q).
Various exponents and fixed-point values for P4 and P5
are given to O(e) in Table I.

At small but nonzero T, we expect, a priori, that
ad) ~e" near PS5, with ¢7 > 0 if the fixed point is unsta-
ble. Explicit calculation to O(e) gives ¢7 =0, making P5
marginally stable within the linearized flow equations, but
nonlinear contributions make PS5 weakly unstable. Disor-
dered membranes at very low T will, therefore, be de-
scribed by the T=0 fixed point only at length scales L less

FIG. 1. Flow diagram in the A/ji =A\/A, = — 1/3 subspace for
d.=1, D<4. All fixed points shown, except the T#0 fixed
point P4, lie in the /=0 (i.e., T=0) plane. PI is the unstable
Gaussian fixed point and P5 is the physical 7=0 fixed point.
The two unlabeled fixed points in the A, <0, =0 half-plane
are unphysical.
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TABLE I. Fixed-point values and exponents 7 to O(e) at the T#=0 and T =0 physical fixed points.
Both fixed points lie in the A/u =A3/A, = — 1/3 subspace.

Fixed N

point I A, 8u Nh h Nu N

P4 12¢/(24+4d.) 0 0 12¢/(24+d.) 24¢/24+d.) d.c/24+d.) 0

P5 0 3¢/(6+d.) 6¢/(6+d.) 3e/(6+d.) 3e/(6+d.) d.e/(6+d.) d.e/(6+d.)

than a crossover length L, cce ~V/aT where a depends on

the unrenormalized parameters of the membrane.
Membranes with a random stress field o4, (x)=0 but
with c(x) =0 are described by an invariant subspace of
{6} in which A, =0. The Hamiltonians 7 [o4] describing
such membranes have a global h(x) — —h(x) reflection
symmetry which is absent for ¢(x)#0. At nonzero 7, all
RG trajectories in this subspace eventually flow to P4, but
at exactly T=0, the A,(/) and A, (/) diverge [8] with /.
The divergence at 7 =0 is caused by an impurity-induced
destruction of the bending rigidity x(/). It is believed that
this behavior is associated with the spontaneous breaking
of reflection symmetry in such membranes, via the forma-
tion of a “buckled” state with frozen curvature [(V’h)
-{(V2h)10. The tendency of random stress to soften the
bending rigidity, and of either random spontaneous curva-
ture or nonzero temperature to stiffen it, can be seen most
clearly by considering the recursion relation for k=«/T:

——+ip=[+g,—A,, ®8)

where we have set A/i=AJA,=—1/3, and we renor-
malize h according to h(e'q) =¢'“*? " ™h'(q). The
softening of x for g, =0 is important in the low-T, disor-
der dominated regime j <A,. We note that the predicted
destruction of x at 7=0 can occur only for exactly
reflection symmetric membranes, since the symmetry-
breaking variable g, (1) grows rapidly under renormaliza-
tion when i <A,

To confirm the existence of a flat, zero-temperature
disordered phase, we have carried out numerical simula-
tions of disordered membranes. We treat triangular
networks with a harmonic tethering potential Vo(r)
=1 wd(r—a)? as a function of separation r between
nearest-neighbor particles, and a repulsive potential
Vi(r) =ae ~""/%" between next-nearest neighbors. To in-
troduce random spontaneous curvature, we define the tri-
ple product

t=rc,4'(l'gA XI'DA)(4/3I'3) )

associated with neighboring plaquets A sc and Acpa,
where rp4=rp —r4, etc., and r¢ is the nearest-neighbor
length at 7=0 in the absence of disorder. In the limit
r=ry, corresponding to a very stiff tethering potential,
t=5in(6), where 6 is the angle between normals to the

plaquets. The bending energy for neighboring plaquets is
V=% «'(t —sin6p)?, (10)

where the preferred angle 6y for each pair of plaquets is
chosen randomly from a Gaussian probability distribu-

tion. The repulsive potential V| has been introduced to
break the 6— m— 0 degeneracy of V,. All simulations
have been carried out using the parameters k' =0.508,
a=2.00f, b=0.5a, giving ro=1.04a, and a variance
[631 =(x/4) 2. For small deviations of the membrane from
the flat reference configuration, we can relate the discrete
and continuum parameters via k'=x, w§=pa?, and
[681=A,/x?, giving g,a>=1 for the values chosen.

We simulate networks of hexagonal shape and of sizes
9 <L <59 between opposite corners, using free boun-
daries. For each L, we construct 32<M < 128 mem-
branes (with M smaller for larger L) using different sets
of random angles 6p. To simulate the membranes, we use
the molecular-dynamics algorithm of Ref. [5], which is
basically a discretization of the Langevin equation. We
first equilibrate each membrane at a temperature
T=0.25w4. To find the energy minima, we then turn the
temperature of the heat bath to zero, and let the kinetic
energy dissipate through a small viscous force f = —Tt on
each particle. The simulation time required to find an
equilibrium configuration for a given membrane is largely
determined by the period 27/w; of the lowest frequency
bending mode, and we choose I'=w; =0.005wo — 0.05w¢
to achieve nearly critical damping of that mode.
Ensemble-averaged quantities for each L are obtained by
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FIG. 2. Configuration-averaged scattering function S vs
qL“, with ¢'=0.81. Symbols for different sizes L are O=9,
0=13, A=19, + =29, x =39, O =59, Inset: Averaged small-
est eigenvalue [A;] of I;; vs L. Slope of line corresponds to the
same ¢’ as for Sy (q).
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averaging over the M resulting configurations.

Following the analysis of pure membranes in Ref. [4],
we establish a coordinate system for each configuration by
diagonalizing the normalized moment-of-inertia tensor
1;j=(/N)X.risrjs, where a=1, ..., N is a particle index,
and r, is measured from the membrane’s center of mass.
The unit eigenvector €, associated with the smallest eigen-
value A, defines the out-of-plane direction, with A,
=¢,'T,, and the two remaining eigenvectors define the
plane Rp. The configuration averages of the two larger ei-
genvalues scale with L as [A,],[A;]1~L 2 and the smallest
eigenvalue like [A;]~L?, with {'=0.81 % 0.02 (see Fig.
2, inset), corresponding to n; =2(1 —¢')=0.4.

This anisotropic scaling behavior confirms the existence
of a flat but rough disordered phase, as predicted above.
The measured value of the wandering exponent ¢' is
definitely less than the value {'=¢=1 predicted by har-
monic elastic theory and appropriate for sufficiently small
disorder and temperature, and is greater than the values
¢=0.62—70 obtained by most authors [4,13,14] for the
characteristic exponent of the 70 phase.

We have also determined ¢’ by calculating the aniso-
tropic scattering function Sy (g) =I|(1/N)X.e'"*|2). For
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q > 1/a, Sy(g;L) for different sizes L can be plotted (see
Fig. 2) as a universal function S;=S,(gL%). This
method gives the same value ¢'=0.81 £ 0.03 as obtained
above from the moment-of-inertia tensor.

We have measured the elastic response in the disor-
dered phase by applying small forces to the boundaries of
our membranes, reequilibrating each configuration at
T =0, and then measuring the induced strain at several
different values of the applied stress o.,. Details of this
part of the simulation will be given elsewhere [15], but we
note here that our results are consistent with n, =0.4 and
n,==1.2, implying that ¢7=0. We have also obtained
¢7=0 to O(1/d) for arbitrary D <4 in a large-d expan-
sion [12], and above we obtained ¢7=0 to O(e) for arbi-
trary d in the € expansion. Taken together, these results
strongly suggest that ¢7 =0 for all d and D, but we have
thus far been unable to prove rigorously this conjecture.
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